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ABSTRACT

In this research, we present a novel learning scheme called network iterative learn-
ing for deep neural networks. Different from traditional optimization algorithms
that usually optimize directly on a static objective function, we propose in this work
to optimize a dynamic objective function in an iterative fashion capable of adapting
its function form when being optimized. The optimization is implemented as a
series of intermediate neural net functions that is able to dynamically grow into the
targeted neural net objective function. This is done via network morphism so that
the network knowledge is fully preserved with each network growth. Experimental
results demonstrate that the proposed network iterative learning scheme is able
to significantly alleviate the degradation problem. Its effectiveness is verified on
diverse benchmark datasets.

1 INTRODUCTION

Deep convolutional neural networks have recently demonstrated their continuous excellent perfor-
mances on diverse computer vision problems, including image classification (Lang et al., 1990;
Simonyan & Zisserman, 2014; Szegedy et al., 2014; He et al., 2015a), object detection (Girshick
et al., 2014; Ren et al., 2015), and semantic segmentation (Long et al., 2015). Deep neural network
algorithms involve many optimization problems. One of the most important is network training. It is
quite common to invest days to months of time on hundreds of machines in order to solve even a
single instance of the neural network learning problem (Goodfellow et al., 2016).

The optimization of deep neural networks is much more difficult than traditional optimization
problems. One of the most obvious difficulties is that the problem of optimizing a deep neural
network is ill-conditioned (non-convex) and contains numerous local minima (Goodfellow et al.,
2016). Using the fact that neural network parameters are symmetric, one can show that an m-layer
neural network with n units at each layer can impose n!m ways of hidden units arrangements. This
indicates that there can be an extremely large or even uncountably infinite amount of local minima in
a deep neural network optimization problem.

Figure 1: Network iterative learning intuition. Instead of (a) directly
optimizing the objective function f(x). We first (b) optimize a
simpler approximate function f (1)(x), then (c) use its minimum
x
(1)
G as an initialization to further optimize f (2)(x) = f(x).

Local minima can be problematic if
they have high cost in comparison
to the global minimum. It remains
an open question whether there are
many local minima of high cost for
networks of practical interest (Good-
fellow et al., 2016). It is a common
sense that deep neural network opti-
mization algorithms will not converge
to a global minimum but instead a lo-
cal one. However, many practitioners
start to believe that, for sufficiently
large neural networks, most local minima have a low cost function value (Saxe et al., 2013; Dauphin
et al., 2014; Goodfellow et al., 2014; Choromanska et al., 2015).

In this research, we shall show that in fact there is still a relatively large gap between the local
minima and its global minimum for a large deep neural network optimized by traditional optimization
algorithms. In order to further reduce this gap, we shall propose a novel network iterative learning
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scheme. The intuition for the proposed network iterative learning scheme is illustrated in Fig. 1.
Let xG be the global minimum of the function f(x), and xLi , i = 1, 2, 3 be its local minima.
Assuming that we use an uniform initialization, then a gradient-based optimization algorithm will
have a probability of α (0 < α < 1) to converge to the global minimum. Instead of directly
optimizing the function f(x), we first use a simpler function f (1)(x) to approximate f(x), and let
f (2)(x) = f(x). Using a gradient-based optimization algorithm, regardless of the initialization, the
algorithm will converge to the global minimum of f (1)(x) at x(1)G . Suppose that x(1)G falls into the
convex subregion of f (2)(x) which contains xG, a second round of a gradient-based optimization
algorithm will converge to the global minimum of f(x) at xG. In this case, we will have a probability
of 1 to converge to the global minimum of f(x) using the proposed network iterative learning scheme.
For complex functions such as deep neural networks, function f (1)(x) might not be convex and
x
(1)
G might not fall into the convex subregion of f (2)(x) containing xG either. We believe that the

proposed network iterative learning scheme will have higher probability to fall into low cost local
minima than directly optimizing the objective function f(x). This belief was verified by the proposed
experiments.

It is worth noting that the problem of local minima with high cost can not be rectified by gradient-
based optimization algorithms, including the backpropagation-based algorithms for training deep
neural networks. Theoretically, a local minimum is guaranteed to be a global minimum if the
objective function is convex. However, for a deep neural network, its objective function is obviously
non-convex (Bishop, 2006). Empirically, when we use different optimization algorithms to train the
deep neural networks, they all converge to a similar performance, but can not converge to lower cost
local minima comparing against the proposed network iterative learning scheme (Fig. 9).

The proposed network iterative learning scheme for deep neural networks is based on network
morphism (Wei et al., 2016). Network morphism is an effective scheme to morph a well-trained
neural network into a new one with the network function preserved. After morphing a parent network,
the child network is expected to inherit the knowledge from its parent network and also has the
potential to continue growing into a more powerful one. The idea of the proposed network iterative
learning scheme for deep neural networks based on network morphism is illustrated in Fig. 4. The
results are shown in Fig. 2(e). As shown, an 8-layer network is first learned, and then iteratively
grown into 14, 26, 50, and 98 layers to achieve continuously improved performance1.

The proposed learning scheme is not only a novel learning scheme, but also contains a novel deep
dynamic neural network architecture. To achieve this, we introduce a unified network architecture
called DynamicNet to enable the dynamic growth of neural networks. As illustrated in Fig. 3, this
architecture follows a modularized architecture design. For each level, a repeatable template block is
used to enable the dynamic change of its depth. DynamicNet can represent a large family of networks.
In this research, we verify the proposed scheme on two classic architectures, i.e., PlainNet and ResNet
(He et al., 2015a). Since these two networks are not initially proposed with architecture change,
certain modifications need to be made to adapt them to the DynamicNet family. Furthermore, we also
elaborate how each of these two networks can be iteratively evolved by the proposed learning scheme.
The detailed network iteration processes are illustrated in Fig. 4. In this research, we also developed
an algorithm based on optimal gradient descent to solve for the network morphism equation.

The proposed network iterative learning scheme is also capable of learning new knowledge based on
the established knowledge base. This is because it avoids re-learning from scratch when the network
is going deeper, but inherits the full knowledge that has already learned. It is known that when deeper
neural networks are trained, a degradation problem may be encountered. As shown by the blue
curve in Fig. 2(c), the error rate becomes saturated and then rapidly increases as the network depth
increases. Such performance degradation is not caused by over-fitting (He et al., 2015a), because the
training error of the deeper network is also larger than that of the shallower network (Fig. 2(a)). The
degradation problem can be greatly alleviated by the proposed learning scheme. Its effectiveness is
shown in Fig. 2(b), where the deeper network could achieve lower errors in both training and testing
than the shallower one. Fig. 2(c) and (d) also compare these two learning schemes on PlainNet and
ResNet, in which the performance improvement brought by the proposed scheme is indicated by the
purple-pink region. In the proposed experiments, we shall also demonstrate that the models obtained

1Note that in Fig. 2(e), the sharp error increase and decrease at 0/160 epochs are caused by the learning rate
change.
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Figure 2: Network iterative learning vs. learning with a fixed architecture. (a) The degradation problem, i.e., the
deeper network produces higher errors in both training and testing. (b) The degradation problem is overcome by
the proposed learning scheme. (c,d) Comparison results of the two learning schemes on PlainNet and ResNet. (e)
Testing error curves using network iterative learning. (a-c): PlainNet on CIFAR10, (d,e): ResNet on CIFAR10
(residual ratio 0.5).

by the proposed learning scheme are able to consistently achieve better performances than those
learned with a fixed architecture on diverse network architectures.

2 RELATED WORK

Local Minima of Deep Neural Network The object function of a deep neural network is non-convex.
Hence, a local minimum can not be guaranteed to be also a global minimum (Bishop, 2006). There
can be an extremely large or even uncountably infinite amount of local minima of a deep neural
network optimization problem. Local minima can be problematic if they have high cost in comparison
to the global minimum. It remains an open question whether there are many local minima of high cost
for networks of practical interest (Goodfellow et al., 2016). Researchers have constructed small neural
networks that have local minima with higher cost than the global minimum (Sontag & Sussmann,
1989; Brady et al., 1989; Gori & Tesi, 1992). In this research, we shall show that the problem of local
minima with high cost in optimization is common and arises naturally for deep neural networks.

Optimization Algorithms The main stream optimization algorithms for deep neural networks are
gradient-based. They are mathematically derived from the chain-rule of calculating the derivatives
of the composition of two or more functions in Calculus. Currently widely adopted gradient-based
optimization algorithms include stochastic gradient descent (SGD), Nesterov’s accelerated gradient
descent (NAG) (Nesterov, 1983; 2013), RMSprop (Tieleman & Hinton, 2012), Adam (Kingma &
Ba, 2014), AdaGrad (Duchi et al., 2011), AdaDelta (Zeiler, 2012), etc. However, the problem of
local minima with high cost can not be rectified by these traiditonal gradient-based optimization
algorithms. While the proposed network iterative learning scheme is able to further reduce the gap
between local minima and the global minimum for deep neural networks.

Knowledge Transferring and Network Morphism A series of work uses a student network to mimic
the output of a teacher network (Bucilu et al., 2006; Ba & Caruana, 2014; Romero et al., 2014).
Usually the student network is lighter and the teacher network is more complex. In such a teacher-
student formula, the student network is usually relearned from scratch, and its network architecture is
fixed. Another series of work (Chen et al., 2015a; Wei et al., 2016) tries to add new layers into the
original network architecture, allowing the network architecture to dynamically change. Since the
child network usually directly inherits the full knowledge of the parent network, we refer to this as
the parent-child formula. The proposed network iterative learning is based on the latter series.

Network morphism (Wei et al., 2016) is an effective scheme to morph a well-trained neural network
into a new one with the network function preserved. We choose it as the basic operation of the
proposed network iterative learning scheme. However, this research is different from (Wei et al.,
2016) significantly. One essential difference between the proposed research and (Wei et al., 2016) is
that network morphism is used as a building block of the proposed network iterative learning scheme.
Another essential difference is that, although only in theory, if we can add a single layer into a neural
network, we are able to add an arbitrary number of layers. In practice, this might not be true. First,
the choice of the morphing target is a great issue. Second, we need to guarantee that the performance
will continuously improve when adding more layers. Otherwise, it would make no sense to do this.
Surely, there will be a limit for the number of layers we are allowed to add due to the over-fitting
problem. This paper presents a systematic study on how to pick the morphing target and how can we
practically successful to morph a network by adding a large amount of layers, in which (Wei et al.,
2016) did not address.
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3 THE NETWORK ITERATIVE LEARNING APPROACH

3.1 NETWORK ITERATIVE LEARNING

Different from traditional optimization algorithms that usually optimize directly on a static objective
function, we propose in this work to optimize a dynamic objective function in an iterative fashion
capable of adapting its function form when being optimized.

In this research, we split such process into multiple stages, with the knowledge learned in the previous
stage being transferred to the next stage for continual optimization. Let f be the target function, and
θ be the parameters. The proposed goal is to find the minimum

min
θ
f(θ). (1)

Instead of directly optimizing f , we propose to find a series of objective functions
{f1(θ1), f2(θ2), · · · , fn(θn)} with fi−1 being able to dynamically grow into fi and θi−1 being able
to transfer to θi, satisfying f(θ) = fn(θn). Typically, the functional forms of {fi} are of increasing
complexity, and the parameter space is also non-decreasing: size(θ1) ≤ size(θ2) ≤ · · · ≤ size(θn).
Then, the proposed scheme can be formulated as

θ̂1 = argminθ1 f1(θ1), (2)

θ̂2 = argminθ2 f2(θ2|θ̂1), (3)

· · ·
θ̂n = argminθn fn(θn|θ̂n−1). (4)

For deep neural networks, such a network iterative learning process is achieved by network archi-
tecture iteration and weight knowledge transferring. In this case, the objective function f is a very
deep neural network, and the functional series {fi} is the set of intermediate neural networks. In this
research, we design a DynamicNet architecture to allow the network architecture to iteratively evolve
and elaborate the application of the proposed learning scheme on two classic networks, i.e., PlainNet
and ResNet (He et al., 2015a). We also adopt a modified version of network morphism (Wei et al.,
2016) to transfer the knowledge from θ̂i−1 to θi and to facilitate exponential order growth, followed
by further optimization to obtain a better-performing θ̂i.

3.2 THE DYNAMICNET ARCHITECTURE

x𝑛
x𝑘

𝐷
𝐶

𝑇

𝐿

𝐹

Figure 3: The DynamicNet architecture. A network
in the DynamicNet family will allow for architecture
change. D: fast down-sampling block, C: channel
switching block, T : template block, L: level block, F :
fully connected layer block; n: number of blocks, k:
number of levels.

For the proposed learning scheme, the first re-
quirement is a network architecture that allows
to dynamically change. Inspired by the observa-
tion that modern networks are designed by split-
ting its body into multiple stages (Simonyan &
Zisserman, 2014; He et al., 2015a), we propose
a unified architecture called DynamicNet to en-
able network iterative learning. The proposed
architecture follows a modularized architecture
design. In this architecture, we calculate the fea-
tures at several levels from lower ones to higher
ones, and each level is further constructed with a repeatable template block to facilitate the network
growing.

As illustrated in Fig. 3, the main body of a DynamicNet is composed of k level blocks L, in which
each level block L further consists of a channel switching block C and several template blocks
T . The channel switching block C is introduced to simplify the morphing by requiring that layers
within the same level block shall have the same channel sizes. This block usually consists of a
single convolutional layer2. The template block T actually defines the basic module of DynamicNet.
Representative network architectures, including PlainNet and ResNet, can be adapted as template
blocks in DynamicNet. In addition to the main body, there is also an optional fast down-sampling

2In this work, unless specially annotated, a convolutional layer will be followed by a BatchNorm layer and a
ReLU layer.
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block D, which is designed to reduce the computational cost. This block typically consists of one or
several convolutional layers and pooling layers. There is also a tail F in DynamicNet to represent a
classifier connecting to the object categories. It usually consists of a global pooling layer followed by
a fully connected layer and a softmax layer.

The DynamicNet is able to represent a large family of networks with modularized architectures. In
this work, we verify the proposed learning scheme on two representative network architectures, i.e.,
PlainNet and ResNet (He et al., 2015a), as shown in Fig. 4. The template block T of a PlainNet
is simply composed of a single convolutional layer (Fig. 4(a)). Since the channel switching block
has the same architecture as the template block, we shall consider both of them contributing to the
number of blocks n. An expanded version of the network architecture is illustrated in Fig. 5.

For ResNet (He et al., 2015a), the template block T is a two-branch subnet, with the first branch
consisting of two sequential convolutional layers and the second branch a scaled identity mapping
layer (residual ratio r). These two branches are joined by addition (Fig. 4(b)). In order to be
compatible with the ResNet proposed in (He et al., 2015a), we make the architecture of the channel
switching block C the same as that of the template block T , with the identity mapping layer being
replaced with a 1× 1 convolutional layer. The channel switching block shall also be considered for
contributing to the number of blocks n. We made certain modifications to the ResNet to make it fit
for the DynamicNet architecture. In (He et al., 2015a), ResNet is proposed with identity connections,
while in this research, we extend them as scaled identity connections controlled by a residual ratio r.
This extension is to avoid filling the decomposed convolutional filters with all zeros.

Networks in the DynamicNet family allow for exponentially growing their network depths. In general,
this can be achieved by making a multiplication on n, the number of blocks.

3.3 NEURAL NETWORK ARCHITECTURE ITERATION

BN/ReLU

BN/PReLU BN/ReLU

𝐺

𝐹𝑙 𝐹𝑙+1

(a) PlainNet

BN
ReLU

BN

ReLU

BN
ReLU

BN

ReLU

BN
PReLU

BN

ReLU

id

(b) ResNet
Figure 4: Network iteration processes for PlainNet and
ResNet in the DynamicNet family.

We explain the detailed network iteration pro-
cesses for PlainNet and ResNet in the Dynamic-
Net family. We adopt network morphism (Wei
et al., 2016) operations as the basic operations
in these iteration processes, to guarantee that the
network function is unchanged after morphing.
Here we focus on the architecture iteration of
networks, leaving detailed morphing algorithms
to the next section.

The Iteration of PlainNet
For PlainNet, as shown in Fig. 4(a) and Fig. 5, a convolutional layer G is decomposed into two
convolutional layers Fl and Fl+1, that satisfy the following network morphism equation:

G̃(cj , ci) =
∑
cl

Fl(cl, ci) ∗ Fl+1(cj , cl) , Fl ⊗ Fl+1, (5)

where G, Fl, and Fl+1 are the convolutional filters associated with the convolutional layers with
shapes of (Ci, Cj ,K,K), (Ci, Cl,Kl,Kl), and (Cl, Cj ,Kl+1,Kl+1). G̃ is a zero-padded version
of G whose kernel size is K̃ = Kl +Kl+1 − 1. In the proposed morphing operation for PlainNet,
the original BatchNorm and ReLU layers are first duplicated to the end of the second morphed
convolutional layer, and the network function will remain the same. However, we still have to
insert another BatchNorm/ReLU pair after the first convolutional layer. Here, we assume that such
operations are possible. In Section 3.4, we will introduce how to solve the network morphism
equation (5) and how to insert a BatchNorm/ReLU pair both with the network function unchanged.

The Iteration of ResNet
The iteration process for ResNet is illustrated in Fig. 4(b). As shown, a copy of the original template
block is first made. For the second template block, we maintain rId for the shortcut connection, and
decompose (1− r)Id into two convolutional layers as we did for PlainNet, where r is the residual
ratio and Id is the identity mapping. It is worth noting that we have extended the identity connection
in (He et al., 2015a) to a scaled one controlled by a residual ratio r in this research. The network
function shall not change in the proposed iteration process. As for the BatchNorm and ReLU layers,
we simply insert them where they are necessary.
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Figure 5: Network iteration process for PlainNet from 7-layer to 10-layer.

Algorithm 1 The optGD Algorithm for Network Morphism
Input: G of shape (Ci, Cj , K,K); Cl,Kl,Kl+1

Output: Fl of shape (Ci, Cl, Kl, Kl), Fl+1 of shape (Cl, Cj , Kl+1, Kl+1)
Initialize Fl with unit random noise and initialize Fl+1 with the initializer described in (He et al., 2015b).
Normalize G with unit standard variance, expand G to G̃ with kernel size K̃ = Kl +Kl+1 − 1 by padding zeros. Keep a record of the
standard variance for G̃.
repeat

Fix Fl+1, and calculate the optimal learning rate for Fl as ηlopt.
Update Fl ← Fl − ηlopt ∂l∂Fl

Fix Fl, and calculate the optimal learning rate for Fl+1 as ηl+1
opt .

Update Fl+1 ← Fl+1 − ηl+1
opt

∂l
∂Fl+1

Calculate the loss l = ‖G̃− conv(Fl, Fl+1)‖2
until l = 0 ormaxIter is reached
Multiply Fl with the standard variance of G̃ recorded, and normalize Fl and Fl+1 with equal standard variances.

procedure CALCOPTIMALLEARNINGRATE(G, Fl, Fl+1, ∂l
∂Fl

)
for η = 0, α, 2α do

Set F̂l ← Fl − η ∂l
∂Fl

, and calculate the loss l = ‖G̃− conv(F̂l, Fl+1)‖2

end for
Let l0, l1, l2 be the losses calculated in the above loop.
return α

2 −
l1−l0

l2−2l1+l0
end procedure

3.4 MORPHING ALGORITHMS
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Figure 6: The proposed optGD algorithm for net-
work morphing. (a) Computational graph for the
morphism equation (5). (b) Calculation of the opti-
mal learning rate.

In this section, we shall describe how to decompose
one convolutional layer into two convolutional lay-
ers that satisfy the network morphism equation (5),
and also how to safely insert BatchNorm and ReLU
layers into the network so that its network function
is unchanged.

The Morphing of Convolutional Layers
In the proposed experiment for PlainNet, the algo-
rithm in (Wei et al., 2016) suffered from a dramatic
performance drop for the first few iterations. This
may be due to its lack of ability to evenly distribute
the convolutional filter information into the morphed
filters. Consider the case of decomposing one 1× 1
convolutional filter into two 1× 1 convolutional filters, least square based algorithm (Wei et al., 2016)
will transfer all information of the original filter into only one of the morphed filters.

To solve this problem, we present a novel and more robust algorithm. Using this algorithm, there was
no noticeable performance drop except for the occasions caused by a change of learning rate in the
proposed experiments (Fig. 2(e)). The proposed algorithm is based on modified gradient descent.
The major difference is that the optimal learning rate for each operand is solved for in the proposed
algorithm. Hence, this algorithm is called optimal Gradient Descent (optGD) algorithm in this work.
This can be achieved by leveraging the fact that the loss function l = l(η) is a quadratic function of
the learning rate η:

l(η) = ‖F̂l ⊗ Fl+1 − G̃‖2 = ‖(Fl − η
∂l

∂Fl
)⊗ Fl+1 − G̃‖2, (6)

where F̂l is the updated version of Fl. Therefore, we can analytically solve for the optimal learning
rate ηopt with any three sample points on the curve.
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The algorithm is illustrated in Algorithm 1 and Fig. 6. As shown, we iteratively optimize Fl or Fl+1

with the other one fixed. The gradients ∂l
∂Fl

and ∂l
∂Fl+1

are calculated by the chain-rule, which is
implemented in typical deep learning libraries (Jia et al., 2014; Chen et al., 2015b). Its computational
graph is also illustrated in Fig. 6(a). For the optimal learning rate, it is calculated by the procedure
CALCOPTIMIALLEARNINGRATE in Algorithm 1. We sample three points in the curve l(η) with a
step size of α, and the optimal learning rate can be given by

ηopt =
α

2
− l1 − l0
l2 − 2l1 + l0

, (7)

where l0, l1, l2 are the losses of l(η) when η takes values of 0, α, 2α. Since the minimum of
a quadratic function actually does not depend on the three points sampled, we simply set α =
1. Fig. 6(b) illustrates an example for the decomposition of a random convolutional filter with
l0 = 0.17836769, l1 = 0.15257044, l2 = 0.12920338. The optimal learning rate is calculated as
ηopt = 11.12 from Eqn. (7). Note that in the standard SGD algorithm with learning rate 0.1 and
mini-batch size 256, its actual learning rate is 0.1/256 ≈ 4.0e−4. 11.12 is much larger than 4.0e−4

in scale, hence the proposed optGD algorithm converges significantly faster than the standard SGD
algorithm.

Eqn. (7) is derived based on the fact that l(η) is a quadratic function of η (Eqn. (6)). When this
condition does not hold, i.e. l(η) is an arbitrary continuous function of η, Eqn. (7) can still give a
second-order approximation of the optimal learning rate. In the future, we wish to apply the proposed
algorithm to general optimization problems.

The Morphing of ReLU and BatchNorm
For ReLU and BatchNorm layers, when they are inserted into a network, the network function shall
actually change. The proposed solution is to reduce them to function as an identity mapping layer, so
that they can be freely added to the neural network.

In this research, we adopt the solution proposed in (Wei et al., 2016) for the ReLU layer. For any
nonlinear activation function ϕ, its parametric form P -ϕ is defined to be any continuous function
family that is able to connect ϕ and ϕid, where ϕid is identity mapping. Its canonical form is defined
as

P -ϕ = {ϕa}|a∈[0,1] = {(1− a) · ϕ+ aϕid}|a∈[0,1]. (8)
When ϕ is the ReLU function, P -ϕ will be the PReLU function (He et al., 2015b). With a = 1 as
the initialization, the PReLU layer will become an identity layer. It will function as a non-linear one
once a has been learned.

For BatchNorm (Ioffe & Szegedy, 2015) defined by

newdata =
data−mean√
var + eps

· gamma+ beta, (9)

we simply initialize its gamma to ones, and beta to zeros. Mathematically strictly speaking, the mean
subtracted by the BatchNorm layer will incur the network function changed unless it is filled with
zeros, yet we are only able to show that the expectation of the mean is zero. However, this small
perturbation will not result in a noticeable alteration to the network function, since the output is further
normalized by the BatchNorm layer after the second convolution (Fl+1 in Fig. 4(a)) before passing
to the next template block. In the proposed experiments, no accuracy degradation was observed using
this initialization strategy.

4 EXPERIMENTAL RESULTS

4.1 EXPERIMENTAL RESULTS ON THE CIFAR10 DATASET

We first conduct experiments on the CIFAR10 (Krizhevsky & Hinton, 2009) dataset, a benchmark
dataset for image classification. It consists of 50,000 training images and 10,000 testing images in 10
object categories.

The network inputs are 32× 32 color images with per-channel mean subtracted. Since this dataset is
composed of tiny images, the fast down-sampling block in DynamicNet is not necessary3. We adopt

3For ResNet, one convolutional layer is used to fit for its original architecture proposed in (He et al., 2015a).
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Num Num FixLearn IterLearn Abs. Perf. Rel. Perf.
Block Layer Improv. Improv.

2 7 11.44 - - -
3 10 10.04 9.83 0.21 2.1
5 16 9.87 8.36 1.51 15.3
9 28 9.45 7.96 1.49 15.8
17 52 11.54 7.43 4.2 36.4
33 100 17.77 7.57 10.2 57.4

(a) PlainNet

Num Num FixLearn IterLearn FixLearn IterLearn IterLearn IterLearn FixLearn IterLearn
Block Layer r0.5 r0.5 r0.6 r0.7 r0.8 r0.8 r0.9

1 8 11.42 - 11.47 - - - 11.34 -
2 14 9.06 8.37 9.08 8.69 8.64 9.21 8.84 8.46
4 26 8.75 (20) (He et al., 2015a) 8.04 8.3 7.43 6.82 7.25 7.68 6.94
8 50 6.97 (56) (He et al., 2015a) 6.81 8.64 6.55 5.95 6.39 7.2 6.19

16 98 6.61 (110) (He et al., 2015a) 6.05 10.89 6.06 5.78 6.13 7.36 6.14

(b) ResNet
Table 1: Experimental results in error rates on the CIFAR10 dataset. Results adopted from (He et al., 2015a)
were reported on different network depths, and their layer numbers are parenthesized.

NumLayer FixLearn IterLearn

7 39.54 -
10 36.28 36.08
16 35.08 33.86
28 36.83 32.08
52 40.29 31.63

100 49.83 31.55

(a) PlainNet

Num FixLearn IterLearn FixLearn IterLearn FixLearn
Layer r0.5 r0.5 r0.8 r0.8

8 38.02 - 38.86 - 38.89
14 34.37 33.69 34.63 33.7 34.25
26 32.84 31.81 32.07 31.95 31.52
50 31.83 29.55 36.61 29.91 31.14
98 28.51 28.2 44.87 27.59 30.33

(b) ResNet
Table 2: Experimental results in error rates on the CIFAR100 dataset.

a uniform number of levels k = 3 for both networks. For PlainNet and ResNet, the depths are 3n+ 1
and 6n+ 2, respectively, where n represents the number of blocks in the level block L. The main
body of the network architecture is computed on channel sizes of {16,32,64} and feature map sizes
of {32,16,8}. This setup is the same as in (He et al., 2015a).

The neural networks were trained using SGD with a batch size of 256 for 320 epochs. The learning
rate starts from 0.1 and decreases by a factor of 10 at 160/240 epochs. We use a decay of 0.0001
and a momentum of 0.9. The images are padded with 4 pixels on each side for augmentation, and a
random crop and a random horizontal flip are applied.

The first proposed experiment is on PlainNet. In the iteration process, the number of blocks n takes
values of 1 + 2i−1, where 1 is for channel switching and i represents the i-th iteration from 1 to 6,
resulting in the iteratively evolved network depths of 7, 10, 16, 28, 52, and 100. The experimental
results are shown in Table 1(a) and Fig. 2(c). As the results shown, network iterative learning
(named as IterLearn) is able to greatly alleviate the degradation problem. The absolute and relative
performance improvements can be up to 10.2% and 57.4%. This performance gain is also illustrated
by the shadowed purple-pink area in Fig. 2(c). In Fig. 2(c), we also draw the performances of
the best-performing models trained with different learning schemes (dashed lines). The global
performance improvement is indicated by the gap in between the dashed lines. Besides, Fig. 2(a)
and (b) also show the training and testing errors for traditional learning with a fixed architecture
(named as FixLearn) and for the proposed learning scheme, where the deeper network (52-layer)
could achieve lower error rates in both training and testing than the shallower one (28-layer). This
trend in training error reduction is not quite obvious as the errors are actually less than 0.3% and may
not be differentiable. This trend can be more clearly observed on the CIFAR100 dataset as illustrated
in Fig. 7.

Then, we conduct experiments on ResNet. In the iteration process, the number of blocks n takes values
of 2i, where i represents the i-th iteration from 1 to 5, resulting in the iteratively evolved network
depths of 8, 14, 26, 50, and 98. Fig. 2(e) illustrates this iteration in the proposed learning scheme,
where the network performance is continually improved. Table 1(b) shows the experimental results.
Due to space limitations, we did not show the absolute and relative performance improvements. For
the 98-layer ResNet with residual ratio 0.7, the absolute and relative performance improvements can
be up to 0.83% and 12.6%.
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ResNets with residual ratios < 1 are actually not good-performing network architectures. As shown
in Table 1(b), when the network depth is increased from 50 to 98, by learning with a fixed architecture,
the performance degradation is obvious with residual ratio 0.5 or 0.8. This phenomenon was also
observed in (He et al., 2016) (Table 1 and Fig. 2(b)). However, when these networks are learned
by the proposed learning scheme, such performance degradation can be avoided. The comparison
results between learning with a fixed architecture and the proposed learning scheme is also illustrated
in Fig. 2(d) with residual ratio r = 0.5, in which the significant performance gain is illustrated as
the purple-pink area. Combining with the effectiveness on resolving for the degradation problem on
PlainNet, we can conclude that the proposed learning scheme is able to fix the inherent inferiority in
these poor-performing network architectures.

Therefore, the effectiveness of network iterative learning has been shown on both representative
networks. We observe consistent performance improvements of network iterative learning over
learning with a fixed architecture. The degradation problem is also greatly alleviated by the proposed
network iterative learning. We believe the reason is that network iterative learning allows full
knowledge of learning to be inherited as the initialization when the network is iteratively evolved to a
deeper one. Such an iteration of network is regularized, and shall have lower probability to be trapped
into a high cost local minimum than conventional scheme of learning with a fixed architecture.

4.2 EXPERIMENTAL RESULTS ON THE CIFAR100 DATASET
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(a) Learn with a fixed architecture.
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(b) Network iterative learning.
Figure 7: Network iterative learning vs. learning with a fixed
architecture for PlainNet on CIFAR100.

We also verify the proposed learning
scheme on the CIFAR100 dataset. It
consists of 50,000 training images and
10,000 testing images in 100 object
categories. We follow the same setup
and network architectures for Plain-
Net and ResNet as in the previous ex-
periments. The results are shown in
Table 2, from which we can reach the
same conclusions as in the CIFAR10
dataset. For PlainNet and ResNet, the
absolute performance improvements
can be up to 18.28%, 1.53% respec-
tively, and the relative performance can be up to 36.7%, 5.1%, respectively, for the networks around
100 layers. Due to space limitation, the details of the performance improvements are not included.

In addition to the consistent performance improvement, the degradation problem is also significantly
alleviated by the proposed learning scheme for this dataset. From Table 2 we can see that, when the
networks are extended from around 50 layers to 100 layers, the proposed learning scheme can achieve
a consistent performance improvement for all three networks. Training with a fixed architecture
cannot achieve this. Fig. 7(a) and (b) also compare the training and testing errors on PlainNet between
these two learning schemes. For the proposed learning scheme, the deeper network (52-layer) could
achieve lower error rates in both training and testing than the shallower one (28-layer), while learning
with a fixed architecture fails to achieve lower error rates.

4.3 EXPERIMENTAL RESULTS ON THE IMAGENET DATASET
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Figure 8: Network iterative learn-
ing vs. learning with a fixed archi-
tecture for PlainNet on ImageNet.

We further conduct experiments on ImageNet (Russakovsky et al.,
2014). This dataset is composed of 1,000 object categories, with 1.28
million training images and 50,000 validation images. For PlainNet,
we set the number of levels to 4 and hence its depth is 4n + 2. n
represents the number of blocks and takes values of 1 + 2i−1 with
i represents the i-th iteration from 1 to 5, resulting in the iteratively
evolved network depths of 10, 14, 22, 38, 70. The inputs to the
network are 224× 224 color patches cropped from resized images
with shorter sides randomly sampled in [256,480]. The networks
were trained with a batch size of 256 for 100 epochs. The learning
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FixLearn IterLearn IterLearn
full half

Training Time 1x 2x 1x
Error Rate (%) 17.77 7.57 7.54

Table 3: Training acceleration for the proposed net-
work iterative learning scheme (100-layer PlainNet
on CIFAR10).

FixLearn IterLearn IterLearn
optGD LSQ

Error Rate (%) 17.77 7.57 12.55

Table 4: Comparison between optGD and LSQ-based
(Wei et al., 2016) algorithms solving for the network
morphism equation (5) for the proposed network itera-
tive learning scheme (100-layer PlainNet on CIFAR10).

rate starts from 0.1 and decreases with a factor of 10 every 30 epochs.
We use a decay of 0.0001 and a momentum of 0.9. The setup is the same as in (He et al., 2015a).

Fig. 8 illustrates the experimental results. We observe the degradation problem as marked by the blue
curve. However, this problem can be significantly alleviated by the proposed learning scheme. The
performance gain brought by network iterative learning is indicated by the purple-pink region. Due
to time and computational resource constraints, we have not yet carried out experiments for ResNet,
which will be completed soon.

4.4 EFFICIENCY AND TRAINING ACCELERATION

The proposed learning scheme contains two parts in each iteration period: network iteration (including
knowledge transferring) and continual learning. Since the time cost of the first part takes only from
seconds to minutes and could be neglected, the time cost of network iterative learning mainly depends
on the second part. Due to historical reasons, in this research, we adopted a uniform training strategy
for the continual learning and learning with a fixed architecture for 320 epochs. Assume that the
training time cost is proportional to the network depth given fixed training steps, one may conclude
that the time cost of network iterative learning is about twice the time cost of training the deepest
neural network alone.

However, The network iterative learning process is capable of learning new knowledge based on the
established knowledge base. Hence, the training process can be greatly accelerated because it avoids
re-learning from scratch when the network is going deeper. Table 3 illustrates the experimental results
of the training acceleration strategy for the proposed network iterative learning scheme. In this table,
“full” means training for 320 epochs and “half” means training for 160 epochs. As shown, the “half”
strategy does not incur any performance drop comparing against the “full” training strategy.

4.5 COMPARING AGAINST TRADITIONAL OPTIMIZATION ALGORITHMS
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(a) 52-layer
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(b) 100-layer
Figure 9: Network iterative learning v.s. traditional optimization
algorithms.

We compare the proposed network it-
erative learning scheme against tradi-
tional optimization algorithms. Fig. 9
illustrates the experimental results for
the 52-layer and 100-layer PlainNets
on the CIFAR10 dataset. As shown,
traditional optimization algorithms,
including stochastic gradient descent
(SGD), Nesterov’s accelerated gradi-
ent descent (NAG) (Nesterov, 1983;
2013) and Adam (Kingma & Ba,
2014), usually converge to similar
performances for a neural network.
While the proposed network iterative learning scheme is able to further reduce the gap between the
local minima and the global minimum. This indicates that the problem of local minima with high
cost in optimization is common and arises naturally for deep neural networks. The effectiveness of
the proposed network iterative learning scheme is also demonstrated.

We also conduct experiments for traditional optimization algorithms including RMSprop (Tieleman
& Hinton, 2012), AdaGrad (Duchi et al., 2011) and AdaDelta (Zeiler, 2012). However, they converge
to a much worse-performing local minima in the proposed experiment case and their curves are not
shown.
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4.6 THE EFFICIENCY OF THE PROPOSED OPTGD ALGORITHM
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Figure 10: The proposed optGD
algorithm v.s. the LSQ-based al-
gorithm (Wei et al., 2016) solving
for the network morphism equa-
tion.

Finally, we compare the proposed optGD algorithm with the least
square (LSQ) based algorithms proposed in (Wei et al., 2016) for
solving the network morphism equation (5). The advantages of the
proposed optGD over LSQ when adopted for network morphism of
the proposed network iterative learning scheme are mainly in three
folds.

First, in the proposed experiments, the primary morphing operations
are to decompose a 3× 3 convolutional kernel into two 3× 3 con-
volutional kernels. The proposed optGD algorithm is able to do this
directly. While for LSQ in (Wei et al., 2016), one has to decompose
a 3× 3 convolutional kernel into a 3× 3 convolutional kernel and
a 1× 1 convolutional kernel, and then expand the latter to a 3× 3
convolutional kernel in order to achieve the desired morphing.

Second, the proposed optGD algorithm does not incur an additional sharp error increase at the start
besides the learning rate change (Fig. 10 blue curve). While in (Wei et al., 2016), there is an additional
sharp error increase at the start besides the learning rate change (Fig. 10 orange curve). Such sharp
error increase happened when we were expanding the 1× 1 convolutional kernel into a 3× 3 one. It
should be caused by filling the convolutional filters with too many zeros, as the Net2Net approach in
(Chen et al., 2015a) also encounters the same problem due to the large amount of zeros in identity
layers added into the network (Fig. 5 in (Chen et al., 2015a)).

Third, the proposed optGD algorithm is much more robust than the LSQ-based algorithm in (Wei
et al., 2016). This is probably because the proposed optGD algorithm is able to evenly distribute
the convolutional filter information into the morphed filters. While LSQ-based algorithm will likely
transfer all information of the original filter into only one of the morphed filters. Table 4 compares
the experimental results for PlainNet on the CIFAR10 dataset. As can be seen, the proposed optGD
algorithm is much more effective than the LSQ-based algorithm (7.57% vs 12.55%) solving the
network morphism equation for the proposed network iterative learning scheme. It is also worth
noting that, even when combined with the LSQ algorithm, the proposed scheme still outperforms the
learning with a fixed architecture scheme by a large margin (12.55% vs 17.77%).

5 CONCLUSIONS

In this research, we show that the problem of local minima with high cost in optimization is common
and arises naturally for deep neural networks. In an attempt to further reduce the gap between the
local minima and the global minimum, we present a novel learning scheme called network iterative
learning for deep neural networks. Different from traditional optimization algorithms that usually
optimize directly on a static objective function, the proposed network iterative learning scheme
contains a novel deep dynamic neural network architecture. Extensive experiments have been carried
out to demonstrate the effectiveness of the proposed network iterative learning scheme.

REFERENCES

Jimmy Ba and Rich Caruana. Do deep nets really need to be deep? In Advances in Neural Information
Processing Systems, pp. 2654–2662, 2014. 2

Christopher M Bishop. Pattern recognition. Machine Learning, 2006. 1, 2

Martin L Brady, Raghu Raghavan, and Joseph Slawny. Back propagation fails to separate where
perceptrons succeed. IEEE Transactions on Circuits and Systems, 36(5):665–674, 1989. 2

Cristian Bucilu, Rich Caruana, and Alexandru Niculescu-Mizil. Model compression. In Proceedings
of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pp. 535–541. ACM, 2006. 2

Tianqi Chen, Ian Goodfellow, and Jonathon Shlens. Net2net: Accelerating learning via knowledge
transfer. arXiv preprint arXiv:1511.05641, 2015a. 2, 4.6

11



Under review as a conference paper at ICLR 2018

Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun Xiao, Bing Xu,
Chiyuan Zhang, and Zheng Zhang. Mxnet: A flexible and efficient machine learning library for
heterogeneous distributed systems. arXiv preprint arXiv:1512.01274, 2015b. 3.4

Anna Choromanska, Mikael Henaff, Michael Mathieu, Gérard Ben Arous, and Yann LeCun. The
loss surfaces of multilayer networks. In Artificial Intelligence and Statistics, pp. 192–204, 2015. 1

Yann N Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli, and Yoshua
Bengio. Identifying and attacking the saddle point problem in high-dimensional non-convex
optimization. In Advances in neural information processing systems, pp. 2933–2941, 2014. 1

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12(Jul):2121–2159, 2011. 2, 4.5

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jagannath Malik. Rich feature hierarchies for
accurate object detection and semantic segmentation. In IEEE Conference on Computer Vision
and Pattern Recognition, pp. 580–587. IEEE, 2014. 1

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016. 1, 1, 2

Ian J Goodfellow, Oriol Vinyals, and Andrew M Saxe. Qualitatively characterizing neural network
optimization problems. arXiv preprint arXiv:1412.6544, 2014. 1

Marco Gori and Alberto Tesi. On the problem of local minima in backpropagation. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 14(1):76–86, 1992. 2

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. arXiv preprint arXiv:1512.03385, 2015a. 1, 1, 3.1, 3.2, 3.3, 3, 1b, 1, 4.1, 4.3

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. arXiv preprint arXiv:1502.01852, 2015b. 3,
3.4

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. arXiv preprint arXiv:1603.05027, 2016. 4.1

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015. 3.4

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick, Sergio
Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture for fast feature embedding. In
Proceedings of the ACM International Conference on Multimedia, pp. 675–678. ACM, 2014. 3.4

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014. 2, 4.5

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images, 2009.
4.1

Kevin J Lang, Alex H Waibel, and Geoffrey E Hinton. A time-delay neural network architecture for
isolated word recognition. Neural networks, 3(1):23–43, 1990. 1

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic
segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 3431–3440, 2015. 1

Yurii Nesterov. A method of solving a convex programming problem with convergence rate o (1/k2).
In Soviet Mathematics Doklady, volume 27, pp. 372–376, 1983. 2, 4.5

Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87. Springer
Science & Business Media, 2013. 2, 4.5

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object
detection with region proposal networks. In Advances in Neural Information Processing Systems,
pp. 91–99, 2015. 1

12



Under review as a conference paper at ICLR 2018

Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, and
Yoshua Bengio. Fitnets: Hints for thin deep nets. arXiv preprint arXiv:1412.6550, 2014. 2

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition
challenge. International Journal of Computer Vision, pp. 1–42, 2014. 4.3

Andrew M Saxe, James L McClelland, and Surya Ganguli. Exact solutions to the nonlinear dynamics
of learning in deep linear neural networks. arXiv preprint arXiv:1312.6120, 2013. 1

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014. 1, 3.2
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