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ABSTRACT

Learning world dynamics has recently been investigated as a way to make rein-
forcement learning (RL) algorithms to be more sample efficient and interpretable.
In this paper, we propose to capture an environment dynamics with a novel forward
model that leverages recent works on adversarial learning and visual control. Such
a model estimates future observations conditioned on the current ones and other in-
put variables such as actions taken by an RL-agent. We focus on image generation
which is a particularly challenging topic but our method can be adapted to other
modalities. More precisely, our forward model is trained to produce realistic obser-
vations of the future while a discriminator model is trained to distinguish between
real images and the model’s prediction of the future. This approach overcomes the
need to define an explicit loss function for the forward model which is currently
used for solving such a class of problem. As a consequence, our learning protocol
does not have to rely on an explicit distance such as Euclidean distance which
tends to produce unsatisfactory predictions. To illustrate our method, empirical
qualitative and quantitative results are presented on a real driving scenario, along
with qualitative results on Atari game Frostbite.

1 INTRODUCTION

The capability to predict the consequences of actions is an inherent part of biological decision
making Clark (2013). Though this capacity is not always required, it becomes useful for tasks that
require planning and more generally forecasting ahead of the current situation. Such a capability has
been shown to be particularly useful in the case of environments with complex dynamics (Bertsekas,
1995). Indeed, modeling the dynamics of the surrounding world has led to significant improvements
in the decision process thus providing the ability to anticipate (Weber et al., 2017; Silver et al., 2017).

In the literature of decision and control, an environment forecasting model is commonly called a
Forward Model Henaff et al. (2017); Pathak et al. (2017). Such a model estimates what the future
observation will be with respect to the current one and possibly other conditioning variables. These
models are trained in a supervised fashion, either online or offline. More recently, several papers have
shown that forward modeling can be used to quantify the inherent curiosity of a learning decision
policy. Curiosity is defined as the error of a forward model during the course of an episode in a
considered environment. Such quantity has been recently used to maintain the explorative behave of
a decision policy and has been shown to be more efficient than maintaining an entropy regulariser as
an egocentric reward.

In this paper, we introduce an algorithm that learns forward models without relying on any kind of
task-specific loss. Our method leverages recent improvements in adversarial training Goodfellow et al.
(2014); Chen et al. (2016a). As far as our knowledge goes, it is the first attempt to use adversarial
learning for such a forward modeling task. More precisely, we train a forward model in the form of a
neural network, in an unsupervised fashion, through a discriminator network which has to distinguish
between true and generated samples. By using this adversarial learning paradigm, the need to find the
appropriate loss for each specific task is removed. Furthermore, this learning approach does not put
any constraint on the modality of the observations the model receives and generates. The rest of the
paper is organized as follows, after presenting the main elements of the state of the art, we describe
the proposed methods and model. Then, we detail the experiments and the encouraging associated
results that demonstrate the benefits of the proposed method.
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2 RELATED WORK

In decision theory, forward models are commonly defined as auto-regressive architectures which
can be trained using collected agent trajectories. Given a past state st and current action at+1, the
model predicts the next state p(st+1|st, at+1) = fθ(st, at+1) of the environment, with ftheta a
function, for example a neural network, parameterized by θ . As an alternative definition, other
signals such as reward can also be taken into account. Several arguments support the learning of a
forward model (Bertsekas, 1995) such as easier control policy definition as an optimization problem.
More recently, several papers have already proposed deep learning for such a task (Leibfried et al.,
2016; Oh et al., 2015). However, these works are currently using either handcrafted or pixel-wise
representations to derive a computable and differentiable loss. More generally, several fields of
research can dramatically benefit from this forward modeling.

Exploration efficiency: Curiosity-driven exploration is formulated as the error in a learning agent’s
ability to predict the consequence of its own actions (Pathak et al., 2017). In this context, this error is
measured through a forward model of the considered environment. The main motivation of such a
measurement used as an intrinsic reward is to cope with the sparsity of extrinsic reward. It has been
recently studied in the domain of visual control in grid worlds and Atari 2600 video games Henaff
et al. (2017). Such a metric is used to encourage exploration during the policy learning process.
Moreover, the prediction error has also been used in the feature space of an auto-encoder as a measure
of interest of a state to explore (Stadie et al., 2015).

Imagination-based control: Predicting the sequence of future outcomes from a given action has
been recently investigated as an additional source of information for complex decision making.
Indeed, learning World Models (Ha & Schmidhuber, 2018) has been proposed as a promising way
to decrease the complexity of a policy model. The idea is to delegate a part of the overall control
learning task to a dynamic model instead of learning the environment representation and the optimal
policy in a monolithic model trained in an end-to-end fashion. Thus, it becomes possible to benefit
from environment observations that are not necessarily correlated with the task and the controller.
Moreover, such a technique has been investigated as a way to perform transfer learning through
tasks given an environment dynamic (Kansky et al., 2017). The predictron (Silver et al., 2017) is a
recent example of such an approach. This policy network learns environment dynamics as part of its
component to enrich its decision support. Imagination-based control has provided encouraging initial
results (Weber et al., 2017). However, the end-to-end nature of the learning setup proposed in these
works makes the interpretability of the model difficult.

Interpretability: By developing parts of a decision model that can directly be observed - for example
by looking at generated images of the future - it becomes possible to improve the interpretability of
the model (Maes et al., 2012). Indeed, forward modeling makes it possible to observe the decision
support of the policy compared to implicit representations that only the model can use.

For these reasons, we posit that forward modeling is an important field of research in the domain
of control. In this paper, we propose to leverage the recent advances in imagination-based control
and conditional generative adversarial models along with inverse modeling to develop a novel and
generic forward model that is able to cope with synthetic and realistic visual control scenarios.

3 DEEP ADVERSARIAL FORWARD MODEL

3.1 PROBLEM FORMULATION

We consider a transition function T that maps the current observation st to the the next observation
st+1, i.e., st+1 = T(st, at) where at the action taken by an agent. A forward model fθ tries to
approximate the transition function T and thus give an estimate ŝt+1, such that ŝt+1 = f(st, at) is
close to st+1. The task of learning the forward model consists of learning the parameter θ that will
minimize the error between st+1 and ŝt+1.

3.2 MODEL ARCHITECTURE

The forward model is made of two neural networks. Figure 1 shows the architecture of the forward
model. First, the observation st is encoded through a pretrained ResNet34 He et al. (2016) that
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aims at compressing the information in the raw observation. This abstract representation Φ(s) of
the raw observations follows the approach proposed by Pathak et al. Pathak et al. (2017). Then, this
representation is concatenated with the action at taken at this time step to obtain ct. This is necessary
because, in many situations, the current observation is not a sufficient piece of information to predict
the next observation. For example at can represent the position of the wheel and velocity in the case
of a forward model for driving. Finally, this conditioning ct is fed to a generator network G to obtain
an estimate of the observation at the next timestep:

ŝt+1 = fθ(st, at) = G(Φ(st), at) = G(ct). (1)

Figure 1: General figure showing the forward model architectures and the networks used for training.

3.3 TRAINING AND LOSS FUNCTIONS

Our forward model is trained using a linear combination of three losses applied on the general
architectures shown on figure 1. The main loss is an adversarial loss encouraging the forward model
to produce realistic forward estimates ŝt+1. This loss is complemented with a mutual information
loss for encouraging the forward model to make use of the conditioner. Finally, a feature space loss
on a pretrained convolutional network encourages visual content to be similar in ŝt+1 and st+1. To
the best of our knowledge, it is the first composition of such losses schema in this context of forward
modeling. We detail these losses below.

Adversarial Loss: First, we want to generate forward samples that are realistic enough with regard
to the current observation. For this, we follow the standard formulation of Generative Adversarial
Learning Goodfellow et al. (2014). In the adversarial setting, the role of discriminator D is to provide
the loss function for training the generator G which correspond to the actual forward model we want
to learn. To do this, the discriminator network D learns to distinguish the real next observation st+1

from its estimate ŝt+1 produced by G. The output of D is used as a probability of its input being real
versus generated by G. At the same time, G is trained to fool D, i.e., it is trained to generate samples
that are hard for D to distinguish from the real ones. This known paradigm leads to the following
two-player min-max game with value function V (G,D):

min
G

max
D

V (G,D) = Exv pdata [log(D(x))] + Ezv pnoise [log(1−D(G(z)))]. (2)

Mutual-Information Loss: Secondly, we need to encourage the generator to use all the provided
auxiliary information ct to generate samples that take into account the current conditioner. For
this, we introduce an additional loss Lc inspired from the InfoGAN setup Chen et al. (2016b). An
additional network Q - which in practice shares most of its layers with D - outputs an estimation ĉt
of ct. The associated loss Lc is defined as the cross-entropy between ĉt and ct in the case of discrete
distributions and the mean squared error between them in the case of continuous ones. The addition of
the mutual information loss turns the GAN objective into minG,Q maxD VInfoGAN = V (D,G)−λ Lc.
In reinforcement learning, such a loss is used to train an inverse model. The inverse model model
tries to guess which actions cause the transition from st to st+1. Here, we just use this loss as
auxiliary information to constraint the generator to make usage of the conditional inputs ct.
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Content Loss: Finally, in order to ensure that the generator outputs visually similar content than the
one in st+1, this third loss computes a similarity information based on the aspect of the generated
visual states. A naive approach would be to add a weighted pixel-wise loss function such as Mean
Squared Error (MSE). In practice, these kinds of losses are very prone to generate blurry samples
as they encourage the textures to be overly smooth, thus leading to bad image quality. Recently,
Ledig et al. (Ledig et al., 2016) showed that combining both adversarial and content losses greatly
help the generator to output realistic samples by relying on an abstract representation of the image.
Following this, we include a content-loss LΨ that computes the Euclidean distance between the
output representation generated by a network Ψ for st+1 and G(Φ(st), at). In our specific setup, we
adopt the method (Ledig et al., 2016) to use V GGij for Ψ, where V GGij means the feature map
obtained after the j-th convolution (after activation) and before the i-th max-pooling layer in the
VGG19 network (Simonyan & Zisserman, 2014). Thus we define LΨ as

LΨ =
1

Ci,jWi,jHi,j

Ci,j∑
c=1

Wi,j∑
x=1

Hi,j∑
y=1

(Ψ(ŝt+1)cxy −Ψ(st+1)cxy)2. (3)

Our final loss L is defined as a linear combination of all the aforementioned individual losses:

L = αLadv + βLc + γLΨ.

3.4 CONDITIONING THE FORWARD MODEL

In order to generate context-dependent samples, we follow the general idea of InfoGAN (Chen
et al., 2016a), illustrated in Figure 2 where the generator is provided extra latent-codes c defined as
the concatenation of latent-variables {c1, . . . , cL}. In the case of forward-modeling, this proposed
approach of generative modeling makes sense as it allows to properly condition the next observation
generation in a metric-free loss manner.

Figure 2: InfoGAN vs Vanilla GAN

To the best of our knowledge, this is the first proposal of using such a framework of conditional
adversarial training for forward-modeling. In this framework, an information-theoretic regularization
enforces high mutual information between latent-codes c and the generator distribution G(z, c) in an
unsupervised way. The mutual information I(X,Y ) between two random variables X and Y can be
expressed as the difference of two entropy terms:

I(X,Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X).

The InfoGAN objective is:

min
G,Q

max
D

VInfoGAN(D,G,Q) = V (D,G)− λ I(c;G(z, c)) (4)
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I(c;G(z, c)) takes the form I(c;G(z, c)) = H(c) − H(c|G(z, c)) and we aim at maximizing it.
Because the posterior P (c|G(z, c)) is hard to estimate, the authors of InfoGAN suggest the use of a
variational approximation, detailed in the original paper:

L = Ec∼P (c),x∼G(z,c)[logQ(c|x)] +H(c) (5)

I(c;G(z, c)) ≥ L (6)

where Q also takes the form of a neural network. In practice, Q uses the same parameters as D,
except for the last layer. L is a lower bound on I(c;G(z, c)), the variational approximation consists
of maximizing L as a proxy to I(c;G(z, c)). The bound is tight as Q approaches the true posterior
P (c|G(z, c)). The infoGAN training criterion becomes:

min
G,Q

max
D

VInfoGAN(D,G,Q) = V (D,G)− λ L(G,Q) (7)

4 EXPERIMENTS

To measure the effectiveness of our method, we use two approaches. First, following the evaluation
framework suggested by Ledig et al. (Ledig et al., 2016), we performed quantitative evaluation of the
importance of each sub-loss using two different evaluation criteria: the raw pixel-space distance and
the distance in the latent V GG54 feature space. The latter space is used to emphasize the importance
of getting the more important parts of the picture right. Then, we present some qualitative results to
illustrate the relevance of the generated samples with respect to the ground-truth images.

4.1 DATASET

We choose to evaluate our model on synthetic and realistic visual control settings. First, we selected
a set of Atari2600 games to illustrate the capability of the proposed model and learning protocol to
capture the environment of dynamic and transcribe it back into visual observations. In this case, the
image is centrally cropped with a format of 1× 64× 64 as the RGB channels are grayscaled. The
action set is a discrete variable of 16 dimensions. As a second experiment, the Udacity dataset is a set
of sequential 1× 128× 128 images recorded by a dash-camera in front of a moving car. This dataset
is originally used in the context of supervised autonomous driving learning tasks. In addition to the
images, the dataset provides for each image the current speed, torque, and steering angle of the car.
The goal here is to generate the next camera observation with respect to the current one and the speed
and steering angle.

4.2 NETWORK & TRAINING DETAILS

In this section, we present the parameters of the model and the details of the learning algorithm. All
experiments have been run on NVIDIA 4× V 100 GPUs using CUDA9.1 and CuDNN7.

The generator network receives as input a vector composed of the concatenation of Φ(st) and
ct and outputs 3 × 128 × 128 images. First, a linear layer converts this input to a dense vector
reshaped as an initial 64 × 4 × 4 image. Then, we use a sequence of 5 residual blocks with
respectively 64, 128, 256, 128, 64 channels. Upscaling is done as part of each residual block through
a PixelShuffling layer (Shi et al., 2016) with upscaling factor of 2. We use batch normalization after
each residual block and Leaky-ReLU non-linearity for each convolution layer.

The discriminator network follows the topology of DCGAN (Radford et al., 2015). It is made of 5
convolution layers with 32, 64, 128, 256, 512 channels respectively. The kernel size is 4 with a stride
of 2. We set the batch size to 128 samples and apply linear decaying dropout starting at 0.5 for the
first 250 epochs.

4.3 QUANTITATIVE RESULTS

In order to measure the contribution of our proposed set of losses, we compare our model in two
different settings on the Udacity dataset. First, we trained the generator without the discriminator
part, only relying on a pixelwise distance loss L2 between ŝt+1 and st+1. This setting corresponds

5



Under review as a conference paper at ICLR 2019

to the model used in (Oh et al., 2015) for their forward model. Secondly, we use the architecture
proposed in this paper, following the adversarial training loss Ladv. Finally, we define epw and
eV GG54

respectively as the Euclidean distance in the raw pixel space and the Euclidean distance on
the output of V GG54 between the real and the generated images, comparing the results for all models.

Type of training loss
L2 Ladv LV GG54 Ladv + Lc Ladv + Lc + LV GG54

epw 285.40 308.03 414.14 297.67 279.40
eV GG54

20.70 21.72 18.85 21.73 19.14

Table 1: Experiment results in different training setups

Table 1 shows the values obtained for epw and eV GG54 for the different configurations of training
losses. From the results, we can see that the adversarial loss does not get all the information required
to properly model the dynamics of the environment. Also, when combining the adversarial loss with
the mutual-information loss Lc, pixel recovering improves, but the content metric eV GG54

does not
improve. Finally, combining all those three losses provides a valuable gain, both in terms of pixel
values and content recovering.

In the next section, we present qualitative results on Frostbite in the Atari simulator. We choose
Frostbite as it includes cases where an agent’s actions have a direct impact on the environment, but
also, cases where the agent has no control over the environment (like snow melting).

4.4 QUALITATIVE RESULTS

In this section part, we follow the customary GAN literature to include some qualitative results for
illustration.

Atari :We trained an agent using Actor-Critic network Mnih et al. (2016) in order to play the game
for one day. In parallel, we used the LSTM output and the action sampled from the Actor-Critic as
a conditioner for our generator. As expected, our approach seems to produce sharp forward visual
states. Furthermore, both the moving elements belonging to the environment dynamic and the game
elements, which are action dependant, the hero representation, in this case, are reconstituted.

Figure 3: The first row represents the generated samples sequence. The second one is the real
sequence.
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Udacity : In this dataset, the images are downscaled to 128×128×3 tensors and we use a ResNet-34
model as Φ(st) to encode the observation. Speed and steering angle are rescaled into range [−1, 1].
The proposed approach, the one on the top-most left column seems to produce the sharpest and
clearest images. Indeed, the light changes, the road borders, textures and object silhouettes as the
trees seem to be more in line with the original image.

Figure 4: First row represents the generated samples with Adversarial, Mutual Information, and
Content losses. Second one is samples generated by pixelwise loss. Finally, the last row presents the
ground truth images

5 CONCLUSION

In this paper, we propose a novel method and a model that produces realistic samples of the obser-
vation of a given environment conditioned by the previous observation and action. This so-called
forward-model is generic and imposes no specific restrictions over the modalities used as input.
Moreover, in the case of complex structures, our method generates samples in the raw observation
space without of feature engineering over the considered state space. The results provided by our
approach allow for better interpretability in the case of a planning-based control over this forward
model. An immediate extension of our setup could be to give more context to the generator by relying
on sequential observations as decision support for the next frame generation. One another potential
use of such a model is to guide the exploration in reinforcement learning.
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