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ABSTRACT

We propose a novel framework for combining datasets via alignment of their asso-
ciated intrinsic dimensions. Our approach assumes that the two datasets are sam-
pled from a common latent space, i.e., they measure equivalent systems. Thus, we
expect there to exist a natural (albeit unknown) alignment of the data manifolds
associated with the intrinsic geometry of these datasets, which are perturbed by
measurement artifacts in the sampling process. Importantly, we do not assume any
individual correspondence (partial or complete) between data points. Instead, we
rely on our assumption that a subset of data features have correspondence across
datasets. We leverage this assumption to estimate relations between intrinsic man-
ifold dimensions, which are given by diffusion map coordinates over each of the
datasets. We compute a correlation matrix between diffusion coordinates of the
datasets by considering graph (or manifold) Fourier coefficients of corresponding
data features. We then orthogonalize this correlation matrix to form an isometric
transformation between the diffusion maps of the datasets. Finally, we apply this
transformation to the diffusion coordinates and construct a unified diffusion ge-
ometry of the datasets together. We show that this approach successfully corrects
misalignment artifacts, and allows for integrated data.

1 INTRODUCTION

In biology and other natural science settings we often have the problem that data are measured from
the same system but with different sensors or in different days where sensors are calibrated differ-
ently. This is often termed batch effect in biology and can include, for example, drastic variations
between subjects, experimental settings, or even times of day when an experiment is conducted. In
such settings it is important to globally and locally align the datasets such that they can be combined
for effective further analysis. Otherwise, measurement artifacts may dominate downstream analysis.
For instance, clustering the data will group samples by measurement time or sensor used rather than
by biological or meaningful differences between datapoints.

Recent works regard the two datasets as views of the same system and construct a multiview diffu-
sion geometry but all of them require at least partial bijection, if not full one, between views (Lafon
et al., 2006; Ham et al., 2003; 2005; Wang & Mahadevan, 2008; Tuia & Camps-Valls, 2016). Other
work directly attempt to match data points directly in ambient space, or by local data geometry and
these can be very sensitive to differences in sampling density rather than data geometry (Haghverdi
et al., 2018). Here, we present a principled approach called harmonic alignment to for correct this
type of effect based on the manifold assumption.

The manifold assumption holds that high dimensional data originates from an intrinsically low di-
mensional smoothly varying space that is mapped via nonlinear functions to observable high dimen-
sional measurements. Thus, we assume that the datasets are from transformed versions of the same
low dimensional manifold. We learn the manifolds separately from the two datasets using diffusion
geometric approaches and then find an isometric transformation to map from one manifold to the
other. Note that we are not aligning points to points. Indeed there may be sampling differences and
density differences in the data. However, our manifold learning approach uses an anisotropic kernel
that detects the geometry of the data to align rather than point-by-point matching which is done in
other methods.

1



Under review as a conference paper at ICLR 2019

Our method involves first embedding each dataset separately into diffusion components, and then
finding an isometric transformation that aligns these diffusion representations. To find such trans-
formation, we utilize the duality between diffusion coordinates and geometric harmonics that act as
generalized Fourier harmonics in the graph space. The diffusion components are eigenvectors of
a Markov-normalized data diffusion operator, whose eigenvalues indicate frequency of the eigen-
vector. We attempt to find a transformation from one set of eigenvectors to another, via feature
correspondences in the data.

While datapoint correspondences may be difficult or impossible to obtain since many biological
measurements are destructive, feature correspondences are often available. For instance single-cell
measurements of cells from the same device, thus containing counts for the same genes, albeit af-
fected by batch differences. Thus when corresponding features are transformed via the graph Fourier
transform (GFT) into diffusion coordinates, the representations should be similar, with potentially
small frequency-proximal perturbations. For instance, slowly varying features across the manifold
should be load to low-frequency eigenvectors of the Markov matrix. This insight allows us to create
a correlation matrix between the eigenvectors of one dataset to another based on correlation between
feature loadings to the eigenvectors. However, since we know that eigenvectors represent frequency
harmonics, we need not compute the entire correlation matrix but rather only the near-diagonal
values. This implies that the two manifolds must be perturbed such that low and high frequency
eigenvector space are similar. We then find a linear transformation between that maps the eigenvec-
tors of one space into those of the other that maximizes these correlations by orthogonalizing this
matrix. This transformation allows us to align the two datasets with each other. Finally, given an
aligned representation, we build a robust unified diffusion geometry that is invariant batch effects
and sample-specific artifacts and low-pass filter this geometry to denoise the unified manifold. Thus,
in addition to aligning the manifolds our method denoises the manifolds as well.

We demonstrate the results of our method on artificial manifolds created from rotated MNIST digits,
corrupted MNIST digits, as well as on single-cell biological data measuring peripheral blood cells.
In each case our method successfully aligns the manifolds such that they have appropriate neigh-
bors within and across the two datasets. We show an application to transfer learning where a lazy
classifier trained on one dataset is applied to the other dataset after alignment. Further, comparisons
with recently developed methods such as the MNN-based method of Haghverdi et al. (2018) show
significant improvements in performance and denoising ability.

2 HARMONIC ALIGNMENT

A typical and effective assumption in machine learning is that high dimensional data originates from
an intrinsic low dimensional manifold that is mapped via nonlinear functions to observable high
dimensional measurements; this is commonly referred to as the manifold assumption. Formally,
let Md be a hidden d dimensional manifold that is only observable via a collection of n � d
nonlinear functions f1, . . . , fn :Md → R that enable its immersion in a high dimensional ambient
space as F (M) = {f(z) = (f1(z), . . . , fn(z))T : z ∈ Md} ⊆ Rn from which data is collected.
Conversely, given a dataset X = {x1, . . . , xN} ⊂ Rn of high dimensional observations, manifold
learning methods assume its data points originate from a sampling Z = {zi}Ni=1 ∈ Md of the
underlying manifold via xi = f(zi), i = 1, . . . , n, and aim to learn a low dimensional intrinsic
representation that approximates the manifold geometry ofMd.

A popular approach towards this manifold learning task is to construct diffusion geometry from
data (Coifman & Lafon, 2006), and embed data into diffusion coordinates, which provide a natural
global coordinate system derived from Laplace operator over manifold geometries, as explained in
Section 2.1. However, this approach, as well as other manifold learning ones, implicitly assumes
that the feature functions {fj}nj=1 represent data collection technologies (e.g., sensors or markers)
that operate in a consistent manner on all samples in Z. While this assumption may be valid in some
fields, biological data collection (and more generally, data collection in empirical sciences) is often
highly affected by a family of phenomena known as batch effects, which introduce nonnegligible
variance between different data batches due to various uncontrollable factors. These include, for
example, drastic variations between subjects, experimental settings, or even times of day when an
experiment is conducted.
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Therefore, in such settings, one should consider a collection of S samples {X(s)}Ss=1, each originat-
ing from feature functions {f (s)

j }nj=1 that aim to measure the same quantities in the data, but are also
affected by sample-dependent artifacts. While each sample can be analyzed to find its intrinsic struc-
ture, their union into a single dataset X =

⋃S
s=1X

(s) often yields an incoherent geometry biased
by batch effects, where neither the relations between samples or within each sample can be clearly
seen. To address such artifacts, and constrct a unified geometry of multiple batches (i.e., samples
or datasets) together, we propose to first embed each batch separately in diffusion coordinates, and
then find an isometric transformation that aligns these diffusion representations.

In order to find such transformation, we utilize the duality between diffusion coordinates and ge-
ometric harmonics that act as generalized Fourier harmonics, as shown in graph signal process-
ing (Shuman et al., 2013). As explained in Section 2.2, this duality allows us to capture cross-batch
relations between diffusion coordinates, and orthogonalize the resulting matrix to provide a map
between batch-specific diffusion representations. Finally, given an aligned representation, we build
a robust unified diffusion geometry that is invariant to both batch effects and batch-specific artifacts.
While our approach generalizes naturally to any number of batches, for simplicity, we focus our
formulation here on the case of two batches.

2.1 DIFFUSION GEOMETRY & GRAPH HARMONICS

The first step in our approach is to capture the intrinsic geometry of each batch X(s) using the
diffusion maps method from Coifman & Lafon (2006), which non-linearly embeds the data in a
new coordinate system (i.e., diffusion coordinates) that is often considered as representing a data
manifold or more generally a diffusion geometry over the data. The diffusion maps construction
starts by considering local similarities defined via a kernel K(x, y), x, y ∈ X(s) that capture local

neighborhoods in the data. We note that a popular choice for K is the Gaussian kernel e−
‖x−y‖2

σ ,
where σ > 0 is interpreted as a user-configurable neighborhood size. Next, these similarities are
normalized to defined transition probabilities p(x, y) = K(x,y)

‖K(x,·)‖1 that are organized in an N × N
row stochastic matrix P that describes a Markovian diffusion process over the intrinsic geometry of
the data. Finally, a diffusion map is defined by taking the eigenvalues 1 = µ1 ≥ µ2 ≥ · · · ≥ µN
and (corresponding) eignevectors {φj}Nj=1 of P, and mapping each data point x ∈ X(s) to an N
dimensional vector Φt(x) = [µt1φ1(x), . . . , µtNφN (x)]T , where t represents a diffusion-time (i.e.,
number of transitions considered in the diffusion process). In this work, we denote the diffusion map
for the entire datasetX(S) as Φ

(s)
t . We refer the reader to Coifman & Lafon (2006) for further details

and mathematical derivation, but note that in general, as t increases, most of the eigenvalue weights
µtj , j = 1, . . . , N , become numerically negligible, and thus truncated diffusion map coordinates
(i.e., using only nonnegligible ones) can be used for dimensionality reduction purposes.

Much work has been done in various fields on applications of diffusion maps as a whole, as well
as individual diffusion coordinates (i.e., eigenvectors of P ), in data analysis (Farbman et al., 2010;
Barkan et al., 2013; Mahmoudi & Sapiro, 2009; Angerer et al., 2015; Haghverdi et al., 2016). In par-
ticular, as discussed in Coifman & Lafon (2006) and Nadler et al. (2006), the diffusion coordinates
are closely related to eigenvectors of Laplace operators on manifolds, as well as their discretiza-
tions as eigenvectors of graph Laplacians, which were studied previously, for example, in Belkin
& Niyogi (2002). Indeed, the similarities measured in K can be considered as determining edge
weights of a graph structure defined over the data. Formally, we define this graph by considering
every data point in X as a vertex on the graph, and then defining weighted edges between them via
an N × N adjacency matrix W with Wi,j = K(xi, xj), i, j = 1 . . . N . Then, the (normalized)
graph Laplacian is defined as L = I−D−1/2WD−1/2 with D being a diagonal degree matrix (i.e.,
with Di,i =

∑N
j=1 Wi,j). Finally, it is easy to see that L = I −D1/2PD−1/2, and thus it can be

verified that the eigenvectors of L can be written as ψj = D1/2φj , with corresponding eigenvalues
λj = 1− µj . It should be noted that if data is uniformly sampled from a manifold (as considered in
Belkin & Niyogi, 2002), these two sets of eigenvectors coincide and the diffusion coordinates can
be considered as Laplacian eigenvectors (or eigenfunctions, in continuous settings).

A central tenet of graph signal processing is that the Laplacian eigenfunctions {ψj}Nj=1 can be
regarded as generalized Fourier harmonics (Shuman et al., 2013; 2016), i.e., graph harmonics. In-
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Algorithm 1 Manifold Alignment via Feature Correspondence

Input: Datasets X = {X(1),X(2)} where X(s) has N (s) observations by d(s) features
Output: Aligned graph Laplacian L(Y ).

1: for X(s) ∈ X do
2: Compute the anisotropic weight matrix W(s) (Section 2.2) and degree matrix D(s)

3: Construct the normalized graph Laplacian L(s) and its truncated eigensystem

Λ̄(s) = diag
[
λ

(s)
i

]N(s)

i=2
, Ψ̄(s) =

[
ψ

(s)
i

]N(s)

i=1
, with L(s)ψ

(s)
i = λ

(s)
i ψ

(s)
i and Λ � 0

4: Compute the diffusion map Φ(s) = e−tΛ̄
(s)

Ψ̄(s)

5: The spectral domain wavelet transform tensor Ĥ
(s)
i,j,k ( Equation 1).

6: end for
7: Compute intraband harmonic correlations between each dataset M′

:,:,k (Section 2.2).
8: Compute the total interband correlation M =

∑τ
k=1 M′

:,:,k.

9: Orthogonalize M via SVD, T = UV T

10: Construct the transformed matrix E =

[
Φ(1) e−tΛ̄

(1)

Ψ̄(1)T

e−tΛ̄
(2)

Ψ̄(2)TT Φ(2)

]
.

11: Embed E using a Gaussian kernel to obtain L(Y ).

deed, a classic result in spectral graph theory shows that the discrete Fourier basis can be derived
as Laplacian eigenvectors of the ring graphs (see, e.g. Olfati-Saber, 2007, Proposition 10). Based
on this interpretation, a graph Fourier transform (GFT) is defined on graph signals (i.e., functions
f : X(s) → R over the vertices of the graph) as f̂(λj) = 〈f, ψj〉, j = 1, . . . , N , similar to the
definition of the classic discrete Fourier transform (DFT). Further, we can also write the GFT in
terms of the diffusion coordinates as f̂(λk) = 〈f,D1/2φj〉, given their relation to graph harmonics.
Therefore, up to appropriate weighting, the diffusion coordinates can conceptually be interpreted as
intrinsic harmonics of the data, and conversely, the graph harmonics can be considered (conceptu-
ally) as intrinsic coordinates of data manifolds. In Section 2.2, we leverage this duality between co-
ordinates and harmonics in order to capture relations between data manifolds of individual batches,
and then them in Section 2.3 to align their intrinsic coordinates and construct a unified data manifold
over them.

2.2 CROSS-GRAPH HARMONIC CORRELATION

We now turn our attention to considering the relation between two batches X(s1), X(s2) via their
their intrinsic data manifold structure, as it is captured by diffusion coordinates or, equivalently,
graph harmonics. We note that, as discussed extensively in Coifman & Lafon (2006), a naı̈ve con-
struction of an intrinsic data graph with a Gaussian kernel (as described, for simplicity, in Sec-
tion 2.1) may be severely distorted by density variations in the data. Such distortion would detri-
mental in our case, as it would the resulting diffusion geometry and its harmonic structure would
not longer reflect a stable (i.e., batch-invariant) intrinsic “shape” of the data. Therefore, we follow
the normalization suggested in there to separate data geometry from density, and define a graph
structure (i.e., adjacency matrix) over each batch via an anistotropic kernel given by

W
(s)
i,j =

K(x
(s)
i , x

(s)
j )

‖K(x
(s)
i , ·)‖1/21 ‖K(x

(s)
j , ·)‖1/21

, i, j = 1, . . . , N (s), s ∈ {s1, s2},

where K is the previously defined Gaussian kernel. This graph structure is then used, as previously
described, to construct the intrinsic harmonic structure given by {ψ(s)

j }Nj=1 on each batch.

While the intrinsic geometry constructed by our graph structures should describe similar “shapes”
for the two datasets, there is no guarantee that their computed intrinsic coordinates will match.
Indeed, it is easy to see how various permutations of these coordinates can be obtained if some
eigenvalues have multiplicities greater than one (i.e., their monotonic order is no longer determin-
istic), but even beyond that, in practical settings batch effects often result in various misalignments
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(e.g., rotations or other affine transformations) between derived intrinsic coordinates. Therefore,
to properly recover relations between multiple batches, we aim to quantify relations between their
coordinates, or more accurately, between their graph harmonics.

We note that if we even a partial overlap between data points in the two batches, this task would
be trivially enabled by taking correlations between these harmonics. However, given that here we
assume a setting without such predetermined overlap, we have to rely on other properties that are
independent of individual data points. To this end, we now consider the feature functions {f (s)

j }nj=1
and our initial assumption that corresponding functions aim to measure equivalent quantities in
the batches (or datasets). Therefore, while they may differ in the original raw form, we expect
their expression over the intrinsic structure of the data (e.g., as captured by GFT coefficients) to
correlate, at least partially, between batches. Therefore, we use this property to compute cross-
batch correlations between graph harmonics based on the GFT of corresponding data features. To
formulate this, it is convenient to extend the definition of the GFT from functions (or vectors) to
matrices, by slight abuse of the inner product notation, as X̂(s) = 〈X,Ψ(s)〉 = [Ψ(s)]TX(s), where
X consists of data features as columns and Ψ(s) has graph harmonics as columns (both with rows
representing data points).

Notice that the resulting Fourier matrix X̂(s), for each batch, no longer depends on individual data
points, and instead it expresses the graph harmonics in terms of data features. Therefore, we can
now use this matrix to formulate a cross-batch harmonic correlations by considering inner products
between rows of these matrices. Further, we need not consider all ther correlations between graph
harmonics, since we also have access to their corresponding frequency information, expressed via
the associated Laplacian eigenvalues {λ(s)

j }N
(s)

j=1 . Therefore, instead of computing correlations be-
tween every pair of harmonics across batches, we only consider them within local frequency bands,
defined via appropriate graph filters, as exlpained in the following.

Let g(t) be a smooth window defined on the interval [−0.5, 0.5] as g(t) = sin
(

0.5π cos (πt)
2
)

.
Then, by translating this window along the along the real line, we obtain τ equally spaced wavelet
windows that can be applied to the eigenvalues λ(s)

j in order to smoothly partition the spectrum
of each data graph. This construction is known as the itersine filter bank, which can be shown to
be a tight frame (Perraudin et al., 2014). The resulting windows gξi(λ) are centered at frequen-
cies Ξ = {ξ1, . . . , ξτ}. The generating function for these wavelets ensures that each gξi halfway
overlaps with gξi+1 . This property implies that there are smooth transitions between the weights
of consecutive frequency bands. Furthermore, as a tight frame, this filterbank has the property that∑τ
i=1 hξi(λ) = 1 for any eigenvalue. This choice ensures that any filtering we do using the filter

bank G = {hξi}τi=1(λ) will behave uniformly across the spectrum. Together, these two properties
imply that cross-batch correlations between harmonics within and between bands across the respec-
tive batch spectra will be robust. To obtain such bandlimited correlations we construct the following
filterbank tensor

Ĥ
(s)
i,j,k = gξk(λ

(s)
i )ψ

(s)T
i X(s)

:,j for 2 ≤ i ≤ N (s). (1)

Each Ĥ
(s)
(·,·,k) of this matrix corresponds to the Fourier matrix X̂(s) with rows scaled by gξk . Then,

we use these filterbank tensors to compute bandlimited correlations via M′
(·,·,k) = Ĥ

(s1)
:,:,kĤ

(s2)T
(·,·,k),

and finally merge these to generate a combined matrix M(s1,s2) =
∑τ
k=1 M′

(·,·,k), which we refer to
as the harmonic (cross-batch) correlation matrix. This step, when combined with the half-overlaps
discussed above, allows flexibility in aligning harmonics across bands, which is demonstrated in
practice in Section 2.3.

2.3 ISOMETRIC ALIGNMENT

Given the harmonic correlation matrix M(s1,s2), we now define an isometric transformation between
the intrinsic coordinate systems of the two data manifolds. Such transformation ensures our align-
ment fits the two coordinate systems together without breaking the rigid structure of each batch, thus
preserving their intrinsic structure. To formulate such transformation, we recall that isometric trans-
formations are given by orthogonal matrices, and thus we can rephrase our task as finding the best
approximation of M(s1,s2) by an orthogonal matrix. Such approximation is a well studied problem,
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dating back to Schönemann (1966), which showed that it can be obtained directly the singular value
decomposition M = USV T by taking T(s1,s2) = UV T .

Finally, given the isometric transformation defined by T(s1,s2), we can now align of the data mani-
folds of two batches, and define a unified intrinsic coordinate system for the entire data. While such
alignment could equivalently be phrased in terms of diffusion coordinates {φ(s)

j }N
(s)

j=1 or harmonic

coordinates {ψj}N(s)
j=1 , we opt here for the latter, as it relates more directly to the computed harmonic

correlations. Therefore, we construct the transformed embedding matrix E as

E =

[
Ψ̄(s1) [Ψ̄(s1)] T

Ψ̄(s2) TT Ψ̄(s2)

]
exp

(
−t
[
Λ̄(s1) 0

0 Λ̄(s2)

])
. (2)

where we drop the superscript for T, as they are clear from context, Λ̄(s) are diagonal matrices
that consists of the nonzero Laplacian eigenvalues of each view, and Ψ̄ consist of the correspond-
ing eigenvectors (i.e., harmonics) as its columns. We note that the truncated of zero eigenvalues
correspond to zero frequencies (i.e., flat constant harmonics), and therefore they only encode global
shifts that we anyway aim to remove in the alignment process. Accordingly, this truncation is also
applied to the harmonic correlation matrix M(s1,s2) prior to its orthogonalization. Finally, we note
that this construction is equivalent to the diffusion map, albeit using a slightly different derivation of
a discretized heat kernel (popular, for example, in graph signal processing works such as (Shuman
et al., 2016)), with the parameter t again serving an analogous purpose to diffusion time.

3 EMPIRICAL RESULTS

3.1 ROTATIONAL ALIGNMENT

As a proof of principle we first demonstrate harmonic alignment of two circular manifolds. To
generate these manifolds, we rotated two different MNIST examples of the digit ’3’ 360 degrees
and sampled a point for each degree (See figure 1a). As we noted in section 2.2, the manifold
coordinates obtained by diffusion maps are invariant to the phase of the data. In this example it is
clear that each ’3’ manifold is out of phase with the other.

Figure 1b demonstrates the simple rotation that is learned by harmonic alignment between the two
embeddings. On the left side, we see the out-of-phase embeddings. Taking nearest neighbors in
this space illustrates the disconnection between the embeddings: nearest neighbors are only formed
for within-sample points. After alignment, however, we see that the embeddings are in phase with
each other because nearest neighbors in the aligned space span both samples and are in the same
orientation with each other.

3.2 FEATURE CORRUPTION

Next, we assessed the ability of harmonic alignment in recovering k-neighborhoods after random
feature corruption (figure 2).

To do this, we drew random samples from MNIST X(1) and X(2) of N (1) = N (2) = 1000. Then,
for each trial in this experiment we drew 7842 samples from a unit normal distribution to create a
784 × 784 random matrix. We orthogonalized this matrix to yield the corruption matrix O0. To
vary the amount of feature corruption, we then randomly substituted b0.01 ∗ p ∗ 784c columns from
I to make Op. Right multiplication of X(2) by this matrix yielded corrupted images with only
p% preserved pixels (figure 2b, ’corrupted’). To assess the recovery of k-neighborhoods, we then
performed a lazy classification on X(2)Op by only using the labels of its neighbors in X(1). The
results of this experiment, performed for p = {0, 5, 10, . . . 95, 100} are reported in figure 2a. For
robustness, at each p we sampled three different non-overlapping pairs X(1) and X(2) and for each
pair we sampled three Op matrices each with random identity columns, for a total of nine trials per
p.

In general, unaligned, mutual nearest neighbors (MNN), and harmonic alignment with any filter
set cannot recover k-neighborhoods under total corruption; 10% serves as a baseline accuracy that
results from the rotation having 10% overlap in the manifold space. On the other hand, for small filter
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Figure 1: Alignment of circular manifolds. (a) A circular manifold was generated by sampling
360 points from two MNIST examples of the digit ’3’ rotated in a complete circle. The diffusion
geometry that results is circular, but the phase of each digit on the circle is arbitrary. (b) Top: An
alignment is obtained by rotating the two embeddings into the latent space of the other. Bottom: The
nearest neighbors of a given point in the unaligned embedding are within-sample. Alignment creates
connections between samples that are faithful to the phase of the digit, as seen by the presence of
out-of-sample nearest neighbors.

choices we observe that harmonic alignment quickly recovers ≥ 80% accuracy and outperforms
MNN and unaligned classifications consistently except under high correspondence.

Next we examined the ability of harmonic alignment to reconstruct corrupted data (figure 2b). We
performed the same corruption procedure as before with p = 25 and selected 10 examples of each
digit in MNIST. We show the ground truth fromX(2) and the corrupted resultX(2)O25 in figure 2b.
Then, a reconstruction was performed by setting each pixel in a new image to the dominant class
average of the ten nearest X(1) neighbors. In the unaligned case we see that most examples turn
into smeared fives or ones; this is likely the intersection formed by X(1) and X(2)O25 that accounts
for the 10% baseline accuracy in figure 2a. On the other hand, the reconstructions produced by
harmonic alignment resemble their original input examples.

3.3 COMPARISONS

In figure 3 we compare the runtime, k-nn accuracy, and transfer learning capabilities of our method
with two other contemporary alignment methods. First, we examine the unsupervised algorithm
proposed by Wang & Mahadevan (2009) for generating weight matrices between two different sam-
ples. The algorithm first creates a local distance matrix of size k around each point and its four
nearest neighbors. Then it computes an optimal match between k-nn distance matrices of each pair
of points in X(1) and X(2) by comparing all k! permutations of the k-nn matrices and computing
the minimal frobenius norm between such permuted matrices. We report runtime results for k = 5,
as k = 10 failed to complete after running for 8 hours. Because the Wang&Mahadevan (2009)
method merely gives a weight matrix that can be used with separate algorithms for computing the
final features, we report accuracy results using their implementation. Regardless of input size, we
were unable to recover k-neighborhoods for datasets with 35% uncorrupted columns (figure 3b)
despite the method’s computational cost (figure 3a).

A more scalable approach to manifold alignment has emerged recently in the computational biology
(Haghverdi et al., 2018) literature. This approach uses mutual nearest neighbor (MNN) matching to
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Figure 2: Recovery of k-neighborhoods under feature corruption. (a) At each iteration, two setsX(1)

and X(2) of N (1) = N (2) = 1000 points were sampled from MNIST. X(2) was then distorted by a
784× 784 corruption matrix Op for various identity percentages p (see section 3.2). Subsequently,
a lazy classification scheme was used to classify points in X(2)Op using a nearest neighbor vote
from X(1). Results for harmonic alignment with different filterbank sizes, mutual nearest neighbors
(MNN), and classification without alignment are shown. (b) Reconstruction of digits with only 25%
uncorrupted features. Left: Input digits. Left middle: 75% of the pixels in the input are corrupted.
Right middle: Reconstruction without harmonic alignment. Right: Reconstruction after harmonic
alignment.
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Figure 3: Comparison to other unsupervised alignment methods. (a) Runtime as a function of input
size. Algorithhm implementations were obtained from the authors’ github repository. Runtime
performance was measured on an Intel 3.8 GHz i7-7700HQ laptop with 64 GB Dual-channel DDR4
memory at 2400 MHz running Pop!OS 4.15 and MATLAB R2018a. (b) Lazy classification accuracy
relative to input size. For each input size N , the average of 3 iterations of lazy classification of N/2
unlabeled randomly corrupted digits with 35% preserved pixels (see section 3.2) is reported. (c)
Transfer learning performance. For each ratio, 1,000 uncorrupted, labeled digits were sampled from
MNIST. 1,000, 2,000, 4,000, and 8,000 (x-axis) unlabeled points were sampled and corrupted with
35% column identity. The mean of three iterations of lazy classification for each method is reported.
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compute mapping between datasets based on the assumption that if two points are truly neighbors
they will resemble each other in both datasets. Because this approach amounts to building a k-
nearest neighbors graph for each dataset and then choosing a set of neighbors between each dataset,
MNN scales comparably to our method (figure 3a. Additionally, MNN is able to recover 20-30% of
k-neighborhoods when only 35% of features match (figure 3b); this is an improvement over Wang
but is substantially lower than what harmonic alignment achieves. We note that the performance
of harmonic alignment was correlated with input size whereas MNN did not improve with more
points.

3.4 TRANSFER LEARNING

An interesting use of manifold alignment algorithms is transfer learning. In this setting, an algorithm
is trained to perform well on one dataset, and the goal is to extend the algorithm to the other dataset
after alignment. In figure 3c we explore the utility of harmonic alignment in transfer learning and
compare it to MNN and the method proposed by Wang & Mahadevan (2009).

In this experiment, we first draw 1000 uncorrupted examples of MNIST digits, and construct a dif-
fusion map to use as our training set. Next, we took 65% corrupted unlabeled points (see section
3.2) in batches of 1, 000, 2, 000, 4, 000, 8, 000 as a test set to perform lazy classification on using the
labels from the uncorrupted examples. At 1:8 test:training sample sizes, Harmonic alignment out-
performed Wang and MNN by aligning upto 60% correct k-neighborhoods. In addition to showing
the use of manifold alignment in transfer learning, this demonstrates the robustness of our algorithm
to dataset imbalances.

3.5 BIOLOGICAL DATA

To illustrate the need for robust manifold alignment in computational biology, we turn to a sim-
ple real-world example obtained from Amodio et al. (2018) (figure 4). This dataset was collected
by mass cytometry (CyTOF) of peripheral blood mononuclear cells (PBMC) from patients who
contracted dengue fever. Subsequently, the Montgomery lab at Yale University experimentally in-
troduced these PBMCs to Zika virus strains.

The canonical response to dengue infection is upregulation of interferon gamma (IFNγ) (Chesler
& Reiss, 2002; Chakravarti & Kumaria, 2006; Braga et al., 2001). During early immune response,
IFNγ works in tandem with acute phase cytokines such as tumor necrosis factor α to induce febrile
response and inhibit viral replication (Ohmori et al., 1997). In the PBMC dataset, we thus expect to
see upregulation of these two cytokines together, which we explore in 4.

In figure 4a, we show the relationship between IFNγ and TNFα without denoising. Note that there
is a substantial difference between the IFNγ distributions of sample 1 and sample 2 (Earth Mover’s
Distance (EMD) = 2.699). In order to identify meaningful relationships in CyTOF data, it is com-
mon to denoise it first. We used a graph filter to denoise the cytokine data (Van Dijk et al., 2018).
The results of this denoising are shown in figure 4b. This procedure introduced more technical arti-
facts by enhancing the difference between batches, as seen by the increased EMD (3.127) between
the IFNγ distributions of both patients. This is likely due to a substantial connectivity difference
between the two batch subgraphs in the total graph.

Next, we performed harmonic alignment of the two patient profiles. We show the results of this in
figure 4c. Harmonic alignment corrected the difference between IFNγ distributions and restored the
canonical correlation of IFNγ and TNFα. This example illustrates the utlity of harmonic alignment
for biological data, where it can be used for integrated analysis of data collected across different
experiments, patients, and time points.

4 CONCLUSION

We presented a novel method for aligning or batch-normalizing two datasets that involves learning
and aligning their intrinsic manifold dimensions. Our method leverages the fact that common or
corresponding features in the two datasets should have similar harmonics on the graph of the data.
Our harmonic alignment method finds an isometric transformation that maximizes the similarity of
frequency harmonics of common features. Results show that our method successfully aligns artifi-
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Figure 4: Batch effect removal in biological data. 4,000 cells were subsampled from two single-cell
immune profiles obtained via mass cytometry on blood samples of two patients infected with Dengue
fever. Top: Both patients exhibit heightened interferon gamma (x-axis), a pro-inflammatory cytokine
which is associated with tumor necrosis factor alpha (TNFα, y-axis) Bottom: IFNγ histograms for
each batch. EMD: ”Earth Mover’s Distance” (a) Data before denoising. (b) Denoising of unaligned
data enhances a technical effect between samples in IFNγ. (c) Harmonic alignment corrects the
IFNγ shift.

cially misaligned as well as biological data containing batch effect. Our method has the advantages
that it aligns manifold geometry and not density (and thus is insensitive to sampling differences in
data) and further our method denoises the datasets to obtain alignments of significant manifold di-
mensions rather than noise. Future applications of harmonic alignment can include integration of
data from different measurement types performed on the same system, where features have known
correlations.
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