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ABSTRACT

Distributed computing can significantly reduce the training time of neural net-
works. Despite its potential, however, distributed training has not been widely
adopted: scaling the training process is difficult, and existing SGD methods re-
quire substantial tuning of hyperparameters and learning schedules to achieve suf-
ficient accuracy when increasing the number of workers. In practice, such tuning
can be prohibitively expensive given the huge number of potential hyperparameter
configurations and the effort required to test each one.
We propose DANA, a novel approach that scales out-of-the-box to large clusters
using the same hyperparameters and learning schedule optimized for training on
a single worker, while maintaining similar final accuracy without additional over-
head. DANA estimates the future value of model parameters by adapting Nesterov
Accelerated Gradient to a distributed setting, and so mitigates the effect of gradi-
ent staleness, one of the main difficulties in scaling SGD to more workers.
Evaluation on three state-of-the-art network architectures and three datasets shows
that DANA scales as well as or better than existing work without having to
tune any hyperparameters or tweak the learning schedule. For example, DANA
achieves 75.73% accuracy on ImageNet when training ResNet-50 with 16 work-
ers, similar to the non-distributed baseline.

1 INTRODUCTION

Modern deep neural networks are comprised of millions of parameters, which require massive
amounts of data and time to learn. Steady growth of these networks over the years has made it
impractical to train them from scratch on a single GPU. Distributing the computations over several
GPUs can drastically reduce this training time. Unfortunately, stochastic gradient descent (SGD),
typically used to train these networks, is an inherently sequential algorithm. As a result, training
deep neural networks on multiple workers (computational devices) is difficult, especially when try-
ing to maintain high efficiency, scalability and final accuracy.

Data Parallelism is a common practice for distributing computation: data is split across multi-
ple workers and each worker computes over its own data. Synchronous SGD (SSGD) is the most
straightforward method to distribute the training process of neural networks: each worker com-
putes the gradients over its own separate mini-batches, which are then aggregated to update a single
model. The result is identical to multiplying the batch size B by the number of workers N , so the
effective batch size is B ·N . This severely limits scalability and reduces the model accuracy if not
handled carefully (Smith et al., 2018; Devarakonda et al., 2017; Goyal et al., 2017). Furthermore,
synchronization limits SSGD progress to the slowest worker: all workers must finish their current
mini-batch and update the parameter server before any can proceed to the next mini-batch.

Asynchronous SGD (ASGD) addresses these drawbacks by removing synchronization between the
workers (Dean et al., 2012). Unfortunately, it suffers from gradient staleness: gradients sent by
workers are often based on parameters that are older than the master’s (parameter server) current
parameters. Hence, distributed ASGD suffers from slow convergence and reduced final accuracy,
and may not converge at all if the number of workers is high (Zhang et al., 2016b). Several works
attempt to address these issues (Zheng et al., 2017; Zhang et al., 2015; 2016b; Dean et al., 2012),
but none has managed to overcome these problems when scaling to a large number of workers.
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More crucially, many ASGD algorithms require re-tuning of hyperparameters when scaling to dif-
ferent numbers of workers, and several even introduce new hyperparameters that must also be tuned
(Zheng et al., 2017; Zhang et al., 2015; 2016b). In practice, the vast number of potential hyperpa-
rameter configurations means that tuning is often done in parallel, with each worker independently
evaluating a single configuration using standard SGD. Once the optimal hyperparameters are se-
lected, training is completed on larger clusters of workers. Any additional tuning for ASGD can
thus be computationally expensive and time-consuming. Though many algorithms have been pro-
posed to reduce the cost of tuning (Bergstra & Bengio, 2012; Li et al., 2017; Klein et al., 2017;
Hazan et al., 2018; Snoek et al., 2015), hyperparameter search remains a significant obstacle, and
many practitioners cannot afford to re-tune hyperparameters for distributed training.

Our contribution: We propose Distributed Accelerated Nesterov ASGD (DANA), a new dis-
tributed ASGD algorithm that works out of the box: it achieves state-of-the-art accuracy on exist-
ing architectures without any additional hyperparameter tuning or changes to the training schedule,
while scaling as well or better than existing ASGD approaches, and without any additional over-
head. Our DANA implementation achieves state-of-the-art accuracy on ImageNet when training
ResNet-50 with 16 and even 32 workers, as well as on CIFAR-10 and CIFAR-100.

Table 1: DANA scales out-of-the-box (OOTB) as well as state of the art asynchronous methods
without compromising baseline accuracy. See Section 5 and Section 6 for details.

Dataset N Algorithm OOTB Network Additional Errora

ImageNet

16 DC-ASGD (Zheng et al., 2017) No ResNet-50 +0.48%
16 AD-PSGD (Lian et al., 2018) No ResNet-50 +0.02%
16 DANA Yes ResNet-50 −0.35%

ImageNet 32 AD-PSGD No ResNet-50 +0.64%
32 DANA Yes ResNet-50 +0.65%

CIFAR-10
8 DC-ASGD No ResNet-20 −0.18%
8 DANA Yes ResNet-20 −0.24%

CIFAR-10

16 EAMSGD (Zhang et al., 2015) No ResNet-20 +1.43%b

16 AD-PSGD No ResNet-20 −0.24%
16 DANA Yes ResNet-20 −0.08%

aDifference in test error compared to the baseline centralized version.
bFrom Lian et al. (2017).

2 BACKGROUND

The goal of SGD is to minimize an optimization problem J(θ) where J is the objective function
(i.e., loss) and the vector θ ∈ Rk is the model’s parameters. Let ∇J be the gradient of J with
respect to its argument θ. Then the update rule of SGD for the given problem with learning rate η is:

gt = ∇θJ(θt)

θt+1 = θt − ηgt
(1)

Momentum Momentum (Polyak, 1964) has been demonstrated to accelerate SGD convergence
and reduce oscillation (Sutskever et al., 2013). Momentum can be compared to a heavy ball rolling
downhill that accumulates speed on its way towards the minima. Mathematically, the momentum
update rule is obtained by adding a fraction γ of the previous update vector vt−1 to the current
update vector vt:

gt = ∇J(θt)

vt+1 = γvt + gt

θt+1 = θt − ηvt+1

(2)

When successive gradients have similar direction, momentum results in larger update steps (higher
speed), yielding up to quadratic speedup in convergence rate for stochastic and standard gradient
descent (Loizou & Richtárik, 2017b;a).
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Algorithm 1 ASGD: worker

Receive parameters θt from master
Compute gradients gt ← ∇J(θt)
Send gt to master

Algorithm 2 ASGD: master

Receive gradients gt from worker i (at iteration t+ τ )
θt+τ+1 ← θt+τ − ηgt
Send parameters θt+τ+1 to worker i

Nesterov Continuing the analogy of a heavy ball rolling downhill, higher speed might make the
heavy ball overshoot the bottom of the valley (the local or global minima) if it does not slow down
in time. Nesterov (1983) proposed Nesterov Accelerated Gradient (NAG), which gives the ball a
“sense” of where it is going, allowing it to slow down in advance. Formally, NAG approximates
θ̂t, the future value of θt, using the previous update vector vt: θ̂t = θt − ηγvt, and computes the
gradients on the parameters’ approximated future value θ̂ instead of their current value θ. This allows
NAG to slow down near the minima before overshooting the goal and climbing back up the hill. We
call this look-ahead since it allows us a peek at θ’s future position. The NAG update rule is identical
to Equation 2, except that the gradient gt is computed on the approximated future parameters θ̂t
instead of θt: gt = ∇J(θ̂t). It is then applied to the original parameters θt via vt as in Equation 2.

Equation 3 shows that the difference between the updated parameters θt+1 and the approximated
future position θ̂t is only affected by the newly computed gradients gt, and not by vt. Hence, NAG
can accurately estimate future gradients even when the update vector vt is large.

θt+1 − θ̂t = θt − ηvt+1 − θt + ηγvt

= ηγvt − η(γvt + gt) = −ηgt
(3)

3 GRADIENT STALENESS AND MOMENTUM

In ASGD training, each worker i pulls up-to-date parameters θt from the master and computes gra-
dients of a single batch (Algorithm 1). Once computation has finished, worker i sends the computed
gradient gt back to the master. The master (Algorithm 2) then applies the gradient gt to its current
set of parameters θt+τ , where τ is the lag: the number of updates the master has received from other
workers while worker i was computing gt.

In other words, gradient gt is stale: it was computed from parameters θt but applied to θt+τ . This
gradient staleness is major obstacle to scaling ASGD: the lag τ increases as the number of workers
N grows, decreasing gradient accuracy, and ultimately reducing the accuracy of the trained model.

From Lag to Gap We denote by ∆θ = θt − θt+τ the difference between the master and worker
parameters, and define the gap as the sum of layer-wise RMSE: G(∆θ) =

∑
ψ∈layers RMSE(ψ),

where for each model layer ψ with m parameters, RMSE(ψ) = ‖ψ‖/
√
m. Ideally, there should be

no difference between θt and θt+τ : when ∆θ = 0, gradients are computed on the same parameters
they will be applied to. This is the case for sequential and synchronous methods such as SGD and
SSGD. In asynchronous methods, however, more workers result in an increased lag τ and thus a
larger gap, as demonstrated by Figure 1(a). A larger gap means less accurate gradients, since they
are computed on parameters that differ significantly from those they will be applied to. Conversely,
a smaller gap means that gradients are likely to be more accurate.

The Effect of Momentum While momentum and Nesterov methods improve SGD convergence
and accuracy of trained models, they make scaling to more workers more difficult. As Figure 1(b)
shows, adding NAG to ASGD exacerbates gradient staleness, even though the lag τ is unchanged.

Put differently, NAG and momentum increase the gap G(∆θ). Let xi be the variable x for worker
i (for the master, i = 0) and xit be the value of that variable at the worker’s t iteration. For ASGD
without momentum or NAG, ∆θ is the sum of gradients1, ∆ASGD

θ = η
∑N
i=1 g

i
t, whereas in the

case of ASGD with NAG, ∆θ is the sum of update vectors: ∆NAG-ASGD
θ =

∑N
i=1 v

i
t. Recall that

1To simplify analysis, we assume that all workers have equal computation power and are applying their
gradients to the master in a round-robin order. These assumptions can be removed without loss of generality
by keeping track of worker updates and weighting them accordingly.
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(a) Comparison of the number of workers.
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(b) Algorithm comparison (all with 8 workers).

Figure 1: The gap between θt and θt+τ while training ResNet-20 on the CIFAR-10 dataset with (a)
different numbers of workers, and (b) different asynchronous algorithms. Adding workers or using
momentum increases the effect of the lag τ on the gap. The large drops in G(θt − θt+τ ) are caused
by learning rate decay.

by design, momentum and NAG increase the magnitude of updates to θt: ‖vt‖ ≥ ‖gt‖. Moreover,
if the distribution of training data in each worker is the same (e.g., the common case of assigning
data to workers uniformly at random), then the directions of updates vit are approximately similar,
since the loss surfaces are similar. Applying the identity ‖a + b‖2 = ‖a‖2 + ‖b‖2 + 2〈a, b〉 and
the triangle inequality, it follows that in general the gap with NAG is larger than the gap without it:
G(∆NAG-ASGD

θ ) ≥ G(∆ASGD
θ ).

Figure 1(b) shows that the gap for ASGD with NAG is substantially larger than for ASGD without
it. Conversely, DANA-Zero, detailed in the next section, maintains a low gap throughout training
even though it also uses NAG.

4 DANA: DISTRIBUTED ACCELERATED NESTEROV ASGD

DANA is a distributed optimizer that converges without hyperparameter tuning even when training
with momentum on large clusters. It reduces the gap G(∆θ) by computing the worker’s gradients
on parameters that more closely resemble the master’s future position θt+τ . We extend NAG to
the common distributed setting with N workers and one master, obtaining similar look-ahead to the
traditional method with a single worker. This means that for the same lag τ , DANA suffers from a
reduced gap and therefore suffers less from gradient staleness.

4.1 THE DANA-ZERO UPDATE RULE

In DANA-Zero, the master maintains a separate update vector vi for each worker, which is up-
dated with the worker’s gradients gi using the same update rule as in classic SGD with momentum
(Equation 2). Since the master updates each vi only with the gradients from worker i, we can apply
look-ahead using the most recent update vectors of the other workers. We know that vit−1 will move
the master’s parameters θ0 on iteration t of worker i by ηγvit−1. Thus, computing θ0t − ηγvit−1
gives us an approximation of the next position of the master’s parameters after worker i has sent its
gradients. Instead of sending the master’s current parameters θ0 to the worker, DANA-Zero sends
the estimated future position of the master’s parameters after N updates, one for each worker:

θ̂DANA , θ0 − ηγ
N∑
i=1

viprev(i) (4)

where prev(i) denotes the last iteration where worker i sent gradients to the master. Algorithm 3
shows the DANA-Zero master algorithm; the worker code is the same as in ASGD (Algorithm 1).

Given the update rule, we calculate the gap of DANA-Zero, G(∆DANA
θ ), similarly to Equation 3:

∆DANA
θ = η

N∑
i=1

vit − ηγ
N∑
i=1

vit−1 = η

N∑
i=1

(vit+1 − γvit) = η

N∑
i=1

git (5)
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Algorithm 3 DANA-Zero master. DANA-Zero uses
the standard ASGD worker (Algorithm 1).

Receive gradients gi from worker i
Update worker’s momentum vi ← γvi + gi

Update master’s weights θ0 ← θ0 − ηvi
Send estimate θ̂ = θ0 − ηγ

∑N
j=1 v

j to worker i

Algorithm 4 DANA worker i. DANA uses
the standard ASGD master (Algorithm 2).

Receive parameters Θi from master
Compute gradients gi ← ∇J(Θi)
Update momentum vi ← γvi + gi

Send update step γvi + gi to master

Equation 5 shows that DANA-Zero has the same gap as ASGD without momentum. Figure 1(b)
demonstrates this empirically: ASGD with momentum has a larger gap than ASGD throughout the
training process, whereas DANA-Zero’s gap is similar to ASGD despite also using momentum.
Additionally, when running with one worker (N = 1), DANA-Zero reduces to a single standard
NAG optimizer: with one worker, θ1t = θ0t − ηγ, so merging the master and the worker algorithms
yields the Nesterov update rule (see Appendix A for more details).

4.2 OPTIMIZING DANA

In DANA-Zero, the master maintains an update vector for every worker, and must also compute θ̂ at
each iteration. This adds a computation and memory overhead to the master. DANA is a variation of
DANA-Zero that obtains the same look-ahead as DANA-Zero but without any additional memory
or computation overhead.

Bengio-Nesterov Momentum Bengio et al. (2013) proposed a simplified Nesterov update rule,
known as Bengio-Nesterov Momentum. This variation of the classic Nesterov is occasionally used
in deep learning frameworks (Paszke et al., 2017) since it simplifies the implementation. Bengio-
Nesterov Momentum works by defining a new variable Θ to represent θ after the momentum update:

Θt , θt − ηγvt (6)

Substituting θt with Θt in the NAG update rule (Section 2) yields the Bengio-Nesterov update rule:

θt+1 = θt − ηvt+1 =⇒ Θt+1 + ηγvt+1 = Θt + ηγvt − ηvt+1

= Θt + ηγvt − η (γvt +∇J(Θt))

=⇒ Θt+1 = Θt − η(γvt+1 +∇J(Θt)) (7)

Using Equation 7, an implementation need only store one set of parameters in memory (Θ) since
gradients are both computed from and applied to Θ, rather than computed on θ̂ but applied to θ.

The DANA Update Rule We leverage the ideas of Bengio-Nesterov Momentum to optimize
DANA. As we did in Equation 6, we define a new variable Θ that represents θ after the momen-
tum update from all workers:

Θt , θt − ηγ
N∑
j=1

vjprev(j) (8)

We define Θt+1 as Θt after applying worker i’s update vt+1 = γvt +∇J(Θt):

Θt+1 = θt+1 − ηγ
(
viprev(i)+1 +

∑
j 6=i

vjprev(j)

)
Substituting θt with Θt yields the DANA update rule (Equation 9):

θt+1 = θt − ηviprev(i)+1

=⇒ Θt+1 + ηγ
(
viprev(i)+1 +

∑
j 6=i

vjprev(j)

)
= Θt + ηγ

N∑
j=1

vjprev(j) − ηv
i
prev(i)+1

=⇒ Θt+1 = Θt + ηγ(viprev(i) − v
i
prev(i)+1)− ηviprev(i)+1

= Θt − η(γviprev(i)+1 +∇J(Θt)) (9)
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Algorithm 4 shows DANA: a variation of DANA-Zero that uses Bengio-Nesterov to eliminate the
overhead at the master. DANA only changes the worker side and uses the same master algorithm
as in ASGD (Algorithm 2); hence, it eliminates any additional overhead at the master. DANA is
equivalent to DANA-Zero in all other ways, and provides the same benefits: it works out-of-the-box,
provides look-ahead to reduce the gap2 and achieves the same fast convergence and high accuracy.

5 EVALUATION

We implemented DANA using PyTorch (Paszke et al., 2017) and mpi4py (Dalcin et al., 2011) and
evaluated it by: (a) simulating multiple distributed workers3 on a single machine to focus on accu-
racy rather than communication overheads and update scheduling; and (b) running the distributed
algorithm on multiple machines, where we measure run time speedups and confirm simulation accu-
racy. We simulate two modes. In block-random scheduling every block of N updates contains one
update from each worker and order is shuffled between blocks, which simulates the common case
where distributed workers have very similar computational power. In the gamma-distributed model
the execution time for each individual batch is drawn from a gamma distribution (Ali et al., 2000).
The gamma distribution is a well-accepted model for task execution time, and gives rise to stragglers
naturally. We use the formulation proposed by Ali et al. (2000) and set V = 0.1 and µ = B ∗ V 2,
where B is the chosen batch size, yielding a mean execution time of B simulated time units.

Our main evaluation metric is final test error: the error achieved by a trained model after training
using the baseline training schedule. We also measure improvement in training time (speedup) using
the distributed DANA implementation.

Algorithms As we are interested in out-of-the-box performance, we compare DANA to algorithms
that do not introduce new parameters and require no re-tuning (see Table 1 for comparison to non-
OOTB methods). All runs use the same hyperparameters, training schedule and data augmentation
from the original paper where the network architectures are proposed.

1. Baseline: single worker with the same hyperparameters as in the respective NN paper.
2. SSGD: similar to Goyal et al. (2017) with the linear scaling rule.
3. ASGD: standard asynchronous SGD without momentum (momentum parameter set to 0).
4. NAG-ASGD: asynchronous SGD which uses a single NAG optimizer for all workers.
5. Multi-ASGD: asynchronous SGD which holds a separate NAG optimizer for each worker.
6. DANA: DANA as described in Section 4.2.

In the early stages of training, the network changes rapidly, which can lead to training error spikes.
For all algorithms, we follow the gradual warm-up approach proposed by Goyal et al. (2017) to
overcome this problem: we divide the initial training rate by the number of workers N and ramp
it up linearly until it reaches its original value after 5 epochs. We also use momentum correction
(Goyal et al., 2017) in all algorithms to stabilize training when the learning rate changes.

Datasets We evaluated DANA on CIFAR-10, CIFAR-100 (Hinton, 2007) and ImageNet (Rus-
sakovsky et al., 2015). The CIFAR-10 Hinton (2007) dataset is comprised of 60k RGB images
partitioned into 50k training images and 10k test images. Each image contains 32x32 RGB pix-
els and belongs to one of ten equal-sized classes. CIFAR-100 is similar but has 100 classes. The
ImageNet dataset (Russakovsky et al., 2015), known as ILSVRC2012, consists of RGB images,
each labeled as one of 1000 classes. Images are partitioned to 1.28 million training images and 50k
validation images, and each image is randomly cropped and re-sized to 224x224 (1-crop validation).

5.1 OUT-OF-THE-BOX ACCURACY

Figure 2 shows the mean and standard deviation of final test error from five runs using block-random
scheduling, when training the ResNet-20 (He et al., 2016) architecture on CIFAR-10 and the Wide
ResNet 16-4 (Zagoruyko & Komodakis, 2016) architecture on CIFAR-10 and CIFAR-100.

2DANA uses Θ internally, so computing the gap G(∆θ) would require transforming all values back to θ.
3A single worker may not be a single GPU. DANA, like all ASGD algorithms, can treat each machine with

multiple GPUs as a single worker. For example, DANA can run on 32 workers with 8 GPUs each, where each
worker performs SSGD internally (which is transparent to the ASGD algorithm).
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(a) CIFAR10 ResNet-20
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(b) CIFAR10 Wide ResNet 16-4
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(c) CIFAR100 Wide ResNet 16-4

Figure 2: Final test error for different numbers of workers N on the CIFAR10 and CIFAR100
datasets using ResNet-20 and Wide ResNet 16-4 using block-random scheduling. Bold lines show
the mean over the 5 different experiments, while transparent bands show the standard deviation. The
baseline is the mean of 5 different runs with a single worker.
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(b) CIFAR10 Wide ResNet 16-4
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(c) CIFAR100 Wide ResNet 16-4

Figure 3: Final test error for different numbers of workers N on the CIFAR10 and CIFAR100
datasets using ResNet-20 and Wide ResNet 16-4 using the gamma-distributed model of execution
time. Bold lines show the mean over the 5 different experiments, while transparent bands show the
standard deviation. The baseline is the mean of 5 different runs with a single worker.

Out-of-the-box, DANA’s final test error remains similar to the baseline error with up to 24 workers in
Figure 2(a) and 12 workers in Figures 2(b) and 2(c). Moreover, DANA’s final error is lower than the
other algorithms when using up to 24–32 workers – all without any tuning. Above that point, DANA
is no longer the superior algorithm because of the smaller size of CIFAR-10 and CIFAR-100: with
so many workers the amount of data per worker is so small that gradients from different workers
become dissimilar, and DANA is no longer able to mitigate the effects of momentum. ImageNet
results (Table 2) show that DANA easily scales to 32 workers when there is enough data per worker.

NAG-ASGD demonstrates the detrimental effect of momentum on gradient staleness: it yields good
accuracy with few workers, but test error climbs sharply and sometimes even fails to converge when
used with more than 16 workers. On the other hand, even though ASGD without NAG appears to be
the most scalable algorithm, its test error is unacceptably high even with 2 workers. While SSGD
appears to offer a middle ground of reasonable accuracy with good scalability, in practice speedup
is limited by synchronization and the increase in effective batch size means tuning is required to
achieve good accuracy. DANA provides a way out of this dilemma: by mitigating gradient staleness,
it achieves the best final accuracy while scaling to many workers, and works without changing any
hyperparameter or changing the learning schedule.

Finally, Multi-ASGD serves as an ablation study: its poor scalability demonstrates that it is not
sufficient to simply maintain update vectors for every worker. The DANA update rules (Section 4)
are also required to achieve a high test accuracy.
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Table 2: Out-of-the-box ResNet-50 ImageNet
test errors. Baseline error from He et al. (2016)
with block-random scheduling.

Workers Algorithm Test Error

1 Baseline 24.70

16

ASGD +3.78
NAG-ASGD +1.33
SSGD +2.17
DANA -0.35

32
ASGD +4.59
NAG-ASGD +4.57
SSGD +3.16
DANA +0.65

48 DANA +1.13

64 ASGD +6.90
NAG-ASGD +8.01
DANA +4.10
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Figure 4: DANA speedup (solid line) and final
test error (dashed) when training ResNet-20 on
CIFAR-10 with different numbers of workers.

Figure 3 is similar to Figure 2 except that the execution time for each individual batch is drawn
from a Γ(100, 1.28) gamma distribution (since the batch size B is 128). It shows the mean and
standard deviation of final test error from five runs, when training the ResNet-20 (He et al., 2016)
architecture on CIFAR-10 and the Wide ResNet 16-4 (Zagoruyko & Komodakis, 2016) architecture
on CIFAR-10 and CIFAR-100. The trends in Figure 3 agree with those on Figure 2: up to N = 24
workers, DANA performs similar to the baseline and is superior to the other OOTB algorithms.

Table 2 lists out-of-the-box test errors when training the ResNet-50 architecture (He et al., 2016)
on ImageNet. Due to the long training time of ImageNet, we only conducted experiments on Im-
ageNet with SSGD, ASGD and DANA. DANA consistently outperforms all other out-of-the-box
algorithms. Similar test-errors to Table 2 were achieved when training DANA with the gamma-
distributed model on 32 and 64 workers, yielding a final test-error of +0.54% and +5.84% respec-
tively. Table 1 compares DANA to reported results from state-of-the-art asynchronous algorithms
that rely on tuning or changes to the learning rate schedule, while DANA converges to the Ima-
geNet’s baseline test accuracy with 16 and 32 workers, matching or exceeding recent state-of-the-art
algorithms (AD-PSGD and DC-ASGD), despite making no changes to any hyperparameter.

5.2 SPEEDUP

While this work focuses on improving out-of-the-box ASGD accuracy without adding overhead, we
also measured speedup, defined as the runtime for DANA with N workers divided by the runtime
for the single worker baseline. Figure 4 shows the speedup and final test error when running DANA
on the Google Cloud Platform with a single parameter server (master) and one Nvidia Tesla V100
GPU per machine, when training ResNet-20 on the CIFAR-10 dataset. It shows speedup of up to
×16 when training with N = 24 workers, and as before, its final test error remains close to the
baseline up to N = 24 workers.

At 24 workers, the parameter server becomes a bottleneck. This phenomenon is consistent with
literature (Xing et al., 2015) on ASGD, and is well-studied. Since the DANA master is unchanged
from the ASGD algorithm (Algorithm 2), existing techniques, such as sharding the parameter server
(Dean et al., 2012), improving network utilization (Li et al., 2014), lock-free synchronizations (Recht
et al., 2011; Zhang et al., 2016a), and gradient compression (Lin et al., 2018; Wen et al., 2017;
Bernstein et al., 2018), are fully compatible with DANA but are beyond the scope of this work.

Figure 5(a) shows the theoretically achievable speedup, based on the detailed gamma-distributed
model, for asynchronous (DANA and other ASGD variants) and synchronous algorithms. The asyn-
chronous algorithms can achieve linear speedup;; the synchronous algorithm (SSGD) falls short as
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Figure 5: Theoretical speedups for DANA (or any ASGD) and SSGD when batch execution times
are drawn from a Gamma distribution, as in Figure 3. Overheads are not modeled.

we increase the number of workers, since it must wait after each iteration until all workers complete
their batch. Figure 5(b) shows that DANA (or any ASGD variant) is up to 21% faster than SSGD.
This speedup is an underestimate, since our simulation only includes batch execution times, and
does not model execution time of barriers, all-gather operations, and other overheads.

6 RELATED WORK

DANA achieves out-of-the-box scaling by explicitly mitigating the effects of gradient staleness.
Other approaches to mitigating staleness include DC-ASGD (Zheng et al., 2017), which uses a
Taylor expansion to approximate the gradients as if they were calculated on the master’s recent pa-
rameters. DC-ASGD requires substantial tuning of several hyperparameters, introduces additional
hyperparameters that must also be tuned, and requires additional computation at the master to ap-
proximate the Hessian. Elastic Averaging SGD (EASGD) (Zhang et al., 2015) is an ASGD algorithm
that uses a center force to pull the workers’ parameters towards the master’s parameters. This al-
lows each worker to train asynchronously and synchronize with the master once every few batches.
However, EASGD introduces three new hyperparameters that must be tuned. Zhang et al. (2016b)
proposed Staleness-aware ASGD: worker gradients are weighted by the lag between two succes-
sive updates, so stale gradients have lower impact. This method adds one new hyperparameter,
and achieves lower or equivalent final accuracy compared to SSGD. DANA scales without adding
hyperparameters or tuning, and achieves final accuracy comparable to that of a single worker.

Other approaches to scaling are SSGD learning rate schedulers. Goyal et al. (2017) introduced a
linear scaling rule and warmup epochs to help increase the mini-batch size, which is key to scaling
the number of workers in a synchronous environment. You et al. (2017) further generalize that work
and introduce LARS, a method that changes the learning rate independently for each layer, according
to the ratio between norm of the layer’s weights and the norm of the layer’s current gradient, whose
parameters need to be tuned. Smith et al. (2018) suggest increasing the batch size instead of decaying
the learning rate. These approaches are compatible with (and indeed orthogonal to) DANA.

Finally, decentralized approaches to scaling SGD eliminate the parameter server entirely. In D-
PSGD (Lian et al., 2017), workers first compute and apply gradients locally and then synchronously
average models with their neighbors. Very recently, Lian et al. (2018) proposed AD-PSGD, which
operates asynchronously. While they demonstrate impressive scaling, these works focus on different
communication topologies and use other learning schedules and batch sizes than the baselines.

7 DISCUSSION

DANA is a new asynchronous SGD algorithm for training of neural networks. By mitigating the
effect of gradient staleness, DANA scales out-of-the-box to large clusters using the same hyperpa-
rameters and learning schedule optimized for training on a single worker, while maintaining similar

9
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final accuracy, without adding any overhead at the master. DANA could be used to extend other
non-distributed optimization procedures (e.g., Nadam Dozat (2016)) to a distributed setting without
adding parameters. Integrating DANA with DC-ASGD could further mitigate gradient staleness,
though without eliminating tuning. Finally, we are working to extend DANA with separate, self-
adjusting weights per worker to address settings with heterogeneous workers while avoiding tuning.
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A SUPPLEMENTARY MATERIALS

A.1 DANA-ZERO EQUIVALENCE TO NESTEROV

When running with one worker (N = 1) DANA-Zero reduces to a single NAG optimizer. This can
be shown by merging the worker and master (Algorithms 1 and 3) into a single algorithm: since
at all times θ1t = θ0t − ηγvt−1, the resulting algorithm trains one set of parameters θ, which is
exactly the Nesterov update rule. Algorithm 5 shows the fused algorithm, equivalent to standard
NAG optimizer.

Algorithm 5 Fused DANA-Zero worker/master (when N = 1)

Compute gradients gt ← ∇J(θt − ηγvt−1)
Update momentum vt ← γvt−1 + gt
Update weights θt+1 ← θt − ηvt

A.2 EXPERIMENTAL RESULTS ON CIFAR

This section shows the results of the ResNet-20 He et al. (2016) and Wide ResNet 16-4 (16 depth and
4 width) network architectures on the CIFAR-10 and CIFAR-100 datasets. We ran each experiment
five times to show the mean and standard deviation of the final test error, which are shown in the
tables below. The experiments were executed using two types of worker update orders:

• Round Robin: Every worker updates the master in a sequential order. For example, if N = 4, the
order of updates is 1, 2, 3, 4, 1, 2, 3, 4 . . . .

• Block Random: Every worker updates the master in a random order. However, every N updates,
it is guaranteed that every worker has updated the master exactly once.

• Gamma Distribution: Every worker updates the master in a gamma distribution order (Ali et al.,
2000). The gamma distribution is a well-accepted model for task execution time, and gives rise
to stragglers naturally. We use the formulation proposed by Ali et al. (2000) and set V = 0.1 and
µ = B ∗ V 2, where B is the chosen batch size. When the batch size is 128 (as in both CIFAR
datasets for example) this yields the distribution Γ(100, 1.28) with mean execution time of 128
simulated time units.

A.2.1 RESNET-20 RESULTS

Tables 3 and 4 show the final test error of the ResNet-20 architecture whose training schedule He
et al. (2016) starts with an initial learning rate of 0.1, which decays by a factor of ten on epochs 80
and 120. The batch size is 128, momentum is 0.9, and the baseline uses NAG.
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Table 3: ResNet CIFAR10 Test Error Round Robin

mean std
#Workers Algorithm

1.0 Baseline 8.37 0.22

4.0 ASGD 11.00 0.17
DANA 8.44 0.15
Multi-ASGD 8.46 0.14
NAG-ASGD 8.50 0.27

8.0 ASGD 10.89 0.22
DANA 8.55 0.22
Multi-ASGD 8.70 0.14
NAG-ASGD 9.36 0.13

16.0 ASGD 11.79 0.24
DANA 8.67 0.20
Multi-ASGD 15.05 0.53
NAG-ASGD 83.27 9.15

32.0 ASGD 13.21 0.35
DANA 24.59 12.18
Multi-ASGD 83.22 11.19
NAG-ASGD 84.98 10.00
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Table 4: ResNet CIFAR10 Test Error Block Random

mean std
#Workers Algorithm

1.0 Baseline 8.37 0.22

2.0 ASGD 10.90 0.18
DANA 8.37 0.24
Multi-ASGD 8.28 0.24
NAG-ASGD 8.35 0.15
SSGD 8.75 0.15

4.0 ASGD 10.68 0.35
DANA 8.38 0.23
Multi-ASGD 8.50 0.16
NAG-ASGD 8.56 0.07
SSGD 9.18 0.24

8.0 ASGD 11.07 0.16
DANA 8.51 0.25
Multi-ASGD 8.76 0.17
NAG-ASGD 9.12 0.33
SSGD 9.65 0.21

12.0 ASGD 11.10 0.18
DANA 8.66 0.14
Multi-ASGD 9.24 0.17
NAG-ASGD 13.08 0.96
SSGD 9.60 0.22

16.0 ASGD 11.20 0.14
DANA 8.76 0.09
Multi-ASGD 12.94 1.40
NAG-ASGD 50.50 31.05
SSGD 9.84 0.35

20.0 ASGD 11.29 0.24
DANA 9.03 0.11
Multi-ASGD 42.66 24.18
NAG-ASGD 82.32 15.35
SSGD 10.15 0.19

24.0 ASGD 11.62 0.22
DANA 9.28 0.35
DANA-Zero 9.43 0.26
Multi-ASGD 71.05 16.08
NAG-ASGD 90.00 0.00
SSGD 10.52 0.49

28.0 ASGD 11.94 0.31
DANA 10.44 0.65
Multi-ASGD 85.33 8.80
NAG-ASGD 72.55 22.11
SSGD 11.24 0.38

32.0 ASGD 12.26 0.13
DANA 11.90 0.86
Multi-ASGD 90.00 0.00
NAG-ASGD 81.49 12.87
SSGD 12.15 0.70
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A.2.2 WIDE RESNET 16-4 RESULTS

Tables 5, 7, 6, and 8 show the final test error of the Wide ResNet 16-4 architecture. For both
datasets, CIFAR-10 and CIFAR-100, the training schedule Zagoruyko & Komodakis (2016) starts
with an initial learning rate of 0.1, which decays by a factor of five on epochs 60, 120 and 160. The
batch size is 128, momentum is 0.9, and the baseline uses NAG.

Table 5: Wide ResNet CIFAR10 Test Error Round Robin

mean std
#Workers Algorithm

1.0 Baseline 4.83 0.12

4.0 ASGD 6.81 0.12
DANA 4.94 0.05
Multi-ASGD 4.93 0.10
NAG-ASGD 5.23 0.10

8.0 ASGD 6.94 0.20
DANA 5.29 0.14
Multi-ASGD 5.93 0.30
NAG-ASGD 7.27 0.25

16.0 ASGD 7.41 0.24
DANA 6.68 0.32
Multi-ASGD 40.78 24.92
NAG-ASGD 84.27 11.45

Table 6: Wide ResNet CIFAR100 Test Error Round Robin

mean std
#Workers Algorithm

1.0 Baseline 23.28 0.30

4.0 ASGD 27.27 0.09
DANA 23.48 0.21
Multi-ASGD 23.74 0.10
NAG-ASGD 24.08 0.16

8.0 ASGD 27.39 0.28
DANA 23.94 0.25
Multi-ASGD 24.98 0.17
NAG-ASGD 25.75 0.27

16.0 ASGD 27.76 0.39
DANA 25.13 0.32
Multi-ASGD 29.45 0.41
NAG-ASGD 35.02 2.36
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Table 7: Wide ResNet CIFAR10 Test Error Block Random

mean std
#Workers Algorithm

1.0 Baseline 4.83 0.12

2.0 ASGD 6.84 0.16
DANA 4.82 0.13
Multi-ASGD 4.81 0.11
NAG-ASGD 4.84 0.09
SSGD 5.18 0.14

4.0 ASGD 6.83 0.18
DANA 5.00 0.16
Multi-ASGD 4.98 0.17
NAG-ASGD 5.22 0.16
SSGD 5.55 0.20

8.0 ASGD 6.82 0.22
DANA 5.33 0.06
Multi-ASGD 6.01 0.13
NAG-ASGD 6.36 0.48
SSGD 6.29 0.26

12.0 ASGD 7.00 0.11
DANA 5.33 0.12
Multi-ASGD 7.02 0.31
NAG-ASGD 15.43 4.33
SSGD 6.78 0.18

16.0 ASGD 7.21 0.09
DANA 5.99 0.27
Multi-ASGD 22.36 6.80
NAG-ASGD 77.26 25.48
SSGD 7.27 0.27

20.0 ASGD 7.32 0.12
DANA 6.81 0.12
Multi-ASGD 65.00 30.62
NAG-ASGD 77.18 25.64
SSGD 8.07 0.43

24.0 ASGD 7.51 0.30
DANA 7.48 0.15
Multi-ASGD 79.09 21.82
NAG-ASGD 90.00 0.00
SSGD 8.71 0.45

28.0 ASGD 7.78 0.14
DANA 8.91 0.72
Multi-ASGD 72.06 22.65
NAG-ASGD 90.00 0.00
SSGD 9.57 0.49

32.0 ASGD 7.94 0.15
DANA 12.31 2.22
Multi-ASGD 66.71 23.14
NAG-ASGD 90.00 0.00
SSGD 10.48 0.64
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Table 8: Wide ResNet CIFAR100 Test Error Block-Random

mean std
#Workers Algorithm

1.0 Baseline 23.28 0.30

2.0 ASGD 27.69 0.22
DANA 23.56 0.23
Multi-ASGD 23.51 0.11
NAG-ASGD 23.62 0.35
SSGD 24.08 0.23

4.0 ASGD 27.22 0.26
DANA 23.51 0.25
Multi-ASGD 23.62 0.22
NAG-ASGD 23.93 0.31
SSGD 25.41 0.22

8.0 ASGD 27.21 0.22
DANA 23.93 0.24
Multi-ASGD 24.64 0.31
NAG-ASGD 25.34 0.30
SSGD 26.45 0.42

12.0 ASGD 27.47 0.32
DANA 24.27 0.17
Multi-ASGD 26.29 0.35
NAG-ASGD 28.14 0.34
SSGD 27.07 0.42

16.0 ASGD 27.68 0.28
DANA 24.93 0.32
Multi-ASGD 28.81 0.44
NAG-ASGD 32.55 0.77
SSGD 27.51 0.26

20.0 ASGD 27.89 0.10
DANA 25.50 0.30
Multi-ASGD 30.97 0.42
NAG-ASGD 36.36 2.61
SSGD 28.29 0.36

24.0 ASGD 28.26 0.22
DANA 26.80 0.44
Multi-ASGD 34.01 0.70
NAG-ASGD 54.64 11.07
SSGD 28.42 0.62

28.0 ASGD 28.64 0.30
DANA 27.57 0.23
Multi-ASGD 40.15 1.71
NAG-ASGD 80.63 7.30
SSGD 29.87 0.19

32.0 ASGD 28.63 0.40
DANA 29.39 0.47
Multi-ASGD 56.10 4.15
NAG-ASGD 93.26 3.82
SSGD 30.04 0.36
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