
Under review as a conference paper at ICLR 2019

INFINITELY DEEP INFINITE-WIDTH NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Infinite-width neural networks have been extensively used to study the theoretical
properties underlying the extraordinary empirical success of standard, finite-width
neural networks. Nevertheless, until now, infinite-width networks have been lim-
ited to at most two hidden layers. To address this shortcoming, we study the
initialisation requirements of these networks and show that the main challenge
for constructing them is defining the appropriate sampling distributions for the
weights. Based on these observations, we propose a principled approach to weight
initialisation that correctly accounts for the functional nature of the hidden layer
activations and facilitates the construction of arbitrarily many infinite-width layers,
thus enabling the construction of arbitrarily deep infinite-width networks. The main
idea of our approach is to iteratively reparametrise the hidden-layer activations
into appropriately defined reproducing kernel Hilbert spaces and use the canonical
way of constructing probability distributions over these spaces for specifying the
required weight distributions in a principled way. Furthermore, we examine the
practical implications of this construction for standard, finite-width networks. In
particular, we derive a novel weight initialisation scheme for standard, finite-width
networks that takes into account the structure of the data and information about
the task at hand. We demonstrate the effectiveness of this weight initialisation
approach on the MNIST, CIFAR-10 and Year Prediction MSD datasets.

1 INTRODUCTION

While deep neural networks have achieved impressive empirical success on many tasks across a
wide range of domains in recent years (Krizhevsky et al., 2012; Simonyan & Zisserman, 2014;
Szegedy et al., 2015; Sercu et al., 2015; Silver et al., 2016; Moravčík et al., 2017), they remain
hard to interpret black boxes whose performance crucially depends on many heuristics. In an
attempt to better understand them, significant research effort has been directed towards examining
the theoretical properties of these models with one important line of research focusing on the
profound connections between infinite-width networks and kernel methods. In particular, Neal (1996)
established a correspondence between single-layer infinite-width networks and Gaussian processes
(GP) (Rasmussen, 2006) showing the equivalence of the prior over functions that is induced by the
network and a GP with a particular covariance kernel. The appropriate covariance kernel has been
analytically derived for a few particular activation functions and weight priors (Williams, 1997).

Although there is a large body of research on infinite-width networks with surging recent interest in the
topic (Hazan & Jaakkola, 2015; Lee et al., 2017; Matthews et al., 2018), until now the construction of
these networks has been limited to at most two hidden layers. In order to overcome this shortcoming
and enable deep infinite-width networks, we propose a novel approach to the construction of networks
with infinitely wide hidden layers. To the best of our knowledge, this is the first method that enables
the construction of infinite-width networks with more than two hidden layers. The main challenge
in constructing this type of networks lies in ensuring that the inner products between the hidden
layer representations and the corresponding weights, which are both functions, are well-defined. In
particular, this amounts to ensuring that the weights lie in the same function space as the hidden
layer representations with which the inner product is taken. In other words, the weights connecting
layers l and l + 1 need to be in the same function space as the activations of layer l. To construct
the infinite-width layer l + 1, we need to construct infinitely many weights connecting layers l and
l + 1 that fulfill this requirement, i.e. we need to define a probability distribution over the function
space of activations of layer l. As the number of layers grows, the function spaces of activations grow

1



Under review as a conference paper at ICLR 2019

increasingly more complex, thus making it increasingly more difficult to satisfy the requirements on
the weights.

In order to tackle this challenge, we propose a principled approach to weight initialisation that
automatically ensures that the weights are in the appropriate function space. The main idea of our
approach is to make use of the canonical way of defining probability distributions over reproducing
kernel Hilbert spaces (RKHS) and iteratively define the appropriate weight distributions facilitating
the composition of arbitrarily many layers of infinite width. To this end, we first construct a kernel
corresponding to each hidden layer and examine the associated RKHS of functions that is induced by
this kernel. Next, for every layer, we establish a correspondence between the space of activations at a
layer and the corresponding RKHS by reparametrising the hidden layer activations of a datapoint
with the RKHS function corresponding to that point. Establishing this correspondence allows us
to use a principled approach to defining probability distributions over RKHSs for constructing the
appropriate sampling distribution of the weights in the infinite-width network.

We also examine some practical implications of this construction for the case of standard, finite-
width neural networks in terms of weight initialisation. Using Monte Carlo approximations, we
derive a novel data- and task-dependent weight initialisation scheme for finite-width networks that
incorporates the structure of the data and information about the task at hand into the network.

The main contributions of this paper are

• a novel approach to the construction of infinite-width networks that enables the construction
of networks with arbitrarily many hidden layers of infinite-width,

• a hierarchy of increasingly complex kernels that capture the geometry and inductive biases
of individual layers in the network,

• a novel weight initialisation scheme for deep neural networks with theoretical foundations
established in the infinite-width case.

The rest of the paper is organised as follows. Section 2 discusses related work and Section 3 introduces
our proposed approach to the construction of deep infinite-width networks. In Section 4, we showcase
the practical implications of our theoretical contribution for the case of standard, finite-width deep
networks. Section 5 discusses the experimental results followed by a conclusion in Section 6.

2 RELATED WORK

Inspired by the groundbreaking work establishing the correspondence between single-layer neural
networks and GPs (Neal, 1996; Williams, 1997), there has been a recent resurgence of interest in
examining the connections between neural networks and kernel methods. In particular, a large body
of literature that is concerned with constructing kernels that mimic computations in neural networks
has emerged outside of the "traditional" GP-neural network correspondence context. For example,
Cho & Saul (2009) construct kernels that mimic the computations in neural networks with Sign
and ReLU nonlinearities, while Daniely et al. (2016) discuss the duality in expressivity between
compositional kernels and neural networks, and proposes a generalised construction approach for
kernels corresponding to networks whose connectivity can be represented with a directed acyclic
graph. Further, Gens & Domingos (2016) construct compositional kernels that correspond to
convolutional networks, while additional connections between convolutional networks and kernels
are discussed in Mairal et al. (2014).

Using the multi-layer nature of neural networks within a kernel framework, Damianou & Lawrence
(2013) and Duvenaud et al. (2014) discuss stacking GPs to construct deep Gaussian processes, while
Wilson et al. (2016) and Al-Shedivat et al. (2017) use GPs with covariance kernels defined on the
output of fully-connected and recurrent neural networks, respectively. Further examples include
learning the kernel of an infinite-width neural network where the hidden layer outputs are binary
(Heinemann et al., 2016), learning a neural network by kernel alignment (Duan et al., 2018) and
learning in a setting when the kernel can only be estimated through sampling (Livni et al., 2017).
Kernels have also been used to analyze neural networks (Montavon et al., 2011) and have been
theoretically examined for consistency and universality (Steinwart et al., 2016).

2



Under review as a conference paper at ICLR 2019

There has also been a lot of recent interest in examining the "traditional" GP-neural network cor-
respondence. In particular, Hazan & Jaakkola (2015) construct kernels for infinite-width neural
networks with up to two hidden layers and arbitrary nonlinearities. In particular, a GP with a general
covariance kernel is used for sampling the weights between the two hidden layers, and the hidden
layer activations are assumed to be L2-functions. For arbitrary network non-linearities and data
distributions, the hidden layer activations do not exhibit this level of regularity. Furthermore, since
the GP covariance kernel is not chosen in accordance to the structure hidden layer activations, the
weights will not have the appropriate sampling distribution, and the resulting network will, in general,
be ill-defined. Two recent papers (Lee et al., 2017; Matthews et al., 2018) discussed the connections
between Gaussian processes and deep neural networks for increasing hidden layer width. In particular,
Lee et al. (2017) derive a recurrence relation for the kernel of a deep network and use it within a GP
to perform fully Bayesian inference for regression, while Matthews et al. (2018) establish theoretical
results characterising the convergence in distribution of deep networks to the corresponding GP. Our
work differs from these two contributions in three key aspects. First, the main motivation for our
approach is enabling the construction of deep infinite-width neural networks as opposed to examining
the behaviour of deep neural networks as the width of its hidden layers increases. Second, we
study and discuss the initialisation requirements of infinite-width neural networks, while Lee et al.
(2017) and Matthews et al. (2018) use standard initialisations in finite-width neural networks and
do not properly address the changing nature of the initialisation requirements of the weights as the
width of the hidden layers goes to infinity. In particular, in the limit of infinite width, the weights
cannot be sampled from a normal distribution as this causes the inner product with the infinite-width
hidden layer to be ill-defined. Third, as we follow different goals and approaches, the definition and
utilisation of kernels differ. In particular, we define a kernel on the space of the activations of a layer,
whereas Lee et al. (2017) and Matthews et al. (2018) define a kernel on the space of pre-activations
of that layer. This important distinction allows us to construct the weight distributions needed for
constructing deep infinite-width networks and results in the kernels encoding different aspects of the
neural network behaviour.

3 DEEP INFINITE-WIDTH NETWORKS

In this section, we present a novel method for the construction of infinite-width networks. To the
best of our knowledge, this is the first approach that enables the construction of arbitrarily deep
infinite-width networks. Previous work addressing infinite-width networks was either limited to at
most two layers of infinite width (Hazan & Jaakkola, 2015) or examined limits of deep finite-width
networks and did not appropriately account for the changing nature of the weights in the limit of
infinite width (Lee et al., 2017; Matthews et al., 2018). In particular these approaches ignore the
problem that the weights connecting two adjacent infinite-width layers cannot be sampled the same
way as in finite-width networks, i.e. from N (0, σ2

w), as this does not yield a well-defined inner
product with the incoming layer activations.

3.1 DIFFICULTY OF CONSTRUCTING NETWORKS WITH MORE THAN TWO LAYERS

In this subsection, we examine the initialisation requirements of infinite-width networks. In particular,
we show that the main challenge in constructing these networks is specifying an appropriate sampling
distributions for the weights that will ensure that the network as a whole is well-defined. Given an
input x ∈ X ⊆ Rd, we compute the activation of neuron i in the first layer as

φ1,x(w0
i ) = f1(〈w0

i , x〉Rd) (1)

with the layer non-linearity f1 applied elementwise and w0
i the weights connecting the input layer

to the i-th neuron in the first layer. Here, we make the dependence of the activations φ1,x on
the connecting weights explicit as it allows us to more effectively reason about the initialisation
requirements. For the first layer representation φ1,x to be well-defined, φ1,x(w0

i ) needs to be well-
defined for every neuron i, i.e. the inner product 〈w0

i , x〉Rd needs to be well-defined for every i. For
the inner products to be well-defined, the weights w0

i need to lie in the same space as x, i.e. in Rd.
Thus, in order to construct a first infinite-width layer that is well-defined, we need to sample infinitely
many weights w0

· from Rd. For this purpose, we can choose any probability measure ν0 defined on

3



Under review as a conference paper at ICLR 2019

Rd. Let us denote by Φ1 the space of the first layer activations, i.e.

Φ1 = Span
(
{φ1,x| x ∈ X}), with 〈f, g〉Φ1

=

∫
f(w)g(w)dν0(w) for f, g ∈ Φ1

the inner product and the bar denoting the completion of the set with respect to the norm induced by
the inner product. We note that Φ1 is a space of functions as the first layer has infinite width. For the
activation of neuron i in the second layer, we can write

φ2,x(w1
i ) = f2

(
〈w1

i , φ1,x〉Φ1

)
with the layer non-linearity f2 applied elementwise and w1

i the weights connecting the first layer to
the i-th neuron in the second layer. In order for the second layer activations φ2,x to be well-defined,
φ2,x(w1

i ) needs to be well-defined for every i, i.e. the inner products 〈w1
i , φ1,x〉Φ1 need to be well-

defined for every i. In order for this to be the case, the weights w1
i have to lie in the same space

as φ1,x for every i. Since φ1,x ∈ Φ1, we need to construct a sampling distribution over Φ1 for the
weights connecting the first and second layers. As Φ1 is a space of functions defined over Rd, a
natural choice for the sampling distribution of w1

· is a GP.

For constructing infinite-width networks with at most two layers, Hazan & Jaakkola (2015) endowed
this GP with a general covariance function. However, as they did not take into account the structure
of the underlying space Φ1, this GP will, in general, not define a sampling distribution over Φ1, thus
yielding a network which is ill-defined as the weights will not sampled from the appropriate space.

Analogously to the previous two layers, in order to construct a third infinite-width layer, we need
to define the weight distribution over the space of functions of functions over Rd that is Φ2 =

Span({φ2,x| x ∈ X}) as to ensure that taking inner products with φ2,x is well-defined. Unfortunately,
until now it was not clear how to construct this sampling distribution.

In summary, the main challenge in constructing infinite-width networks is defining appropriate
sampling distributions for the weights over increasingly more complex function spaces that are
induced by the hidden layer activations to ensure that the network is well-defined. In particular, in
order to construct layer l + 1 of infinite-width, we need to construct a distribution over the function
space of activations at layer l, thus making the inner products between the weights and the l-th layer
activations well-defined. Constructing the appropriate weight distributions is a highly non-trivial
undertaking for networks with more than two layers of infinite-width as it is not clear how to go about
constructing distributions over spaces of functions of functions.

3.2 CONSTRUCTING DEEP INFINITE-WIDTH NETWORKS

To address the above difficulty in constructing the weight distributions in infinite-width networks, we
propose a principled approach to weight initialisation that automatically ensures that the weights are
drawn from the appropriate function spaces. This initialisation scheme allows us to overcome the
current limitation of just two hidden layers and construct deep infinite-width networks with arbitrarily
many hidden layers. The main idea of our approach is to use the canonical way of defining probability
distributions over RKHSs for constructing appropriate sampling distributions of the weights. To
this end, we construct at every hidden layer an associated kernel and reparametrise the hidden
layer activations into the RKHSs that are induced by these kernels. As a consequence, this yields a
hierarchy of increasingly more complex kernels capturing the geometry and inductive biases of the
network.

As before, let x ∈ X ⊆ Rd be an input and φ1,x(wi
0) = f1(〈wi

0, x〉Rd) the activation of neuron i in
the first layer. Associated with this layer, we define a kernel by taking the inner product between the
activations. Specifically, we define

k1

(
x, x′

)
= 〈φ1,x, φ1,x′〉Φ1

=

∫
φ1,x

(
w
)
φ1,x′

(
w
)
dν0

(
w
)

(2)

and suppress the dependence of k1 on the non-linearity f1 when it does not lead to notational
ambiguity.1 This kernel captures the geometry of the space of first activations and compactly encodes
the inductive biases of that layer.

1Without loss of generality, we have assumed that Φ1 ∈ L2(Rd). If Φ1 consists of less smooth space of
functions than L2(Rd), we just define the kernel k1 such that the functions k1(·, x) for x ∈ X are L2-functions,
e.g. as k1(x, x′) = exp(−(〈φ1,x, φ1,x′〉Φ1)/σ2).

4



Under review as a conference paper at ICLR 2019

By the Moore-Aronszajn theorem (Berlinet & Thomas-Agnan, 2011), the kernel k1 induces a
corresponding RKHSHk1

= Span
(
{k1(·, x)| x ∈ X}

)
which is the closure of the span of so-called

canonical feature maps k1

(
·, x
)

of k1. Associated withHk1 , there is an inner product 〈·, ·〉Hk1
and

the reproducing property holds, i.e.

∀x ∈ X , ∀f ∈ Hk1
〈f, k1(·, x)〉Hk1

= f(x)

∀x, x′ ∈ X k1

(
x, x′

)
= 〈k1

(
·, x
)
, k1

(
·, x′
)
〉Hk1

.

Now, in order to construct a second layer of infinite-width, we need to define a distribution over Φ1

for the weights connecting the first and the second layer. To this end, we use the structure of the
induced RKHSHk1

and the fact that defining a probability distribution over an RKHS can be done in
a principled way using the corresponding kernel. The following proposition and lemma summarise
our weight initialisation scheme for infinite-width networks.
Proposition 1. Let x, x′ ∈ Rd be inputs to a network with l infinite-width layers, kl be the kernel
corresponding to the l-th layer and Hkl

the induced RKHS. We can extend the network with an
(l + 1)-th layer of infinite width by sampling the weights wl connecting the l-th and (l + 1)-th layers
from a Gaussian process with zero mean function and covariance function

Cl(w,w
′) =

∫
kl(w,wl−1)kl(w

′, wl−1) dνl−1(wl−1) with w,w′ ∈ Φl−1. (3)

Lemma 1 (Network Reparametrisation). Given the l-th layer activations Φl = Span
(
{φl,x|x ∈ X}),

the associated kernel kl and the induced RKHSHkl
, the mapping

Ul : Φl → Hkl
with φl,x 7→ kl

(
·, x
)

is an isometric isomorphism between Φl andHkl
.

Proofs of the proposition and lemma are given in the Supplementary Material, but we briefly outline
here the main intuitions behind them. In particular, our proposed construction of an infinite-width
network proceeds iteratively layer by layer. Having constructed the l-th layer, we construct the kernel
kl associated with that layer. This kernel induces an RKHSHkl

. We then perform a reparametrisation
of the l-th layer activations Φl intoHkl

according to Lemma 1. Having identified Φl withHkl
, we

construct the appropriate distribution of the weights connecting layers l and l + 1 as the canonical
distribution overHkl

. Finally, to construct layer l + 1, we sample infinitely many of the connecting
weights according to (3).

4 INITIALISATION BY PROJECTION

Having established a principled construction approach for infinite-width networks, we now turn our
attention to examining the consequences of this construction for standard, finite-width networks.
In particular, by reasoning about finite-width networks as Monte Carlo approximations of their
infinite-width counterparts, we derive a novel weight initialisation method based on the above weight
initialisation scheme for infinite-width networks and examine its structural properties.

In the finite-width case, we can simplify our notation. In particular, given an input to the network
x ∈ X ⊆ Rd, we denote by hl(x) the output of layer l and compute its i-th entry recursively from its
infinite-width counterpart φl,x(wl

i) as

[hl(x)]i := φ̂l,x(wl−1
i ) = fl(〈wl−1

i , φ̂l−1,x〉RNl−1 ) = fl(〈wl−1
i , hl−1(x)〉RNl−1 )

where ·̂ refers to the finite-width approximation of the infinite-width quantity. In particular, in the finite-
width case, we have Φ̂l ⊆ RNl with Nl the width of the l-th layer and Φ̂l = Span({φ̂l,x|x ∈ X}).
Concatenating all the Nl weight vectors that connect layers l − 1 and l, and lie in RNl−1 , we get the
weight matrix W l−1 ∈ RNl×Nl−1 .

Most common stochastic initialisation approaches are data- and task-agnostic and draw the weights
from a Gaussian distribution with zero mean and appropriately scaled variance. In contrast to that,
we obtain a data- and task-dependent approach to initialisation we term Weight Initialisation with
Infinite Networks (Win-Win) by taking Monte Carlo approximations of the weight initialisation for

5



Under review as a conference paper at ICLR 2019

infinite-width networks. In particular, we approximate the integrals used for computing the kernels
and GP covariance from equations (2) and (3) through sampling, i.e.

k̂l(x, x
′) =

1

Nl

Nl∑
n=1

f(〈x,wl
n〉RNl−1 )f(〈x′, wl

n〉RNl−1 ) with k̂l(·, x)i =
1√
Nl

f(〈x,wl
i〉RNl−1 )

Cl(x, x
′) ≈ 1

Ml

Ml∑
j=1

kl(x, ξj)kl(x
′, ξj) ≈

1

Ml

Ml∑
j=1

k̂l(x, ξj)k̂l(x
′, ξj) =: Ĉl(x, x

′).

While the number of samples used in the approximation corresponds to the dimensionality of the
feature expansion, i.e. the size of the corresponding finite-width layers, we can also think of these
representations as random feature expansions of a particular kernel thus establishing a connection to
Rahimi & Recht (2008). In the finite-width case, we have wl

i ∼ GP(0, Ĉl) which can be written as

wl
i =

M∑
m=1

αm,ihl(ξm,i) with αm,i ∼ N
(

0,
1

M

)
where the coefficients αm,i are mixing weights and ξm,i are selected training points.

This approach encourages us to think about the interaction between the weights and the hidden layer
representations in finite-width networks from a new perspective. In particular, the rows of the weight
matrix at layer l are initialised as weighted linear combinations of the activations of some points in l-th
layer. This facilitates an intuitive interpretation of a neuron i in layer l+1 measuring the alignment of
the data with the subspace spanned by {ξm,i}m. We propose three different approaches to choosing
these subspaces. First, we can choose the points randomly from the training data at every layer; this
corresponds to projecting the data onto random subspaces of the training distribution. We denote
this approach as Win-Win random. Next, guided by the principle of disentangling the factors of
variation in the data, we propose two structured approaches to the subspace selection that incorporate
the structure of the data and information about the task at hand directly into the weights already at
initialisation. In particular, we disentangle the data manifold by making similar objects increasingly
more similar and dissimilar objects increasingly more dissimilar as we move from the lower to the
higher layers. For the data and task at hand, we propose two ways to uncover the “disentangled"
directions: using k-means clustering and class information, respectively. Pre-training neural networks
has a long history of investigation (Hinton et al., 2006; Erhan et al., 2010). Interestingly, the practical
methods we propose could be seen as particular kinds of pre-training principally derived from the
initialisation of an infinitely-wide neural network. The methods we propose initialise the weights so
that the learning dynamics are subtly modified with a bias towards the data manifold.

K-means-based subspace selection. For weights connecting layers l and l + 1, we select the
subspaces by clustering the activations of the training data at layer l into Nl+1 clusters, i.e. one
cluster is assigned to every neuron in the subsequent layer. We pick p points from cluster i, i.e.
{ξposm,i}

p
m=1, and n points from each of the remaining clusters, i.e. {ξj,negm,i }nm=1 for j ≤ Nl+1, j 6= i,

and compute the weight vector wl
i connecting layer l with neuron i in layer l + 1 as

wl
i =

p∑
m=1

αm,jhl(ξ
pos
m,i)−

∑
j 6=i

j≤Nl+1

n∑
m=1

αm,j,ihl(ξ
j,neg
m,i ). (4)

Class-based subspace selection. If the task at hand is classification, we can choose the subspaces in
a manner that is more aligned with this end goal. Instead of clustering the activations, we use the
class labels as cluster assignments. Specifically, we associate every neuron i in layer l + 1 with a
class c and pick p points {ξposm,i}

p
m=1 from that class. We also pick {ξj,negm,i }nm=1 points from each of

the remaining classes j 6= c and compute the weight vector wl
i as

wl
i =

p∑
m=1

αm,ihl(ξ
pos
m,j)−

∑
j 6=c

n∑
m=1

αm,j,ihl(ξ
j,neg
m,i ).

In both subspace selection methods, points that are from cluster i should activate neuron i more than
points from other clusters since we are measuring the alignment to points from that cluster, while
substracting the alignment scores of all other clusters. Thus, we are making the points from cluster i
more similar to each other and less similar to points from all other clusters.

6



Under review as a conference paper at ICLR 2019

5 EXPERIMENTAL RESULTS

We compared our new initialisation scheme Win-Win to 4 commonly used initialisation schemes,
namely Xavier (Glorot & Bengio, 2010), LeCun (LeCun et al., 2012), Kaiming (He et al., 2015)
and SntDefault (Ioffe & Szegedy, 2015), the default initialiser in Sonnet, using the MNIST dataset
(LeCun et al., 1998), the CIFAR-10 dataset (Krizhevsky & Hinton, 2009) and on the Year Prediction
MSD dataset (Bertin-Mahieux et al., 2011). For all experiments, we use the validation set for
hyperparameter selection and early stopping, and the Adam optimizer (Kingma & Ba, 2014) with the
default hyperparameters and a fixed learning rate for the whole of training. Throughout, we used the
ReLU non-linearity. Error bars are one standard deviation of the mean and are computed using an
unbiased estimate of the variance for 12 different random seeds. We note that we did not use any
advanced techniques, such as data augmentation or learning rate scheduling, in order to disentangle
the effect of initialisation on network performance from the effects of other training heuristics.

MNIST. As a sanity check, we test our method on the benchmark dataset MNIST which encodes
handwritten digits from 0 to 9 as grayscale images of size 28 × 28 pixels with a train/valid/test
split of 50, 000/10, 000/10, 000 points. We train a 2-layer fully-connected architecture with 800
hidden units. We choose this architecture as they have achieved good performance as reported on
http://yann.lecun.com/exdb/mnist/. We test the three different methods for subspace selection in
Win-Win – random, class and kmeans. As can be seen from Table 1, random and kmeans-based
Win-Win are competitive to all the competing methods. Class-based Win-Win performs worse than
other methods which we posit is due to the class information only being informative for initialising
the weights connecting to the output layer and not for the weights incoming to the first hidden layer.

Table 1: Final classification error on the MNIST test set.

Method Error

SntDefault 1.63± 0.20 %
LeCun 1.68± 0.24 %
Xavier 1.85± 0.17 %
Kaiming 1.63± 0.23 %
Win-Win [random] 1.67± 0.22%
Win-Win [k-means] 1.58± 0.24 %
Win-Win [class] 2.17± 0.21%

In the Supplementary Material, we also study the evolution of activation patterns for the different
initialisation methods. In particular, we look at the activations of 100 randomly sampled points
from each class immediately after initialisation and during training. For the standard initialisation
approaches, the activation pattern across different neurons and classes is rather sparse, see Figures
1-4. At initialisation only very few neurons from the hidden layer contribute to the calculation of the
logits. As training progresses, more neurons from the hidden layer get activated, but even after the
network has been completely trained, we see that a large number of neurons does not fire for any
class. On the other hand, with class-based Win-Win initialisation, we see that neurons assigned to
class c fire more prominently for that class than for other classes, while the logits correspond to a
uniform prior over the neurons for different classes. As training progresses, we see that this diagonal
structure in the hidden layer is roughly preserved without specific constraints.

CIFAR-10. This dataset consists of 60, 000 images of size 32× 32× 3 pixels with a train/valid/test
split of 40 000/10 000/10 000. As is common practice, we pre-process the images by scaling them to
the range [−1, 1]. For the model, we use a deep convolutional neural network with a fully-connected
linear layer as the output layer; details of the architecture are provided in the Supplementary Material.
We trained the network for 400 epochs. We only initialised the fully-connected layer according
to the different initialisation schemes and the rest initialised with the default initialiser (Ioffe &
Szegedy, 2015). We do this in order to demonstrate that Win-Win is beneficial also in situations
when it can only be applied to features derived from some transformation of the input data (in this
case structured random projections) and not directly to the input data. As can be seen Table 2, the
Win-Win initialisation clearly outperforms all other methods by a significant margin.

7



Under review as a conference paper at ICLR 2019

Table 2: Classification accuracy on the CIFAR10 test set.
Method SntDefault Xavier LeCun Kaiming Win-Win

Test Accuracy 85.83% 86.38% 86.28% 86.08% 87.05 %

Year Prediction MSD dataset. In addition to the two classification problems summarised above, we
assessed the performance of our new initialisation scheme also on a regression task using the Year
Prediction MSD dataset (Bertin-Mahieux et al., 2011). In this task, the goal is to estimate the year
in which a song was released based on a 90-dimensional input vector of audio features. We split
the available data into training, validation and test sets containing 400 000, 63 715 and 51 630 data
points, respectively. In a pre-processing step, we then computed the mean and standard deviation of
features and labels of the training set, and used these quantities to shift and rescale all three datasets
so that the distribution of data points is approximately standard normal.

For comparison, we trained two different, fully-connected architectures with one or two hidden layers
followed by a single-unit output layer for a total of 150 epochs with the objective to minimise the
mean squared error (MSE). As a natural choice for class-based Win-Win initialisation, we set the
number of units in each hidden layer to 89 which corresponds to the number of distinct labels in the
training set. As a measure of performance, we use the root mean squared error (RMSE) achieved on
the test set (Lakshminarayanan et al., 2017). The experimental results are summarised in Table 3. We
can clearly see that Win-Win initialisation outperforms all other schemes in case of a single hidden
layer and is comparable to the best performing scheme (SntDefault) for two hidden layers.

Table 3: Regression RMSE values for the Year Prediction MSD dataset. We used SntDefault
initialisation for the output layer in case of Win-Win initialisation.

Method 1 hidden layer 2 hidden layers

SntDefault 8.9301± 0.0033 8.8798± 0.0072
LeCun 8.9484± 0.0024 8.9414± 0.0086
Xavier 8.9376± 0.0044 8.8948± 0.0064
Kaiming 8.9448± 0.0039 8.9290± 0.0044
Win-Win [random/SntDefault] 8.8902± 0.0022 8.8693± 0.0060
Win-Win [class/SntDefault] 8.8904± 0.0023 8.8867± 0.0057

6 CONCLUSION

In this paper, we have studied the initialisation requirements of infinite-width networks and have
shown that the main challenge in constructing these networks lies in defining the appropriate sampling
distributions of the weights. To address this problem, we have presented a novel method for the
construction of infinite-width networks that, unlike previous approaches, enables the construction of
deep infinite-width networks with arbitrarily many hidden layers. In particular, we have proposed a
principled approach to weight initialisation using the theory of reproducing kernel Hilbert spaces. In
order to appropriately account for the functional form of the hidden layer activations and to facilitate
the construction of arbitrarily many infinite-width layers, we proposed to construct the sampling
distributions of the weights at every hidden layer as Gaussian processes with specific covariance
kernels that take into account the geometry of the underlying space of activations. To achieve this, we
have constructed a hierarchy of kernels that capture the geometry and inductive biases of individual
layers in the neural network. Furthermore, using Monte Carlo approximations, we have examined the
practical implications of this construction for standard, finite-width networks. In particular, we have
derived a novel data- and task-dependent weight initialisation method for this type of network and
showcased its competitive performance on three diverse datasets.

8



Under review as a conference paper at ICLR 2019

REFERENCES

Maruan Al-Shedivat, Andrew Gordon Wilson, Yunus Saatchi, Zhiting Hu, and Eric P Xing. Learning
scalable deep kernels with recurrent structure. The Journal of Machine Learning Research, 18(1):
2850–2886, 2017.

Nachman Aronszajn. Theory of reproducing kernels. Transactions of the American Mathematical
Society, 68(3):337–404, 1950.

Alain Berlinet and Christine Thomas-Agnan. Reproducing kernel Hilbert spaces in probability and
statistics. Springer Science & Business Media, 2011.

Thierry Bertin-Mahieux, Daniel PW Ellis, Brian Whitman, and Paul Lamere. The million song
dataset. 12th International Society for Music Information Retrieval Conference, 2011.

Youngmin Cho and Lawrence K Saul. Kernel methods for deep learning. In Advances in Neural
Information Processing Systems, pp. 342–350, 2009.

Harold SM Coxeter. Introduction to geometry. John Wiley & Sons, 1963.

Andreas Damianou and Neil Lawrence. Deep gaussian processes. In Artificial Intelligence and
Statistics, pp. 207–215, 2013.

Amit Daniely, Roy Frostig, and Yoram Singer. Toward deeper understanding of neural networks:
The power of initialization and a dual view on expressivity. In Advances In Neural Information
Processing Systems, pp. 2253–2261, 2016.

Shiyu Duan, Yunmei Chen, and Jose C. Principe. Learning multiple levels of representation with
kernel machines. arXiv:1802.03774, 2018.

David Duvenaud, Oren Rippel, Ryan Adams, and Zoubin Ghahramani. Avoiding pathologies in very
deep networks. In Artificial Intelligence and Statistics, pp. 202–210, 2014.

Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Manzagol, Pascal Vincent, and
Samy Bengio. Why Does Unsupervised Pre-training Help Deep Learning? The Journal of Machine
Learning Research, 11:625–660, mar 2010. ISSN 1532-4435. URL http://dl.acm.org/
citation.cfm?id=1756006.1756025.

Robert Gens and Pedro Domingos. Compositional kernel machines. Workshop track - ICLR 2017,
2016.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pp. 249–256, 2010.

Tamir Hazan and Tommi Jaakkola. Steps Toward Deep Kernel Methods from Infinite Neural
Networks. arXiv:1508.05133, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015.

Uri Heinemann, Roi Livni, Elad Eban, Gal Elidan, and Amir Globerson. Improper deep kernels. In
Artificial Intelligence and Statistics, pp. 1159–1167, 2016.

Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm for deep belief
nets. Neural computation, 18(7):1527–1554, 2006.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv:1502.03167, 2015.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv:1412.6980,
2014.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. 2009.

9

http://dl.acm.org/citation.cfm?id=1756006.1756025
http://dl.acm.org/citation.cfm?id=1756006.1756025


Under review as a conference paper at ICLR 2019

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. In Advances in neural information processing systems, pp. 1097–1105,
2012.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. 31st Conference on Neural Information Processing
Systems, 2017.

Yann LeCun, Corinna Cortes, and Christopher JC Burges. The MNIST database of handwritten
digits, 1998.

Yann A LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. Efficient backprop. In
Neural networks: Tricks of the trade, pp. 9–48. Springer, 2012.

Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S Schoenholz, Jeffrey Pennington, and Jascha
Sohl-Dickstein. Deep neural networks as gaussian processes. arXiv:1711.00165, 2017.

Roi Livni, Daniel Carmon, and Amir Globerson. Learning infinite layer networks without the kernel
trick. In International Conference on Machine Learning, pp. 2198–2207, 2017.

Julien Mairal, Piotr Koniusz, Zaid Harchaoui, and Cordelia Schmid. Convolutional Kernel Networks.
arXiv:1406.3332, 2014.

Alexander G de G Matthews, Mark Rowland, Jiri Hron, Richard E Turner, and Zoubin Ghahramani.
Gaussian process behaviour in wide deep neural networks. arXiv:1804.11271, 2018.

Grégoire Montavon, Mikio L. Braun, and Klaus-Robert Müller. Kernel Analysis of Deep Networks.
The Journal of Machine Learning Research, 12:2563–2581, 2011.

Matej Moravčík, Martin Schmid, Neil Burch, Viliam Lisỳ, Dustin Morrill, Nolan Bard, Trevor
Davis, Kevin Waugh, Michael Johanson, and Michael Bowling. Deepstack: Expert-level artificial
intelligence in heads-up no-limit poker. Science, 356(6337):508–513, 2017.

Radford M Neal. Priors for infinite networks. In Bayesian Learning for Neural Networks, pp. 29–53.
Springer, 1996.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In Advances in
neural information processing systems, pp. 1177–1184, 2008.

Carl E Rasmussen. Gaussian processes for machine learning. MIT Press, 2006.

Tom Sercu, Christian Puhrsch, Brian Kingsbury, and Yann LeCun. Very deep multilingual convolu-
tional neural networks for lvcsr. arXiv:1509.08967, 2015.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. Nature, 529(7587):484–489, 2016.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv:1409.1556, 2014.

Ingo Steinwart, Philipp Thomann, and Nico Schmid. Learning with hierarchical gaussian kernels.
arXiv:1612.00824, 2016.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9, 2015.

Christopher KI Williams. Computation with infinite neural networks. Advances in neural information
processing, pp. 295–301, 1997.

Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov, and Eric P Xing. Deep kernel learning.
In Artificial Intelligence and Statistics, pp. 370–378, 2016.

10



Under review as a conference paper at ICLR 2019

7 SUPPLEMENTARY MATERIAL

7.1 PROOFS

For completeness, we restate the proposition and lemma and provide the corresponding proofs.

7.1.1 PROPOSITION 1

Proposition 1. Let x, x′ ∈ Rd be inputs to an network with l infinite-width layers, kl be the kernel
corresponding to the l-th layer with kl(·, x) the corresponding canonical feature maps andHkl

the
induced RKHS. We can extend the network with an (l + 1)-th layer of infinite width by sampling the
weights wl connecting the l-th and (l+ 1)-th layers from a Gaussian process with zero mean function
and covariance function

Cl(w,w
′) =

∫
kl(w,wl−1)kl(w

′, wl−1) dνl−1(wl−1) with w,w′ ∈ Φl−1

Then wl ∈ Φl and φl,x(wl) = f(〈wl, φl−1,x〉Φl
) is well defined.

Proof of Proposition.
We prove the claim of this proposition by mathematical induction. We first need to establish a
correspondence between Φ1 and Hk1 and construct an isometric isomorphism (Coxeter, 1963)
between Φ1 and Hk1 . To this end, we invoke Lemma 1 for the first hidden layer. The isometric
isomorphism U1 identifies Φ1 withHk1 and allows us to replace Φ1 with the easier to work withHk1

as the geometry remains unchanged. The transformations involved in the proof are depicted as below.

Φ1 Hk1

φ1,x k1(·, x)

U1

U1

Using this reparametrization, instead of constructing a distribution for the weights over Φ1 in order
to construct a second layer of infinite width, the problem simplifies to constructing a distribution for
the weights overHk1 . In particular, we use the canonical probability distribution overHk1 to define
the sampling distribution for the weights between the first and second infinite-width layer.

Specifically, a probability distribution overHk1
can be canonically constructed as a Gaussian process

with zero mean function and covariance function

C1(w,w′) =

∫
k1(w,w0)k1(w,w0) dν0(w0) with w,w′ ∈ Φ1.

This special covariance structure ensures that a GP with this covariance function is a probability
distribution overHk1 (Aronszajn, 1950).

To construct a second hidden layer of infinite-width, we need to sample infinitely many weights w1

connecting the first and second layers from ν1 = GP (0, C1). This construction ensures that the inner
product between the first layer representation φ1,x and the weights connecting the first and second
layer is well defined. This, in turn, ensures that the second layer representation φ2,x given by

φ2,k1(·,x)(w1) = f
(
〈w1, k1(·, x)〉Hk1

)
is well defined. We note that φ2,x is a function over samples from the GP ν1, i.e. a function of
functions over Rd. Associated with the second layer, we define the corresponding kernel as

k2(φ1,x, φ1,x′) = 〈φ2,x, φ2,x′〉Φ2 (5)

with Φ2 = Span({φ2,x|x ∈ X}) and the induced RKHS Hk2
= Span({k2(·, φ1,x)|x ∈ X}. The

correspondence between these two spaces is given by the isometric isomorphism U2 : Φ2 → Hk2

with U2(φ2,x) = k2(·, φ1,x) using Lemma 1.

11



Under review as a conference paper at ICLR 2019

Assuming that we have constructed an infinite-width network with l hidden layers by iteratively
repeating the above procedure of defining a kernel corresponding to the hidden layer, we can
reparametrise the hidden layer into the induced RKHS and construct the next layer by sampling the
connecting weights from the distribution over the induced RKHS. To this end, we first define the
kernel kl corresponding to layer l as

kl(φl−1,x, φl−1,x′) = 〈φl,x, φl,x′〉Φl
= 〈kl(·, φl−1,x), kl(·, φl−1,x′)〉Hkl

(6)

withHkl
the induced RKHS. Next, we perform the reparametrisation of that layer intoHkl

using an
analogously defined isometric isomorphism Ul. We note that both φl−1,x and wl−1 lie in the same
space, i.e. Φl−1. We construct the distribution for the weights connecting the l-th and (l+ 1)-th layer
as a GP νl with zero mean and covariance function given by

Cl(w,w
′) =

∫
kl(w,wl−1)kl(w

′, wl−1) dνl−1(wl−1) with w,w′ ∈ Φl−1

and sample infinitely many weights from that distribution. Finally, we propagate the data along the
constructed weights to add another hidden layer of infinite-width. At layer l + 1, this yields

φl+1,x(wl) = f(〈wl, kl(·, φl,x)〉Hkl
) with wl ∼ νl(wl) = GP(0, Cl).

The last step completes the addition of layer l + 1. �

7.1.2 LEMMA 1

Lemma 1 (Network Reparametrisation). Let Φl denote the representational space of layer l, i.e.

Φl = Span
(
{φl,x|x ∈ X}),

and kl be the associated kernel at layer l and Hkl
be the corresponding RKHS to kernel kl. The

mapping
Ul : Φl → Hkl

with φl,x 7→ kl
(
·, x
)

is an isometric isomorphism between Φl andHkl
.

Proof of Lemma. Without loss of generality, we restrict ourselves to proving the lemma for the first
hidden layer of infinite-width. For all subsequent layers, the proof proceeds analogously.

We want to prove that
U1 : Φ1 → Hk1 with φ1,x 7→ k1

(
·, x
)

is an isometric isomorphism. In particular, we need to prove that U1 is a bijective map that satisfies

〈φ1,x, φ1,x′〉Φ1
= 〈U1(φ1,x), U1(φ1,x′)〉Hk1

.

Using the reproducing property and the definition of k1 (2), we find

〈U1(φ1,x), U1(φ1,x′)〉Hk1
= 〈k1

(
·, x
)
, k1

(
·, x′
)
〉Hk1

= k1

(
x, x′

)
= 〈φ1,x, φ1,x′〉Φ1

which shows that U1 is an isometric isomorphism between Φ1 andHk1 . Bijectivity can be directly de-
rived from the definition. The construction of U1 can intuitively be understood as a reparametrisation
of the first hidden layer representations φ1,x into the canonical feature maps k1

(
·, x
)
. Furthermore,

the Φl inner product between the first hidden layer representations can now be calculated as the inner
product between the corresponding canonical feature mappings in the RKHS. This result guarantees
that the geometry will be unchanged as the spaces Φl andHkl

are identified by an isometric isomor-
phism.

�

7.2 ACTIVATION PATTERNS

The following heatmaps represent activation patterns of 100 randomly sampled points from each class
at initialisation and at epoch 20 and 400 during training. The left column encodes the activations of
the first hidden layer, while the right column encodes the output layer. To all activations the softmax
function has been applied. The x-axis encodes the class of a datapoint, while th y-axis encodes the

12



Under review as a conference paper at ICLR 2019

neurons. For the first hidden layer where there are more than 10 neurons, we construct consecutive
buckets of neurons of one tenth of the layer width and average over these.

Figure 1: Softmaxed activations of the hidden and output layer for LeCun initialisation at epochs 0,
20 and 400 for a network with 800 hidden units.

Figure 2: Softmaxed activations of the hidden and output layer for Xavier initialisation at epochs 0,
20 and 400 for a network with 800 hidden units.

13



Under review as a conference paper at ICLR 2019

Figure 3: Softmaxed activations of the hidden and output layer for Kaiming initialisation at epochs 0,
20 and 400 for a network with 800 hidden units.

Figure 4: Softmaxed activations of the hidden and output layer for SntDefault initialisation at epochs
0, 20 and 400 for a network with 800 hidden units.

14



Under review as a conference paper at ICLR 2019

Figure 5: Softmaxed activations of the hidden and output layer for Win-Win class initialisation at
epochs 0, 20 and 400 for a network with 800 hidden units.

7.3 CONVOLUTIONAL ARCHITECTURE FOR CIFAR-10

Convolutional architecture for CIFAR10 experiment
conv2D 3× 3× 64, stride=1

batch norm + relu
conv2D 3× 3× 64, stride=1

batch norm + relu
conv2D 3× 3× 128, stride=2

batch norm + relu
conv2D 3× 3× 128, stride=1

batch norm + relu
conv2D 3× 3× 128, stride=1

batch norm + relu
conv2D 3× 3× 256, stride=2

batch norm + relu
conv2D 3× 3× 256, stride=1

batch norm + relu
conv2D 3× 3× 256, stride=1

batch norm + relu
conv2D 3× 3× 512, stride=2

batch norm + relu
conv2D 3× 3× 512, stride=1

batch norm + relu
conv2D 3× 3× 512, stride=1

batch norm + relu
average pooling

linear layer with 512 units
softmax

15


	Introduction
	Related Work
	Deep Infinite-Width Networks
	Difficulty of Constructing Networks with more than Two Layers
	Constructing Deep Infinite-Width Networks

	Initialisation by Projection
	Experimental Results
	Conclusion
	Supplementary Material
	Proofs
	Proposition 1
	Lemma 1

	Activation Patterns
	Convolutional Architecture for CIFAR-10


