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ABSTRACT

Discretizing multi-dimensional data distributions is a fundamental step of modern
indexing methods. State-of-the-art techniques learn parameters of quantizers on
training data for optimal performance, thus adapting quantizers to the data. In this
work, we propose to reverse this paradigm and adapt the data to the quantizer: we
train a neural net which last layer forms a fixed parameter-free quantizer, such as
pre-defined points of a hyper-sphere. As a proxy objective, we design and train a
neural network that favors uniformity in the spherical latent space, while preserving
the neighborhood structure after the mapping. We propose a new regularizer
derived from the Kozachenko–Leonenko differential entropy estimator to enforce
uniformity and combine it with a locality-aware triplet loss. Experiments show that
our end-to-end approach outperforms most learned quantization methods, and is
competitive with the state of the art on widely adopted benchmarks. Furthermore,
we show that training without the quantization step results in almost no difference
in accuracy, but yields a generic catalyzer that can be applied with any subsequent
quantizer. The code is available online1.

1 INTRODUCTION

Recent work (Kraska et al., 2017) proposed to leverage the pattern-matching ability of machine
learning algorithms to improve traditional index structures such as B-trees or Bloom filters, with
encouraging results. In their one-dimensional case, an optimal B-Tree can be constructed if the
cumulative density function (CDF) of the indexed value is known, and thus they approximate this
CDF using a neural network. We emphasize that the CDF itself is a mapping between the indexed
value and a uniform distribution in [0, 1]. In this work, we wish to generalize such an approach to
multi-dimensional spaces. More precisely, as illustrated by Figure 1, we aim at learning a function
that maps real-valued vectors to a uniform distribution over a d-dimensional sphere, such that a fixed
discretizing structure, for example a fixed binary encoding (sign of components) or a regular lattice
quantizer, offers competitive coding performance.

Our approach is evaluated in the context of similarity search, where methods often rely on various
forms of learning machinery (Gong et al., 2013; Wang et al., 2014b); in particular there is a substantial
body of literature on methods producing compact codes (Jégou et al., 2011a). Yet the problem of
jointly optimizing a coding stage and a neural network remains essentially unsolved, partly because
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Figure 1: Our method learns a network that encodes the input space Rd into a code c(x). It is
learned end-to-end, yet the part of the network in charge of the discretization operation is fixed in
advance, thereby avoiding optimization problems. The learnable function f , namely the “catalyzer”,
is optimized to increase the quality of the subsequent coding stage.

1https://github.com/facebookresearch/spreadingvectors
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Figure 2: Illustration of our method, which takes as input a set of samples from an unknown
distribution. We learn a neural network that aims at preserving the neighborhood structure in the input
space while best covering the output space (uniformly). This trade-off is controlled by a parameter
λ. The case λ = 0 keeps the locality of the neighbors but does not cover the output space. On the
opposite, when the loss degenerates to the differential entropic regularizer (λ→∞), the neighbors
are not maintained by the mapping. Intermediate values offer different trade-offs between neighbor
fidelity and uniformity, which is proper input for an efficient lattice quantizer (depicted here by the
hexagonal lattice A2).

it is difficult to optimize through a discretization function. For this reason, most efforts have
been devoted to networks producing binary codes, for which optimization tricks exist, such as soft
binarization or stochastic relaxation, which are used in conjunction with neural networks (Liong
et al., 2015; Jain et al., 2017). However it is difficult to improve over more powerful codes such as
those produced by product quantization (Jégou et al., 2011a), and recent solutions addressing product
quantization require complex optimization procedures (Klein & Wolf, 2017; Ozan et al., 2016).

In order to circumvent this problem, we propose a drastic simplification of learning algorithms
for indexing. We learn a mapping such that the output follows the distribution under which the
subsequent discretization method, either binary or a more general quantizer, performs better. In other
terms, instead of trying to adapt an indexing structure to the data, we adapt the data to the index.

Our technique requires to jointly optimize two antithetical criteria. First, we need to ensure that
neighbors are preserved by the mapping, using a vanilla ranking loss (Usunier et al., 2009; Chechik
et al., 2010; Wang et al., 2014a). Second, the training must favor a uniform output. This suggests a
regularization similar to maximum entropy (Pereyra et al., 2017), except that in our case we consider
a continuous output space. We therefore propose to cast an existing differential entropy estimator
into a regularization term, which plays the same “distribution-matching” role as the Kullback-Leiber
term of variational auto-encoders (Doersch, 2016).

As a side note, many similarity search methods are implicitly designed for the range search problem
(or near neighbor, as opposed to nearest neighbor (Indyk & Motwani, 1998; Andoni & Indyk, 2006)),
that aims at finding all vectors whose distance to the query vector is below a fixed threshold. For
real-world high-dimensional data, range search usually returns either no neighbors or too many. The
discrepancy between near– and nearest– neighbors is significantly reduced by our technique, see
Section 3.3 and Appendix C for details.

Our method is illustrated by Figure 2. We summarize our contributions as follows:
• We introduce an approach for multi-dimensional indexing that maps the input data to an output

space in which indexing is easier. It learns a neural network that plays the role of an adapter for
subsequent similarity search methods.

• For this purpose we introduce a loss derived from the Kozachenko-Leonenko differential entropy
estimator to favor uniformity in the spherical output space.

• Our learned mapping makes it possible to leverage spherical lattice quantizers with competitive
quantization properties and efficient algebraic encoding.

• Our ablation study shows that our network can be trained without the quantization layer and used
as a plug-in for processing features before using standard quantizers. We show quantitatively
that our catalyzer improves performance by a significant margin for quantization-based (OPQ
(Ge et al., 2013)) and binary (LSH (Charikar, 2002)) method.

This paper is organized as follows. Section 2 discusses related works. Section 3 introduces our neural
network model and the optimization scheme. Section 4 details how we combine this strategy with
lattice assignment to produce compact codes. The experimental section 5 evaluates our approach.
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2 RELATED WORK

Generative modeling. Recent models such as Generative Adversarial Networks (GANs) (Goodfel-
low et al., 2014) or Variational Auto-Encoders (VAEs) (Kingma & Welling, 2013) learn a mapping
between an isotropic Gaussian distribution and the empirical distribution of a training set. Our
approach maps an empirical input distribution to a uniform distribution on the spherical output space.
Another distinction is that GANs learn a unidirectional mapping from the latent code to an image
(decoder), whereas VAEs learn a bidirectional mapping (encoder - decoder). In our work, we focus
on learning the encoder, whose goal is to pre-process input vectors for subsequent indexing.

Dimensionality reduction and representation learning. There is a large body of literature on the
topic of dimensionality reduction, see for instance the review by Van Der Maaten et al. (2009). Rele-
vant work includes self-organizing maps (Kohonen et al., 2001), the stochastic neighbor embedding
(Hinton & Roweis, 2003) and the subsequent t-SNE approach (van der Maaten & Hinton, 2008),
which is tailored to low-dimensional spaces for visualisation purposes. Both works are non-linear
dimensionality reduction aiming at preserving the neighborhood in the output space.

Learning to index and quantize. The literature on product compact codes for indexing is most
relevant to our work, see Wang et al. (2014b; 2016) for an overview of the topic. Early popular high-
dimensional approximate neighbor methods, such as Locality Sensitive Hashing (Indyk & Motwani,
1998; Gionis et al., 1999; Charikar, 2002; Andoni & Indyk, 2006), were mostly relying on statistical
guarantees without any learning stage. This lack of data adaptation was subsequently addressed by
several works. The Iterative quantization (ITQ) (Gong et al., 2013) modifies the coordinate system to
improve binarization, while methods inspired by Vector Quantization and compression (Jégou et al.,
2011a; Babenko & Lempitsky, 2014; Zhang et al., 2015; Jain et al., 2016) have gradually emerged
as strong competitors for estimating distances or similarities with compact codes. While most of
these works aim at reproducing target (dis-)similarity, some recent works directly leverage semantic
information in a supervised manner with neural networks (Liong et al., 2015; Jain et al., 2017; Klein
& Wolf, 2017; Sablayrolles et al., 2017).

Lattices, also known as Euclidean networks, are discrete subsets of the Euclidean space that are of
particular interest due to their space covering and sphere packing properties (Conway & Sloane, 2013).
They also have excellent discretization properties under some assumptions about the distribution,
and most interestingly the closest point of a lattice is determined efficiently thanks to algebraic
properties (Ran & Snyders, 1998). This is why lattices have been proposed (Andoni & Indyk, 2006;
Jégou et al., 2008) as hash functions in LSH. However, for real-world data, lattices waste capacity
because they assume that all regions of the space have the same density (Paulevé et al., 2010). In this
paper, we are interested in spherical lattices because of their bounded support.

Entropy regularization appears in many areas of machine learning and indexing. For instance,
Pereyra et al. (2017) argue that penalizing confident output distributions is an effective regularization.
Cuturi (2013) use entropy regularization to speed up computation of optimal transport distances.
Another proposal by Bojanowski & Joulin (2017) in an unsupervised learning context, is to spread the
output by enforcing input images to map to points drawn uniformly on a sphere. Interestingly, most
recent works on binary hashing introduce some form of entropic regularization. Deep hashing (Liong
et al., 2015) employs a regularization term that increases the marginal entropy of each bit. SUBIC (Jain
et al., 2017) extends this idea to one-hot codes.

3 OUR APPROACH: LEARNING THE CATALYZER

Our proposal is inspired by prior work for one-dimensional indexing (Kraska et al., 2017). However
their approach based on unidimensional density estimation can not be directly translated to the multi-
dimensional case. Our strategy is to train a neural network f that maps vectors from a din-dimensional
space to the hypersphere of a dout-dimensional space Sdout

.

3.1 KOLEO: DIFFERENTIAL ENTROPY REGULARIZER

Let us first introduce our regularizer, which we design to spread out points uniformly across Sdout
.

With the knowledge of the density of points p, we could directly maximize the differential entropy
−
∫
p(u) log(p(u))du. Given only samples (f(x1), ..., f(xn)), we instead use an estimator of the
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Figure 3: Histograms of the distance between a query point and its 1st (resp. 100th) nearest neighbors,
in the original space (left) and after our catalyzer (right). In the original space, the two histograms
have a significant overlap, which means that a 100-th nearest neighbor for a query has often a distance
lower that the 1st neighbor for another query. This gap is significantly reduced by our catalyzer.

differential entropy as a proxy. It was shown by Kozachenko and Leononenko (see e.g. (Beirlant
et al., 1997)) that defining ρn,i = minj 6=i ‖f(xi)−f(xj)‖, the differential entropy of the distribution
can be estimated by

Hn =
αn

n

n∑
i=1

log(ρn,i) + βn, (1)

where αn and βn are two constants that depend on the number of samples n and the dimensionality
of the data dout. Ignoring the affine components, we define our entropic regularizer as

LKoLeo = − 1

n

n∑
i=1

log(ρn,i). (2)

This loss also has a satisfactory geometric interpretation: closest points are pushed away, with a
strength that is non-decreasing and concave. This ensures diminishing returns: as points get away
from each other, the marginal impact of increasing the distance becomes smaller.

3.2 RANK PRESERVING LOSS

We enforce the outputs of the neural network to follow the same neighborhood structure as in the
input space by adopting the triplet loss (Chechik et al., 2010; Wang et al., 2014a)

Lrank = max
(
0, ‖f(x)− f(x+)‖2 − ‖f(x)− f(x−)‖2

)
, (3)

where x is a query, x+ a positive match, x− a negative match. The positive matches are obtained
by computing the kpos nearest neighbors of each point x in the training set in the input space. The
negative matches are generated by taking the kneg-th nearest neighbor of f(x) in (f(x1), ..., f(xn)).
In order to speed up the learning, we compute the kneg-th nearest neighbor of every point in the
dataset at the beginning of each epoch and use these throughout the epoch. Note that we do not need
to use a margin, as its effect is essentially superseded by our regularizer. Our overall loss combines
the triplet loss and the entropy regularizer, as

Lmodel = Lrank + λLKoLeo, (4)

where the parameter λ ≥ 0 controls the trade-off between ranking quality and uniformity.

3.3 DISCUSSION

Choice of λ. Figure 2 was produced by our method on a toy dataset adapted to the disk as the output
space. Without the KoLeo regularization term, neighboring points tend to collapse and most of the
output space is not exploited. If we quantize this output with a regular quantizer, many Voronoi cells
are empty and we waste coding capacity. In contrast, if we solely rely on the entropic regularizer, the
neighbors are poorly preserved. Interesting trade-offs are achieved with intermediate values of λ.
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Figure 4: Impact of the regularizer on the output distri-
bution. Each column corresponds to a different amount
of regularization (left: λ = 0, middle: λ = 0.02, right:
λ = 1). Each line corresponds to a different random
projection of the empirical distribution, parametrized by
an angle in [0, 2π]. The marginal distributions for these
two views are much more uniform with our KoLeo regu-
larizer, which is a consequence of the higher uniformity
in the high-dimensional latent space.

Qualitative evaluation of the uniformity. Figure 3 shows the histogram of the distance to the
nearest (resp. 100th nearest) neighbor, before applying the catalyzer (left) and after (right). The
overlap between the two distributions is significantly reduced by the catalyzer. We evaluate this
quantitatively by measuring the probability that the distance between a point and its nearest neighbor
is larger than the distance between another point and its 100th nearest neighbor. In a very imbalanced
space, this value is 50%, whereas in a uniform space it should approach 0%. In the input space, this
probability is 20.8%, and it goes down to 5.0% in the output space thanks to our catalyzer.

Visualization of the output distribution. While Figure 2 illustrates our method with the 2D disk as
an output space, we are interested in mapping input samples to a higher dimensional hyper-sphere.
Figure 4 proposes a visualization of the high-dimensional density from a different viewpoint, with
the Deep1M dataset mapped in 8 dimensions. We sample 2 planes randomly in Rdout and project the
dataset points (f(x1), ..., f(xn)) on them. For each column, the 2 figures are the angular histograms
of the points with a polar parametrization of this plane. The area inside the curve is constant and
proportional to the number of samples n. A uniform angular distribution produces a centered disk,
and less uniform distributions look like unbalanced potatoes.

The densities we represent are marginalized, so if the distribution looks non-uniform then it is
non-uniform in dout-dimensional space, but the reverse is not true. Yet one can compare the results
obtained for different regularization coefficients, which shows that our regularizer has a strong
uniformizing effect on the mapping, ultimately resembling that of a uniform distribution for λ = 1.

4 CATALYZER WITH DISCRETIZATION

In this section we describe how our method interplays with discretization, at training and at search
time. We consider two parameter-free coding methods: binarization and defining a fixed set of
points on the unit sphere provided by a lattice spherical quantizer. A key advantage of a fixed coding
structure like ours is that compressed-domain distance computations between codes do not depend on
external meta-data. This is in contrast with quantization-based methods like product quantization,
which require centroids to be available at search time.

4.1 BINARIZATION

Binary features are obtained by applying the sign function to the coordinates. We relax this
constraint at train time by replacing the sign with the identity function, and the binarization is used
only to cross-validate the regularization parameter on the validation set.

4.2 LATTICES

As discussed by Paulevé et al. (2010), lattices impose a rigid partitioning of the feature space, which
is suboptimal for arbitrary distributions, see Figure 2. In contrast, lattices offer excellent quantization
properties for a uniform distribution (Conway & Sloane, 2013). Thanks to our regularizer, we are
closer to uniformity in the output space, making lattices an attractive choice.

We consider the simplest spherical lattice, integer points of norm r, a set we denote Sr
d . Given a

vector x ∈ Rdin , we compute its catalyzed features f(x), and find the nearest lattice point on Sr
d

using the assignment operation, which formally minimizes q(f(x)) = minc∈Sr
d
‖r × f(x) − c‖22.
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This assignment can be computed very efficiently (see Appendix B for details). Given a query
y and its representation f(y), we approximate the similarity between y and x using the code:
‖f(y) − f(x)‖2 ≈ ‖f(y) − q(f(x))/r‖2, This is an asymmetric comparison, because the query
vectors are not quantized (Jégou et al., 2011a).

When used as a layer, it takes a vector in Rd and returns the quantized version of this vector in the
forward pass, and passes the gradient to the previous layer in the backward pass. This heuristic is
referred to as the straight-through estimator in the literature, and is often used for discretization steps,
see e.g., van den Oord et al. (2017).

5 EXPERIMENTS

This section presents our experimental results. We focus on the class of similarity search methods
that represents the database vectors with a compressed representation (Charikar, 2002; Jégou et al.,
2011a; Gong et al., 2013; Ge et al., 2013), which enables to store very large dataset in memory (Lv
et al., 2004; Torralba et al., 2008).

5.1 EXPERIMENTAL SETUP

All experiments have two phases. In the first phase (encoding), all vectors of a database are encoded
into a representation (e.g. 32, 64 bits). Encoding consists in a vector transformation followed by
a quantization or binarization stage. The second phase is the search phase: a set of query vectors
is transformed, then the codes are scanned exhaustively and compared with the transformed query
vector, and the top-k nearest vectors are returned.

Datasets and metrics. We use two benchmark datasets Deep1M and BigAnn1M. Deep1M consists
of the first million vectors of the Deep1B dataset (Babenko & Lempitsky, 2016). The vectors
were obtained by running a convnet on an image collection, reduced to 96 dimensions by principal
component analysis and subsequently `2-normalized. We also experiment with the BigAnn1M (Jégou
et al., 2011b), which consists of SIFT descriptors (Lowe, 2004). Both datasets contain 1M vectors
that serve as a reference set, 10k query vectors and a very large training set of which we use 500k
elements for training, and 1M vectors that we use a base to cross-validate the hyperparameters dout
and λ. We also experiment on the full Deep1B and BigAnn datasets, that contain 1 billion elements.
We evaluate methods with the recall at k performance measure, which is the proportion of results that
contain the ground truth nearest neighbor when returning the top k candidates (for k ∈ {1, 10, 100}).
Training. For all methods, we train our neural network on the training set, cross-validate dout and λ
on the validation set, and use a different set of vectors for evaluation. In contrast, some works carry
out training on the database vectors themselves (Muja & Lowe, 2014; Malkov & Yashunin, 2016;
Gong et al., 2013), in which case the index is tailored to a particular fixed set of database vectors.

5.2 MODEL ARCHITECTURE AND OPTIMIZATION

Our model is a 3 - layer perceptron, with ReLU non-linearity and hidden dimension 1024. The final
linear layer projects the dataset to the desired output dimension dout, along with `2-normalization. We
use batch normalization (Ioffe & Szegedy, 2015) and train our model for 300 epochs with Stochastic
Gradient Descent, with an initial learning rate of 0.1 and a momentum of 0.9. The learning rate is
decayed to 0.05 (resp. 0.01) at the 80-th epoch (resp. 120-th).

5.3 SIMILARITY SEARCH WITH LATTICE VECTOR QUANTIZERS

We evaluate the lattice-based indexing proposed in Section 4, and compare it to more conventional
methods based on quantization, namely PQ (Jégou et al., 2011a) and Optimized Product Quantization
(OPQ) (Ge et al., 2013). We use the Faiss (Johnson et al., 2017) implementation of PQ and OPQ and
assign one byte per sub-vector (each individual quantizer has 256 centroids). For our lattice, we vary
the value of r to increase the quantizer size, hence generating curves for each value of dout. Figure 5
provides a comparison of these methods. On both datasets, the lattice quantizer strongly outperforms
PQ and OPQ for most code sizes.
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Figure 5: Comparison of the performance of the product lattice vs OPQ on Deep1M (left) and
BigAnn1M (right). Our method maps the input vectors to a dout-dimensional space, that is then
quantized with a lattice of radius r. We obtain the curves by varying the radius r.

Impact of the hyperparameters. Varying the rank parameters kpos and kneg did not impact signif-
icantly the performance, so we fixed them respectively to kpos = 10 and kneg = 50. For a fixed
number of bits, varying the dimension dout is a trade-off between a good representation and an easily
compressible one. When dout is small, we can use a large r for a very small quantization error,
but there are not enough dimensions to represent the degrees of freedom of the underlying data. A
larger dout allows for better representations but suffers from a coarser approximation. Figure 5 shows
that for low bitrates, small dimensions perform better because the approximation quality dominates,
whereas for higher bitrates, larger dimensions are better because the representation quality dominates.
Similarly, the regularizer λ needs to be set to a large value for small dimensions and low bitrates, but
higher dimensions and higher bitrates require lower values of λ (cf. Appendix A for details).

Large-scale experiments. We experiment with the full Deep1B (resp. BigAnn) dataset, that contains
1 billion vectors, with 64 bits codes. At that scale, the recall at 10 drops to 26.1% for OPQ and to
37.8% for the lattice quantizer (resp. 21.3% and 36.5%). As expected, the recall performance is
lower than for the 1 million vectors database, but the precision advantage of the lattice quantizer is
maintained at large scale.

Comparison to the state of the art. Additive quantization variants (Babenko & Lempitsky, 2014;
Martinez et al., 2018; Ozan et al., 2016) are currently state-of-the art encodings for vectors in terms of
accuracy. However, their encoding stage involves an iterative optimization process that is prohibitively
slow for practical use cases. For example, Competitive quantization’s reported complexity is 15×

Deep1M BigAnn1M Encoding time

Recall1@ 1 10 100 1 10 100 (1M vectors)

OPQ (Ge et al., 2013) 15.6 50.3 88.1 20.8 63.6 95.3 5.5 s
Catalyst + OPQ 21.2 62.8 93.4 24.9 71.1 97.0 11.4 s
LSQ (Martinez et al., 2018) 20.3 61.4 94.3 28.4 76.2 98.7 122.1 s

PCA + Lattice 12.2 42.5 81.6 19.0 60.6 93.5 5.3 s
Catalyst + Lattice 22.6 66.9 95.2 28.4 75.8 98.3 8.5 s
Catalyst + Lattice + end2end 22.8 67.5 95.5 28.7 76.2 98.2 8.5 s

Table 1: Comparison of different flavors of the catalyst: with a lattice quantizer (with or without
end-to-end training), and with OPQ. All results use 64 bits per code. All timings are for BigAnn1M
are on a 2.2 GHz machine with 40 threads. The encoding times associated with the catalyzer include
the forward pass through our neural network. Note, our lattice-based coding scheme is the only one
not requiring external meta-data once the compact code is produced.
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Deep1M BigAnn1M

bits per vector 16 32 64 128 16 32 64 128

LSH 0.8 4.9 14.6 32.2 0.3 2.6 9.5 24.4
ITQ 1.0 7.3 21.0 n/a 1.5 8.5 22.8 41.8
Catalyzer + sign 2.7 11.4 25.5 46.8 2.6 11.1 28.3 52.2

Table 2: Performance (1-recall at 10, %) with LSH, on Deep1M and BigAnn1M, as a function of the
number of bits per index vector. All results are averaged over 5 runs with different random seeds.
Our catalyzer gets a large improvement in binary codes over LSH and ITQ.

slower than OPQ. Table 1 compares our results with LSQ (Martinez et al., 2018), a recent variant
that is close to the state of the art and for which open-source code is available. We show that our
Catalyst + Lattice variant method is 14× times faster for an accuracy that is competitive or well
above that of LSQ. To our knowledge, this is the first time that such competitive results are reported
for a method that can be used in practice at a large scale. Our search time is a bit slower: computing
1M asymmetric distances takes 7.5 ms with the Catalyzer+Lattice instead of 4.9 ms with PQ. This is
due to our decoding procedure, which does not rely on precomputed tables as used in PQ.

5.4 A UNIVERSAL CATALYZER?

Ablation study. As a sanity check, we first replace our catalyzer by a PCA that reduces the
dimensionality to the same size as our catalyzer, followed by `2-normalization. This significantly
decreases the performance of the lattice quantizer, as can be seen in Table 1.

We also evaluate the impact of training end-to-end, compared to training without the quantization
layer. Table 1 shows that end-to-end training has a limited impact on the overall performance for 64
bits, sometimes even decreasing performance. This may be partly due to the approximation induced
by the straight-through estimation, which handicaps end-to-end training. Another reason is that the
KoLeo regularizer narrows the performance gap induced by discretization. In other terms, our method
trained without the discretization layer trains a general-purpose network (hence the name catalyzer),
on which we can apply any binarization or quantization method. Table 1 shows that OPQ is improved
when applied on top of catalyzed features, for example increasing the recall@10 from 63.6 to 71.1.

Binary hashing. We also show the interest of our method as a catalyzer for binary hashing, compared
to two popular methods (Charikar, 2002; Gong et al., 2013):

LSH maps Euclidean vectors to binary codes that are then compared with Hamming distance. A
set of m fixed projection directions are drawn randomly and isotropically in din, and each vector is
encoded into m bits by taking the sign of the dot product with each direction.

ITQ is another popular hashing method, that improves LSH by using an orthogonal projection that is
optimized to maximize correlation between the original vectors and the bits.

Table 2 compares our catalyzer to LSH and ITQ. Note that a simple sign function is applied to the
catalyzed features. The catalyzer improves the performance by 2-9 percentage points in all settings,
from 32 to 128 bits.

6 CONCLUDING REMARKS

We train a neural network that maps input features to a uniform output distribution on a unit hyper-
sphere, making high-dimensional indexing more accurate, in particular with fast and rigid lattice
quantizers or a trivial binary encoding. To the best of our knowledge, this is the first work on
multi-dimensional data that demonstrates that it is competitive to adapt the data distribution to
a rigid quantizer, instead of adapting the quantizer to the input data. This has several benefits:
rigid quantizers are fast at encoding time; and vectors can be decoded without carrying around
codebooks or auxiliary tables. We open-sourced the code corresponding to the experiments at
https://github.com/facebookresearch/spreadingvectors.
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APPENDIX A VALUES OF THE REGULARIZATION PARAMETER

The optimal value of the regularizer λ decreases with the dimension, as shown by Table 3.

dout λ

16 0.05
24 0.02
32 0.01
40 0.005

Table 3: Optimal values of the regularization parameter λ for Deep1M, using a fixed radius of r = 10.

APPENDIX B FAST DISCRETIZATION WITH A LATTICE ON THE SPHERE.

We consider the set of integer points z = (z1, ..., zd) ∈ Zd such that
∑d

i=1 z
2
i = r2, that we denote

Sr
d . This set is the intersection of the hyper-cubic lattice Zd with the hyper-sphere of radius r. For

example to extract a 64−bit representation in 24D we use r2 = 79. Quantizing a vector y ∈ Rd

amounts to solving the following optimization problem:

argmin
z∈Sr

d

‖y − z‖2 = argmax
z∈Sr

d

yz>. (5)

Atoms. We define a “normalization” function N of vectors: it consists in taking the absolute value
of their coordinates, and sorting them by decreasing coordinates. We call “atoms” the set of vectors
that can be obtained by normalizing the vectors of Sr

d .

For example, the atoms of S
√
10

8 are:{
3 1 0 0 0 0 0 0
2 2 1 1 0 0 0 0
2 1 1 1 1 1 1 0

(6)

All vectors of Sr
d can be represented as permutations of an atom, with sign flips. Figure 6 reports the

number of vectors of Sk
d and the corresponding number of atoms.

Encoding and enumerating. To solve Equation 5, we apply the following steps:

1. normalize y with N , store the permutation σ that sorts coordinates of |y|
2. exhaustively search the atom z′ that maximizes N(y)>z′

3. apply the inverse permutation σ−1 that sorts y to z′ to obtain z′′

4. the nearest vector (z1, .., zd) is zi = sign(yi)z
′′
i ∀i = 1..d.

To encode a vector of z ∈ Sr
d we proceed from N(z):

1. each atom is assigned a range of codes, so z is encoded relative to the start of N(z)’s range

2. encode the permutation using combinatorial number systems Knuth (2005). There are d!
permutations, but the permutation of equal components is irrelevant, which divides the
number combinations. For example atom (2, 2, 1, 1, 0, 0, 0, 0) is the normalized form of
8!/(2!2!4!) = 240 vectors of S

√
10

8 .

3. encode the sign of non-zero elements. In the example above, there are 4 sign bits.

Decoding proceeds in the reverse order.

Encoding 1M vectors takes about 0.5 s on our reference machine, which is faster than PQ (1.9 s). In
other terms, he quantization time is negligible w.r.t. the preprocessing by the catalyzer.
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Figure 6: Number of atoms of the hyper-sphere of Sr24. (linear scale), and the corresponding number
of points on the hyper-sphere (log scale).

APPENDIX C EPSILON-SEARCH

Figure 7 shows how our method achieves a better agreement between range search and k-nearest
neighbors search on Deep1M. In this experiment, we consider different thresholds ε for the range
search and perform a set of queries for each ε. Then we measure how many vectors we must return,
on average, to achieve a certain recall in terms of the nearest neighbors in the original space. Without
our mapping, there is a large variance on the number of results for a given ε. In contrast, after the
mapping it is possible to use a unique threshold to find most neighbors.
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���� Figure 7: Agreement between nearest neigh-
bor and range search: average number of re-
sults per query for given values of ε (indicated
on the curve), and corresponding recall values.
For example: to obtain 80% recall, the search
in the original space requires to set ε = 0.54,
which returns 700 results per query on aver-
age, while in the transformed space ε = 0.38
returns just 200 results. Observe the much
better agreement in the latent spherical space.
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