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ABSTRACT

Collecting a large dataset with high quality annotations is expensive and time-
consuming. Recently, Shrivastava et al. (2017) propose Simulated+Unsupervised
(S+U) learning: It first learns a mapping from synthetic data to real data, trans-
lates a large amount of labeled synthetic data to the ones that resemble real data,
and then trains a learning model on the translated data. Bousmalis et al. (2017b)
propose a similar framework that jointly trains a translation mapping and a learn-
ing model. While these algorithms are shown to achieve the state-of-the-art per-
formances on various tasks, it may have a room for improvement, as they do
not fully leverage flexibility of data simulation process and consider only the for-
ward (synthetic to real) mapping. Inspired by this limitation, we propose a new
S+U learning algorithm, which fully leverage the flexibility of data simulators
and bidirectional mappings between synthetic and real data. We show that our
approach achieves the improved performance on the gaze estimation task, outper-
forming (Shrivastava et al., 2017).

1 INTRODUCTION

Collecting a large annotated dataset is usually a very expensive and time-consuming task, and some-
times it is even infeasible. Recently, researchers have proposed the use of synthetic datasets provided
by simulators to address this challenge. Not only synthetic datasets can be easily annotated but one
can also generate an arbitrarily large amount of synthetic data. In addition to that, recent advances
in computer technologies enabled synthesis of high-quality data.

Specifically, a variety of computer vision applications have benefitted from advanced computer
graphics technologies. For instance, Wood et al. (2016) manipulate a 3D game graphics engine,
called Unity, to synthesize photo-realistic images of human eye regions. Then, using a million
of synthetic images with labels, they achieve the state-of-the-art performance on the cross-domain
appearance-based gaze estimation task (Sugano et al., 2014). Another important application that
is heavily benefitting from synthetic data is autonomous driving. A few recent works show that
an infinite amount of realistic driving data can be collected from high-quality video games such
as GTA V (Grand Theft Auto V) (Richter et al., 2016; Johnson-Roberson et al., 2017; Lee et al.,
2017). Specifically, Richter et al. (2016) show that a semantic segmentation model trained only with
synthetic data can even outperform the model trained with real data if the amount of synthetic data
is large enough. In (Lee et al., 2017), the authors collect a synthetic dataset of vehicle accidents,
which is hardly collectable from the real world, train an accident prediction model with the syn-
thetic data, and then apply the trained model to a real accident dataset. As a result, they show that
the model trained with large synthetic dataset can outperform the model trained within small real
dataset. Further, researchers also propose the use of simulated environments for building algorithms
for autonomous drones (Microsoft, 2017), autonomous truck driving (Im, 2017), etc.
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Figure 1: A block diagram of our S+U learning algorithm. The upper part of the diagram illus-
trates our training algorithm. First, we generate labeled synthetic data using a simulator, and then
train a predictor on this data. Once the predictor is trained, we predict the labels of the unlabeled
real data, which is available in the training phase. We call these predicted labels ‘pseudo-labels’.
Once the pseudo-labels are obtained, we compare the distribution of synthetic labels with that of
pseudo-labels, and accordingly update the simulator parameters to reduce the gap. This procedure
is repeated a few times until one achieves a small enough gap between the distributions. Once the
synthetic dataset is finalized, we obtain a real-to-synthetic mapping between synthetic and real data.
For testing, we first map test data to the synthetic domain, and then apply the predictor on it.

While the use of synthetic datasets is increasingly popular, it is not clear how one should system-
atically address a machine learning problem when simulated data is given with unlabeled real data.
Recently, Shrivastava et al. (2017) propose Simulated+Unsupervised (S+U) learning, which is one
the first methodologies that guides how one can use synthetic data to improve the performance of
learning algorithms. They first learn a translation mapping from synthetic data to real data using
a modified GAN (Generative Adversarial Networks) architecture (Goodfellow et al., 2014), map
the synthetic data to the real-data domain, and then train a learning model with this mapped data.
Using this methodology, they achieve the state-of-the-art performances for the cross-domain gaze
estimation on the MPIIGaze dataset (Sugano et al., 2014). A contemporary paper by Bousmalis
et al. (2017b) proposes a similar approach. They also show how one can accommodate both the
task-specific loss and the domain-specific loss to further improve the quality of image transfer.

Even though the works of (Shrivastava et al., 2017; Bousmalis et al., 2017b) present interesting
solutions to deal with simulated data, their solutions have some room for improvements for the
following reasons. First, their approaches assume a fixed synthetic data, and does not leverage
the flexibility of data simulation process. Since the data simulator can be freely manipulated, one
may hope for further performance improvements. In addition to that, their approaches make a use
of the forward (synthetic to real) mapping only, while recent works have shown the efficacy of
bidirectional mappings between two domains (Zhu et al., 2017a; Kim et al., 2017). Inspired by these
limitations, we propose a new S+U learning framework, which fully leverages both the flexibility of
data simulators and bidirectional mappings between synthetic data and real data.

In this work, we propose a new S+U learning framework, consisting of three stages, visualized in
Fig. 1. The first stage is where we fully leverage the flexibility of data simulators. We first predict the
labels of the unlabeled real data, which is available in the training phase. We then update simulation
parameters so that the synthetic label distribution matches the distribution of the predicted labels,
and this procedure is repeated a few times. The second stage learns a bidirectional mapping between
the synthetic data and the real data, using the cyclic image-to-image translation frameworks (Zhu
et al., 2017a; Kim et al., 2017). To better preserve labels while translating images, we make a few
modifications to the existing framework. In the last stage, we translate test (real) data to the synthetic
domain, and then apply to them an inference model trained on the synthetic images. Note that our
approach does not require additional training of the inference model. Our approach is superior if
the backward mapping from real data to synthetic data is highly accurate and the inference model is
well trained on the synthetic data. We show that our approach achieves the improved performance
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on the gaze estimation task, outperforming the state of the art of (Shrivastava et al., 2017). Our
contributions can be summarized as follows.

Contributions
1. A new end-to-end S+U learning algorithm is proposed (Sec. 2).

2. We develop a simple method of exploiting the flexibility of simulators (Sec. 2.2).

3. We propose a novel prediction method that first translates real images to synthetic images
and then applies a prediction algorithm trained on synthetic images (Sec. 2.4).

4. Our method outperforms the state of the art on the gaze estimation task (Sec. 3).

2 OUR APPROACH

2.1 NOTATIONS

For notational simplicity, we denote the set of simulated images by a random variable X ∈ X and
the real images by another random variable Y ∈ Y . For the bidirectional mappings, we denote
by GX→Y the forward generator that maps simulated images to the real domain and by GY→X the
backward generator that maps real images to the simulation domain. The content of an image, which
we call label of the image, is denoted by Z. For instance, Z denotes the digit contained in an image
for the digit classification problem, and it denotes the eye gaze vector of an eye image for the eye
gaze estimation problem. The label (or feature) extractor F (·) is a function that extracts the label (or
feature) of a given image. Given an unlabeled real image of Y , we call W = F (Y ) the pseudo-label
of the image.

2.2 ADAPTIVE DATA GENERATION BASED ON PSEUDO-LABELS

Let us first consider how one would build a simulator that can generate an arbitrary amount of
synthetic data. For ease of explanation, imagine a simulator that generates synthetic images for
the digit classification problem. A typical process of building a simulator is as follows. First, one
chooses PZ , the (synthetic) label distribution, arbitrarily or possibly aided with the prior knowledge
on the target dataset. Then, the simulator specifies PX|Z , the image distribution conditioned on
labels. For instance, given Z = 0, a simulator might first draw a perfect ellipsoid and then add some
pixel noise to reflect the diversity of images.

As illustrated above, a simulator is usually fully specified with the label distribution and the data
(image) distribution conditioned on each label. A naı̈ve choice of taking arbitrary distributions may
result in a distributional gap between the synthetic dataset and real dataset, i.e., sample selection
bias (Huang et al., 2007). Fortunately, for most existing simulators, it is easy to adjust the label
distribution or PZ . For instance, UnityEyes is a high-resolution 3D simulator that can render realistic
human eye regions (Wood et al., 2016). The label is a 4-dimensional vector, and the marginal
distribution of each element can be specifeid by the user. See Sec. 3 for more details. On the other
hand, the way an image is rendered given a label or PX|Z is not modifiable.

Motivated by this observation, we propose a simple iterative algorithm that can be used to find a
good set of distribution parameters for the data generator. We note that the approach of (Shrivastava
et al., 2017) does not adjust the data generation process, and stick with an arbitrary label distribu-
tion, say PZ(0) . Our algorithm is based on the novel use of pseudo-labels (Lee, 2013). Pseudo-label
is originally proposed to tackle semi-supervised learning problems in which a large number of un-
labeled data is provided with a small number of labeled data: Once a coarse predictor is trained
with the small labeled dataset, one can assign pseudo-labels to the large unlabeled dataset using the
prediction results of the coarse predictor.

We now describe our algorithm, visualized in Fig. 2. It first starts with an arbitrary label distribution
PZ(0) (and hence an arbitrary data distribution PX(0)), and then trains a predictor F (0) using the
generated data. Once the predictor F (0) is trained, it computes the empirical distribution of the
pseudo-labels of the unlabeled real dataset, i.e., W (0) = F (0)(Y ). Finally, it finds the new label
distributionPZ(1) for the simulator by minimizing the distance to the pseudo-label distributionPW (0)
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Figure 2: An overview of our adaptive data generation process. For the ease of explanation, consider
the eye gaze estimation problem where the goal is to estimate a 2-dimensional gaze vector Z =
(θ, φ) given an image of the eye region. In the beginning, the simulator arbitrarily initializes the
label distribution, say PZ . It then draws random labels according to the label distribution, and
generates corresponding images X according to some rendering rules. Using this synthetic dataset,
it trains a predictor F , and then predicts the gaze vectors of each real image (initially unlabeled),
i.e., annotates each image Y with a pseudo-label W = (Fθ(Y ), Fφ(Y )). The last stage estimates
the pseudo-label distribution PW , which is used as the initial distribution of the subsequent iteration.

in some metric, and then accordingly updates the simulator parameters.1 This procedure can be
repeated a few times.

2.3 LABEL-PRESERVING IMAGE-TO-IMAGE TRANSLATION

CycleGAN is an unsupervised image-to-image translation method based on GANs (Zhu et al.,
2017a). In this section, we first observe that image content, i.e., labels of the image, may alter when
translated via the original CycleGAN framework. In order to mitigate this problem, we propose a
slight modification to the CycleGAN framework by employing the concept of “content represen-
tation” (Gatys et al., 2016). The key idea is simple: Given a label (content) extractor F (·), we
simply regularize the difference between the labels of the original image and its translated image.
Note that this idea is also called perceptual loss or feature matching (Gatys et al., 2017; Bousmalis
et al., 2017a), and a similar idea has been applied in other works on unsupervised image-to-image
translations (Shrivastava et al., 2017; Taigman et al., 2016).

To illustrate the limitation of the CycleGAN framework, we first formally describe the CycleGAN
framework. The goal is to find GX→Y , the forward generator from X to Y , and GY→X , the back-
ward generator from Y toX . These generators, or translation mappings, take images from the source
domain and convert them to the target domain without altering the image content. Using the GAN
framework of Goodfellow et al. (2014), we train these generators jointly with discriminators: DY
(DX ) outputs the probability that the given image is from Y (X ). Using these notations, the standard
GAN loss for the forward mapping can be written as

LGAN, forward = EY [logDY(Y )] + EX [log(1−DY(GX→Y(X))]. (1)

The backward GAN loss is similarly defined with (X,X ) and (Y,Y) being interchanged. Further,
the CycleGAN framework has an additional loss term, called the cycle-consistency loss:

Lcyc = EX [‖GY→X (GX→Y(X))−X‖] + EY [‖GX→Y(GY→X (Y ))− Y ‖], (2)

where ‖·‖ can be an arbitrary norm, e.g., `1 norm. This loss essentially imposes a restric-
tion on the forward/backward mappings so that GY→X (GX→Y(X)) ' X , and similarly,
GX→Y(GY→X (Y )) ' Y . Combining these terms and omitting the function arguments for sim-
plicity, the overall loss function is as follows:

L = LGAN, forward + LGAN, backward + λcycLcyc, (3)

1In our experiments with the UnityEye simulator, we simply employ the moment matching algorithm since
the simulator only allows us to specify the first and second moments of the label distribution. However, in
general, one may choose an arbitrary optimization algorithm for updating the label distribution.
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Figure 3: A toy example where perfect cycle-consistency is achieved but labels are permuted.

where λcyc is the regularization parameter. Then, one can apply the standard training methodology
of GANs to find G’s that minimize the loss function and D’s that maximize it.

While the original CycleGAN is observed to well preserve labels under certain scenarios, its theoret-
ical understanding is still missing. Further, the authors of the CycleGAN paper also acknowledged
the potential limitation of the original approach: they made a remark that their method sometimes
permutes the labels for tree and building when applied to the cityscapes photos, and provided failure
cases (Zhu et al., 2017b). Indeed, we also observe that it frequently fails to maintain labels: See
Sec. B for some examples.

Indeed, it can be explained via a simple example why the cycle-consistency loss alone can fail to
preserve labels. See Fig. 3 for a toy example where the goal is to learn an image-to-image translation
rule between digit images in Arial font (X ) and those in Script font (Y), where the label is the number
present in the image. Consider the GX→Y and GY→X shown as arrows in the figure. Note that the
labels, or the digits contained in images, are not preserved but permuted. However, observe that
these mappings result in perfect cycle-consistency, i.e., Lcyc = 0. Further, if the discriminators
DX and DY are perfect, LGAN, forward = LGAN, backward = 0. This implies that the zero loss can be
achieved even when labels are not preserved at all. In general, with n samples in each domain, there
are at least n!− 1 pairs of mappings that attain zero loss without preserving labels.

As mentioned in the beginning of the section, we employ the feature-consistency loss in order to
better preserve labels. Specifically, we use the bidirectional feature-consistency loss, defined as

Lfeature = EX [‖F (GX→Y(X))− F (X)‖] + EY [‖F (GY→X (Y ))− F (Y )‖], (4)

where ‖·‖ is an appropriate norm of the feature space. We then use the following total loss function:

L = LGAN, forward + LGAN, backward + λcycLcyc + λfeatureLfeature. (5)

Going back to the toy example, assume that we are given with a perfect digit classifier F . With
the feature consistency loss term added to the objective function, the mappings shown in Fig. 3 will
incur non-zero loss. In order to achieve zero loss, one must find the correct bidirectional mapping
between the two domain that preserve labels. Hence, generators will attempt at maintaining the
labels between image pairs to minimize the loss.

2.4 PREDICTION WITH BACKWARD TRANSLATION

After the translation mappings are obtained, there are two possible approaches that one can take.
The first approach, which is the first simulated+unsupervised learning approach to image-to-image
translations, is proposed by Shrivastava et al. (2017); Bousmalis et al. (2017b). It first translates all
the labeled synthetic data using the forward mappingGX→Y , and then train a model on this real-like
(labeled) dataset. Both works show that this approach significantly outperforms the previous state
of the arts for diverse tasks. See Fig. 4a for visual illustration.

The second approach, which we propose in this work, relies on the backward translation, i.e.,
GY→X . As described in the previous section, leveraging simulators, one can generate an arbitrarily
large amount of synthetic data, and then train an efficient model on it. Hence, assuming perfect
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Figure 4: Comparison of our methodology with the original S+U learning approach (Shrivastava
et al., 2017; Bousmalis et al., 2017b).

backward translation, one can first translate real data to synthetic data, and then apply the model
(trained on synthetic data) to the mapped data. See Fig. 4b for visual illustration.

Indeed, in most practically relevant cases, the amount of available synthetic data is much larger than
that of real data, and hence one can easily train a highly accurate predictor at least in the synthetic
domain (but not necessarily in the real domain). Another advantage of this approach is that one
does not have to train a new model when a new real dataset arrives, while the first approach needs
to retrain the prediction model for each real dataset. We remark that this approach requires an
additional computational cost for backward translation during prediction. However, the additional
computational cost is usually not prohibitive compared to the complexity of the prediction model.

3 EXPERIMENTS

3.1 CROSS-DOMAIN APPEARANCE-BASED GAZE ESTIMATION

In this section, we apply our methodology to tackle the cross-domain appearance-based gaze esti-
mation problem, and evaluate its performance on the the MPIIGaze dataset (Zhang et al., 2015). The
goal of this problem is to estimate the gaze vector given an image of a human eye region using the
data collected from a different domain.

To generate a synthetic dataset of labeled human eye images, we employ UnityEyes, a high-
resolution 3D simulator that renders realistic human eye regions (Wood et al., 2016). For each image,
UnityEyes draws the pitch and yaw of the eyeball and camera, uniformly at random, and then renders
the corresponding eye region image. More specifically, the random distributions are specified by 8
input parameters (θp, θy, φp, φy, δθp, δθy, δφp, δφy): The first two are the expected values of eyeball
pitch and yaw, and the following two are the expected values of camera pitch and yaw; And the other
four are the half-widths of the distributions. As a default setting, UnityEyes uses the following distri-
bution parameters: (θp, θy, φp, φy, δθp, δθy, δφp, δφy) = (0◦, 0◦, 0◦, 0◦, 30◦, 30◦, 20◦, 40◦). More
details on how UnityEyes render eye regions can be found in (Wood et al., 2016).

We first evaluate the performance of our data generation algorithm based on pseudo-labels. Us-
ing the 380k images generated with UnityEyes with the default parameters, we train a simple gaze
estimation network, with which we annotate the real dataset with pseudo-labels. We then obtain
the horizontal and vertical statistics of the gaze vectors, and accordingly adjust the UnityEyes pa-
rameters to make the means and variances coincide. Since there are many free parameters, we
reduce the number of free parameters by considering the following specific classes of distributions:
θp = φp, θy = φy, δθp = δφp, δθy = δφy .2 We run the data adaption algorithm for 4 iterations,

2We note that the choice of parameter reduction does not much affect the overall performance: We test a
different reduction method and report the corresponding results in the appendix.
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and report in Table 1 the sequences of means and standard deviations, relative to the ground truth.
Further, we also run our algorithm starting from each label distribution and report the validation/test
errors in the table. We observe that after the second iteration of the algorithm, the validation/test
errors are minimized. Note that in this experiment, the validation error increases after the second
iteration in our experiment, implying that the first stage of our algorithm may not converge well in
practice. Hence, one needs to use a small validation set to choose which iteration to proceed with.

In the rest of this section, we report the results based on the output of the second iteration. Us-
ing the newly generated synthetic dataset together with the unlabeled real dataset, we then train a
cyclic image-to-image translation mapping with the new loss function (5). For the choice of the
feature, we set the identity mapping as the feature extractor since two domains share the high-level
structure and differ only in detailed expressions. We use the `1 norm for the feature-consistency
term. For the choice of regularization parameters, we test the performance of our algorithm with
λcyc ∈ {0, 1, 5, 10, 50} and λfeature ∈ {0, 0.1, 0.5, 1.0}. The test results are summarized in Table 3
in Sec. C.1. As a result, we observe that λcyc = 10 and λfeature = 0.5 achieved the best performance.

Shown in Fig. 5 are some examples of the translation results. Here, we compare the CycleGAN
trained only with the cycle-consistency loss and that trained with both the cycle-consistency loss and
the feature-consistency loss. The first column shows the input real images, the next two columns
are the translated images using the output of the former approach, and the last two columns are
the outputs of the latter approach. It is clear that the the learned mappings satisfy near-perfect
cycle-consistency by comparing Y ’s with GX→Y(GY→X (Y ))’s. However, the gaze vector is not
preserved when real images are translated to synthetic images. On the other hand, when both con-
sistencies are enforced, the gaze vector does not alter, maintaining the label information, showing
the necessity of the feature-consistency loss term.

Summarized in Table 2 are the experimental results along with the state of the arts reported in
the literature. We first run the first two stages of our algorithm using the optimal regularization
parameters. To see the gain of the adaptive data generation and the bidirectional mapping, we first
apply the forward mapping to the simulated data to obtain refined synthetic (RS) images. Then, we
train a new predictor on these RS images, and then apply this predictor to the test images. Note
that this can be viewed as a combination of the first two stages of our algorithm and the original
S+U learning approach. Using this approach, we obtain the test error of 7.71, outperforming the
state-of-the-art performance of Shrivastava et al. (2017). Note that this performance improvement
is due to our adaptive data generation algorithm and the use of bidirectional mapping. Further, our
algorithm is trained only with 380k images while the results of Shrivastava et al. (2017) is trained
with 1200k synthetic images, demonstrating the sample-efficiency of our algorithm. Further, instead
of refining synthetic images and training a new predictor on that, we apply the backward mapping
to the real data and apply the predictor trained on the synthetic data. As a result, we achieve the test
error of 7.60, showing that our backward mapping can further improve the prediction performance.

3.2 IMPLEMENTATION DETAILS

For our experiments, we slightly modify the CycleGAN framework of Zhu et al. (2017a). The
generator network, G, is modified to take input image of 36×60, and the rest of the G is identical to
that of the original CycleGAN architecture with 6 blocks. The discriminator network, D is identical

Table 1: Experimental results of the adaptive data generation algorithm. Here, ` denotes the number
of iterations. The first four rows are sequences of means and standard deviations of (Θ(`),Φ(`)),
compared with the true label distribution (Θ?,Φ?). The last row is for the validation/test errors.

` = 0 ` = 1 ` = 2 ` = 3 ` = 4

|E[Θ(`)]− E[Θ̂?]| 8.54 3.00 1.04 0.96 0.36
|σ(Θ(`))− σ(Θ̂?)| 14.87 4.18 0.47 1.30 4.63
|E[Φ(`)]− E[Φ̂?]| 0.31 0.02 0.00 0.01 0.01
|σ(Φ(`))− σ(Φ̂?)| 20.00 2.30 1.65 3.58 7.64

Val./Test error 22.88/22.6 9.09/8.80 7.42/7.60 8.07/8.04 9.10/9.21
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(a) (Input images)
Y

(b) (Cycle only)
GY→X (Y )

(c) (Cycle only)
GX→Y(GY→X (Y ))

(d) (Cycle&feature)
GY→X (Y )

(e) (Cycle&feature)
GX→Y(GY→X (Y ))

Figure 5: Some examples of the translation results (real→ synthetic→ real). The first column is the
original real image, say Y . The second and third columns are GY→X (Y ) and GX→Y(GY→X (Y )),
where G’s are trained with the cyclic consistency term. The last two columns are GY→X (Y ) and
GX→Y(GY→X (Y )), where G’s are trained with both the cyclic consistency term and the feature
consistency term. Both approaches achieve nearly perfect cycle-consistency; However, only the
latter approach maintains the structure of the images when translated to the other domain.

Table 2: Comparison of the state of the arts on the MPIIGaze dataset. The error is the mean angle
error in degrees. The parameter α denotes the learning rate used for training the predictor. In
the second and third columns, ‘R’ denotes ‘Real’, ‘S’ denotes ’Synthetic’, ‘RS’ denotes ‘Refined
Synthetic’, and ‘RR’ denotes ‘Refined Real’. Our approaches with hyperparameters (` = 2, λcyc =
10, λfeature = 0.5) achieve the state-of-the-art performances.

Method Trained on Tested with Error
Support Vector Regression (SVR) (Schneider et al., 2014) R R 16.5

Adaptive Linear Regression (ALR) (Lu et al., 2014) R R 16.4
kNN w/ UT Multiview (Zhang et al., 2015) R R 16.2
Random Forest (RF) (Sugano et al., 2014) R R 15.4

CNN w/ UT Multiview (Zhang et al., 2015) R R 13.9
CNN w/ UnityEyes (Shrivastava et al., 2017) S R 11.2

kNN w/ UnityEyes (Wood et al., 2016) S R 9.9
SimGAN (Shrivastava et al., 2017) RS R 7.8

Ours (Adaptive data generation + Bidirectional + Forward) RS R 7.71
Ours (Adaptive data generation + Bidirectional + Backward) S RR 7.60

to that of the original CycleGAN framework. For detailed information, we refer the readers to (Zhu
et al., 2017a). The CycleGAN was trained with batch size of 64 and learning of 2× 10−4.

The eye gaze prediction network is designed based on the architecture proposed in (Shrivastava
et al., 2017). The input is a 36 × 60 gray-scale image that is passed through 5 convolutional layers
followed by 3 fully connected layers, the last one encoding the 3-dimensional (normalized) gaze
vector: (1) Conv3x3, 32 feature maps, (2) Conv3x3, 32 feature maps, (3) Conv3x3, 64 feature maps,
(4) MaxPool3x3, stride = 2, (5) Conv3x3, 80 feature maps, (6) Conv3x3, 192 feature maps, (7)
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MaxPool2x2, stride = 2, (8) FC9600, (9) FC1000, (10) FC3, (11) `2 normalization (12) `2 loss.
The predictor network is trained with batches of size 512, until the validation error converges.

4 CONCLUSION

In this work, we propose a new S+U learning algorithm, which fully exploits the flexibility of simu-
lators and the recent advances in learning bidirectional mappings, and show that it outperforms the
state-of-the-art performance on the gaze estimation task.

We conclude the paper by enumerating a few open problems. In our experiments, we arbitrarily
choose the feature for the consistency term. We, however, observe that the choice of feature mapping
significantly affects the performance of the algorithm. Thus, one needs to study how the optimal
feature mapping can be designed for different tasks.

In this work, we have separated learning of cross-domain translation mappings from learning of
a prediction algorithm. One interesting open question is whether one can jointly train these two
components and potentially outperform the current separation-based approach.

Another interesting topic to study is the regularization techniques for the adaptive data generation
method. For instance, if the real data provided in the training set is not representative enough, our
approach, which tries to match the synthetic label distribution with the real one, may not be able to
generalize well on unseen data. One may address this limitation by incorporating prior knowledge
about the label distributions or manually tune the simulation parameters. A thorough study is needed
to understand how one could obtain diverse synthetic images via such methods in a systematic way.

Further, our adaptive data generation method assumes that the predictor trained on simulated data
works quite well on real data. In other words, if the predictor trained solely on simulated data
provide completely wrong pseudo-labels, matching the synthetic label distribution with the pseudo-
label distribution may not be helpful at all. For instance, when we pseudo-label the images in the
Street View House Numbers (SVHN) dataset using a digit classifier that is trained on the MNIST
dataset, the resultant pseudo-label distribution is observed to be useless to refine the synthetic label
distribution (Netzer et al., 2011; LeCun et al., 1998). It is an interesting open question whether or
not one can devise a similar adaptive data generation method for such cases.

Building a differentiable data generator is also an interesting topic (Graves et al., 2014; Gaunt et al.,
2017; Feser et al., 2016). It is well known that neural networks with external memory resources is
a differentiable Turing Machine or differentiable Von Neumann architecture (Graves et al., 2014).
Further, researchers have proposed the use of differentiable programming language with neural net-
works Gaunt et al. (2017); Feser et al. (2016). Indeed, the adaptive data generation algorithm pro-
posed in this work can be viewed as an extremely limited way of adjusting the way synthetic data
is generated. If the data generator can be written in a differentiable language, one could possibly
jointly optimize the synthetic data generator together with the other components such as translation
networks and prediction networks, potentially achieving an improved performance.

REFERENCES

Konstantinos Bousmalis, Alex Irpan, Paul Wohlhart, Yunfei Bai, Matthew Kelcey, Mrinal Kalakr-
ishnan, Laura Downs, Julian Ibarz, Peter Pastor, Kurt Konolige, Sergey Levine, and Vincent Van-
houcke. Using simulation and domain adaptation to improve efficiency of deep robotic grasping.
CoRR, abs/1709.07857, 2017a.

Konstantinos Bousmalis, Nathan Silberman, David Dohan, Dumitru Erhan, and Dilip Krishnan.
Unsupervised pixel-level domain adaptation with generative adversarial networks. In IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), July 2017b.

John K. Feser, Marc Brockschmidt, Alexander L. Gaunt, and Daniel Tarlow. Neural functional
programming. CoRR, abs/1611.01988, 2016.

Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. Image style transfer using convolutional
neural networks. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June
2016.

9



Published as a conference paper at ICLR 2018

Leon A. Gatys, Alexander S. Ecker, Matthias Bethge, Aaron Hertzmann, and Eli Shechtman. Con-
trolling perceptual factors in neural style transfer. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), July 2017.

Alexander L. Gaunt, Marc Brockschmidt, Nate Kushman, and Daniel Tarlow. Differentiable pro-
grams with neural libraries. In International Conference on Machine Learning (ICML), August
2017.

Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driving? The
KITTI vision benchmark suite. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2012.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in Neural Infor-
mation Processing Systems (NIPS), December 2014.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. CoRR, abs/1410.5401,
2014.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016.

Jiayuan Huang, Arthur Gretton, Karsten M Borgwardt, Bernhard Schölkopf, and Alex J Smola. Cor-
recting sample selection bias by unlabeled data. In Advances in Neural Information Processing
Systems (NIPS), December 2007.

Gyuri Im. Europilot: A toolkit for controlling Euro Truck Simulator 2 with Python to develop
self-driving algorithms. https://github.com/marshq/europilot, 2017. Accessed:
2017-10-27.

M. Johnson-Roberson, C. Barto, R. Mehta, S. N. Sridhar, K. Rosaen, and R. Vasudevan. Driving
in the matrix: Can virtual worlds replace human-generated annotations for real world tasks? In
IEEE International Conference on Robotics and Automation (ICRA), May 2017.

Taeksoo Kim, Moonsu Cha, Hyunsoo Kim, Jung Kwon Lee, and Jiwon Kim. Learning to discover
cross-domain relations with generative adversarial networks. In International Conference on Ma-
chine Learning (ICML), August 2017.
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A ADDITIONAL EXPERIMENTAL RESULTS ON EYE GAZE ESTIMATION

In this section, we provide additional qualitative results on the eye gaze estimation task. See Fig. 6.

(a) (Input images)
X

(b) (Cycle only)
GX→Y(X)

(c) (Cycle only)
GY→X (GX→Y(X))

(d) (Cycle&feature)
GX→Y(X)

(e) (Cycle&feature)
GY→X (GX→Y(X))

Figure 6: Some examples of the translation results (synthetic → real → synthetic). The first col-
umn is the original synthetic image, say X . The second and third columns are GX→Y(X) and
GY→X (GX→Y(X)), where G’s are trained with the cyclic consistency term. The last two columns
are GX→Y(X) and GY→X (GX→Y(X)), where G’s are trained with both the cyclic consistency
term and the feature consistency term.
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B ADDITIONAL EXPERIMENTAL RESULTS ON GTA DATA

We learn a bidirectional mapping between the driving images collected from the video game GTA
V and the KITTI driving dataset (Geiger et al., 2012). Here, we use the last fully connected layer of
resnet18 as the feature mapping (He et al., 2016). Shown in Fig. 7 and Fig. 8 are some qualitative
mapping results, proving the efficacy of the feature-consistency loss.

(a) (Input images)
Y

(b) (Cycle only)
GY→X (Y )

(c) (Cycle only)
GX→Y(GY→X (Y ))

(d) (Cycle&feature)
GY→X (Y )

(e) (Cycle&feature)
GX→Y(GY→X (Y ))

Figure 7: Some examples of the translation results (real→ synthetic→ real). The first column is the
original real image, say Y . The second and third columns are GY→X (Y ) and GX→Y(GY→X (Y )),
where G’s are trained with the cyclic consistency term. The last two columns are GY→X (Y ) and
GX→Y(GY→X (Y )), where G’s are trained with both the cyclic consistency term and the feature
consistency term. Both approaches achieve nearly perfect cycle-consistency; However, only the
latter approach maintains the structure of the images when translated to the other domain.
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(a) (Input images)
X

(b) (Cycle only)
GX→Y(X)

(c) (Cycle only)
GY→X (GX→Y(X))

(d) (Cycle&feature)
GX→Y(X)

(e) (Cycle&feature)
GY→X (GX→Y(X))

Figure 8: Some examples of the translation results (synthetic → real → synthetic). The first col-
umn is the original synthetic image, say X . The second and third columns are GX→Y(X) and
GY→X (GX→Y(X)), where G’s are trained with the cyclic consistency term. The last two columns
are GX→Y(X) and GY→X (GX→Y(X)), where G’s are trained with both the cyclic consistency
term and the feature consistency term.

C ADDITIONAL EXPERIMENTS

C.1 OPTIMAL CHOICE OF REGULARIZATION PARAMETERS

When training the bidirectional mappings, one needs to choose the values of λcyc and λfeature. In this
section, we report the test errors measured with different choices of these regularization parameters
in Table 3. As a result, we observe that the choice (λcyc = 10, λfeature = 0.5) obtains the best
performance.

Table 3: Test results with different pairs of regularization parameters λcyc and λfeature.

λcyc\λfeature 0 0.1 0.5 1.0
0 9.26 9.27 8.73 8.05
1 9.16 8.46 7.85 7.97
5 8.36 7.63 7.70 7.71
10 7.70 8.01 7.60 7.65
50 8.64 8.89 7.78 7.77
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C.2 PARAMETER REDUCTION

Since the number of observed variables is larger than the number of simulation parameters, we
reduced the number of free parameters by using following reduction: θp = φp, θy = φy, δθp =
δφp, δθy = δφy . Here, we conduct an additional experiment with a different reduction method:
2θp = φp, 2θy = φy, 2δθp = δφp, 2δθy = δφy . We adapt the data distribution with this new
reduction method for 4 times. As a result, we obtain the same test error performance with this
different reduction method, implying that the reduction method does not much affect the overall
performance.

Table 4: Experimental results of the adaptive data generation algorithm with a different reduction
method. Here, ` denotes the number of iterations.

` = 0 ` = 1 ` = 2 ` = 3 ` = 4

|E[Θ(`]− E[Θ̂?]| 8.54 2.97 1.94 0.14 0.90
|σ(Θ(`)− σ(Θ̂?)| 14.87 4.25 0.43 2.68 4.63
|E[Φ(`]− E[Φ̂?]| 0.31 0.80 0.65 0.59 0.69
|σ(Φ(`)− σ(Φ̂?)| 20.00 2.25 1.93 5.55 7.30

Test. Error 7.60
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