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Abstract

The imaging workup in acute stroke can be simplified by reconstructing the non-
contrast CT (NCCT) from CT perfusion (CTP) images, resulting in reduced workup
time and radiation dose. This work presents a stacked bidirectional convolutional
LSTM (C-LSTM) network to predict 3D volumes from 4D spatiotemporal data.
Several parameterizations of the C-LSTM network were trained on a set of 17
CTP-NCCT pairs to learn to reconstruct NCCT from CTP and were subsequently
quantitatively evaluated on a separate cohort of 16 cases. The results show that
C-LSTM network clearly outperforms basic reconstruction methods and provides
a promising general deep learning approach for handling high-dimensional spa-
tiotemporal medical data.

1 Introduction

CT is the preferred modality in a stroke imaging workup since fast diagnosis is critical for patient
outcome. A stroke workup consists of a non-contrast CT (NCCT) scan to identify hemorrhages, is
followed by a CT Angiography (CTA) to assess the cerebral vasculature, and is often followed by a
CTP to differentiate core (irreversibly damaged brain tissue) and penumbra (salvageable tissue) [1].
The CTA is a 3D acquisition and the CTP is a 4D acquisition both after injection of contrast agent. A
simplification of this stroke workup can be achieved by only acquiring a CTP and subsequently derive
the NCCT and CTA from the CTP thereby reducing radiation dose, contrast usage and workup time.
In principle this is feasible because the CTP contains more information than the CTA and NCCT. In
previous work the feasibility of deriving high-quality CTA from CTP was shown [2].

In this work we present a novel convolutional LSTM (C-LSTM) neural network which is designed
for 3D reconstruction from 4D spatiotemporal data. To validate the model it was applied to a patient
dataset to reconstruct the NCCT from the CTP and compared to a baseline. The contributions of this
work are twofold: We show the potential of C-LSTM for 3D reconstruction from 4D spatiotemporal
data, and present the first application for NCCT from CTP reconstruction, which has the potential to
simplify current stroke workup.

1.1 Related Work

C-LSTM is a type of recurrent neural network which combines the long short-term memory (LSTM)
network [3] – the standard for processing sequential data – with convolution neural networks [4] –
the standard for processing spatial data — by replacing the internal matrix multiplications of the
weights with the input and hidden states with convolutional operations. This is different from methods
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stacking normal LSTM networks on top of conventional convolutional layers, but these are often
found under the same name in the literature. Hence, a single C-LSTM network is geared towards
encoding both spatial and temporal features, including motion features, while preserving long-term
recurrent dependencies.

The C-LSTM model has been first introduced in [5] to predict the weather from video sequences. The
model has appeared in a variety of video analysis applications since then. Some works use C-LSTM
to estimate human pose or gestures from video [6], [7]. For full sequence to sequence prediction
from videos, some have integrated C-LSTM within auto encoders for abnormality detection [8] and
next frame prediction [9]. Recurrent convolutional networks have been applied to generate super
resolution video from low resolution video [10]. Despite the many interesting applications of the
C-LSTM, it has not yet been applied to medical image reconstruction, nor has it been applied to CTP
data. Furthermore, most C-LSTM applications have been limited to 3D spatiotemporal video data
and were not designed to deal with 4D dynamic volumetric data.

Several CNNs for medical image reconstruction exist in the literature reporting overall small improved
performance over traditional reconstruction approaches (see [11] for a review). The CNN methods
typically employ a regression approach, i.e. optimizing the l2 loss between target and reconstruction.
Nie et al. [12] reconstruct CT from MRI images using four 3D convolutional layers. Bahrami et
al. [13] uses a CNN network for 7T from 3T MRI reconstruction with four 3D convolutional layers.
Others use CNNs to perform low-dose reconstruction from CT [14], [15] on 2D CT images. However,
the majority of the proposed regression approaches only cover 2D or 3D images and are not designed
to account for the temporal information of the CTP.

2 Methods

2.1 C-LSTM

The convolutional LSTM model (C-LSTM) is an adaptation of the normal LSTM model and can be
described by the following equations.

it = σ(xt ∗x Wxi + ht−1 ∗h Whi + bi)

ft = σ(xt ∗x Wxf + ht−1 ∗h Whf + bf )

ot = σ(xt ∗x Wxo + ht−1 ∗h Who + bo)

gt = φ(xt ∗x Wxc + ht−1 ∗h Whc + bc)

ct = ft � ct−1 + it � gt
ht = ot � ω(ct)

(1)

where, xt and ht−1 are the inputs at time point t, with xt the input sequence data at time point t and
ht−1 the previous hidden state. ht is the output at time point t and also the hidden input state for the
next time point t + 1. it, ft, ot, gt are respectively the input gate, the forget gate, the output gate,
and the cell state, which encode how much the input at the current time point and the hidden state
from previous time point contribute to the current cell state ct, through the weight matrices Wx, Wh,
and biases b. Usually, σ and φ are respectively the sigmoid and hyperbolic tangent functions. � is
the element wise product and ∗x and ∗h are the convolution operators for the input and the recurrent
input respectively. ω was set to the hyperbolic tangent function.

Note that the convolutional LSTM is essentially a generalization of the conventional LSTM and it
can be obtained by setting a convolutional kernel of 13 for ∗x and ∗h or by entirely replacing the
convolutions with a matrix multiplication.

2.1.1 C-LSTM Layer

Since the C-LSTM falls within the class of recurrent neural networks it can have any of the following
input output sequence mappings: one-to-one, one-to-many, many-to-one, many-to-many. However,
in this work we only consider two variants which encapsulate the previous equations 1 in a single
layer. This results in a function F : S → S which takes in a sequence S of length l and outputs an
equally lengthy sequence (h1, h2, . . . , hl−1, hl) or alternatively only the last state in the sequence hl.
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Figure 1: Parameterizable K, f, ∗x, ∗h, L, g- stacked C-LSTM network. In green K bidirectional
C-LSTM layers with f filters, ∗x the size of the input kernel, and ∗h the size of the recurrent kernel.
In yellow L 3D convolution layers with g filters, 33 kernel and ReLU activation function. In gray
a single 3D convolution with one filter, 13 kernel and identity activation function. On the left the
input sequence is a 6D Tensor, which is reduced to a 5D tensor with f filters after the last C-LSTM
layer. Subsequently is turned into a 5D tensor with g filters after the L convolution layers and the
final output is a single filter 5D tensor.

2.1.2 Bidirectional C-LSTM

In a bidirectional approach to sequences, the signal is processed both from 0 to N and also from
N to 0 by another similar recurrent network. Finally, the results are combined to generally yield
better results. Since the entire sequence length is known beforehand in our case, we utilize the
bidirectional approach and use summation the sequences at the end, i.e.: given sequence output
1 (h11, h

1
2, . . . , h

1
l−1, h

1
l ) and reversed but same sized sequence output 2 (h2l , h

2
l−1, . . . , h

2
2, h

2
1), the

output of the combined bidirectional LSTM becomes: (h11 +h2l , h
1
2 +h2l−1, . . . , h

1
l−1 +h22, h

1
l +h21).

2.1.3 Stacked C-LSTM

The previously described components were combined in a reconstruction network consisting
of a parameterizable stack of C-LSTM layers and convolutions. A schematic overview of the
K, f, ∗x, ∗h, L, g- stacked C-LSTM network is shown in Figure 1.

The network takes a 3D spatiotemporal input sequence as a 6D tensor with as dimensions: batch size,
time points, number of filters, and the spatial dimensions (z, y, x). The sequence is fed through a
stack of K bidirectional C-LSTM layers, each with f filters, ∗x input convolution kernel size, and
∗h hidden convolution kernel size. All K C-LSTM layers pass on the entire length of the sequence
except for the last layer in the stack, which only passes on the last prediction, reducing the input to a
5D tensor with a filter size of f .

Next, the signal is fed into an optional stack of L 3D convolutions with each g filters, 33 convolutional
kernel, and a ReLU activation function. Finally, a last single 3D convolution with 1 filter, a 13

convolutional kernel and an identity activation function is used to produce the output reconstruction
as a 5D tensor.

2.2 Model Training

The training of the model employs a regression training scheme where the mean squared error loss
between the NCCT and reconstructed NCCT was minimized using the RMSProp optimizer. The
RMSProp optimizer was chosen since initial experiments yielded more stable training performance
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than the SGD optimizer. The optimizer settings were kept at the default values. Each model was
trained for 500 iterations, for which each iteration consists of 100 randomly sampled CTP sub-
volumes from within the cranial cavity mask over all training set cases. Training was performed on
an NVIDIA Titan X GPU with 12 GB of RAM using Theano [16] as backend.

The initial hidden state of each C-LSTM layer was set to all zeros. The weights
Wxi,Wxf ,Wxo,Wxc where all initialized using uniform Xavier initialization [17]. The recurrent
kernels Whi,Whf ,Who,Whc were all initialized using random othogonal matrices. All bias terms
were set to 0, except for the forget bias, which was set to 1 as recommended by [18]. All normal
convolutional layers were initialized using uniform Xavier initialization.

2.3 Implementation Details

The stacked 3D C-LSTM models have been implemented in Keras [19]. The C-LSTM operations
at each time point have been optimized by exploiting that it, ft, ot and gt from equation 1 require
similar computations. Hence, the convolution operations ∗h, ∗x can be computed efficiently by
concatenating the weight matrices for Wx and Wh, i.e.: xt ∗x {Wxi,Wxf ,Wxo,Wxc} and ht−1 ∗h
{Whi,Whf ,Who,Whc}. In this way the components for it, ft, ot, gt can be computed by just two
convolutions instead of eight.

3 Data

This retrospective study included 39 patients (age 66± 13 years, 64% male) with suspicion of stroke
admitted to our hospital in 2015 and 2016 and who have received both a NCCT and a CTP scan. Six
cases had major pathology like bleeds and large infarcts. The data was split into a training set of 17
cases, validation set of 6 cases, and a test set of 16 cases.

CTPs were acquired on a 320-row CT scanner (Toshiba Aquilion ONE, Japan) consisting of 19
volumetric scans with different exposures per time point. Patients received 80 mL of contrast agent
(Iomeron) injected in the cephalic vein at the start of the first acquisition. Image reconstruction was
done using a FC41 smooth convolution kernel, resulting in 512× 512× 320 voxels with a voxel size
of 0.47 × 0.47 × 0.5 mm. NCCTs were acquired on the same scanner reconstructed with a FC26
kernel yielding 512× 512× 302 voxels with a voxel size of 0.43× 0.43× 0.5 mm.

3.1 Preprocessing

All CTP time points t > 0 were rigidly registered to the first CTP time point (t = 0), to correct
for potential head movement during acquisition. The registration was performed using the method
and parameter settings as described by [20]. The NCCT was rigidly registered to the same space of
the first time point of the CTP with Elastix [21] using similar settings. A cranial cavity mask was
created using the method of [22] to segment all intracranial soft tissue. The final cranial cavity mask
was obtained by discarding all voxels with an intensity below air density (−1000 HU) followed by
a binary erosion with a 3D ball structuring element with a radius of three voxels. Finally, before
neural network training and prediction the input was linearly mapped from [−50, 200] to [0, 1] and
the mapping was reversed after training and prediction.

4 Evaluation

4.1 Quantitative evaluation

All methods were compared using the following regression error measures: mean absolute error
(MAE), mean squared error (MSE), explained variance score (EV), and r2 score. However, the
diagnostic relevant information of a NCCT are only found within the cranial cavity. Hence, only
the voxels within the cranial cavity mask (described in section 3.1) were used for computing these
quantitative metrics.
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tissue class volume % CTP t=0 CTP t=0-2 CTP t=all NCCT
vessel 3.8% 73.65 HU 74.84 HU 110.14 HU 54.11 HU
non-vessel 96.2% 49.04 HU 49.13 HU 53.10 HU 35.15 HU
combined 100.0% 49.98 HU 50.11 HU 55.15 HU 35.89 HU

Figure 2: Intensity histograms of Hounsfield unit (HU) within the [−100, 300] domain averaged
over the entire dataset of 39 patients. The dataset is examined for different time point partitions of
the CTP (t=0, t=0-2, and t=all) and the NCCT for vessel and non-vessel tissues within the cranial
cavity. The table shows the average HU for the CTP partitions and NCCT images.

4.2 Baseline Reconstruction Models

A lower bound baseline was established using three naive reconstruction methods from the CTP:
taking the first time point (t=0), taking the mean of the first 3 time points (t=0-2), and taking the
average over all time points (t=all). Taking the first time point is an obvious approach for the
reconstruction, since it is the CTP time point with the highest exposure and hence has is the time
point with the best signal to noise ratio. Also earlier in the time sequence the contrast agent is less
expressed, which is closer to the signal intensity of the target NCCT.

An analysis of the cranial cavity intensities histograms over all patients within the domain of
[−100, 300] HU on the CTP and NCCT shows a basic intensity bias between the two imaging types.
The intensity histograms can be found in Figure 2 and are divided in vessel and non-vessel tissue
type counts. The voxels belonging to the vessel class were determined by assigning all voxels with
values > 110 of the temporal variance of the CTP.

This bias must be accounted for when computing the quantitative evaluation metrics, to avoid
underestimating the reconstruction quality of these models. The bias was estimated as the difference
in average non-vessel tissue intensity of the NCCT and respective CTP class, which were −13.9,
−14.0, and −18.0 HU for respectively t=0, t=0-3 and t=all. The learned models in this work do not
suffer from this bias, since these methods learn to estimate this bias from the data.

5 Experiments

Four differently parameterized stacked C-LSTM architectures were trained for 500 iterations. The
different parameterizations of the stacked C-LSTM architecture are shown in Table 1.

6 Results

Table 1 and Figure 3 show the results on the test set of the four experiments with the parameterized
stacked C-LSTM models after completing training. The trained stacked C-LSTM models (exp. 1-4)
significantly outperformed the three baseline methods (t=0, t=0-2, t=all) with p < 0.01 (paired
samples t-test) on all performance metrics. Between the four different parameterizations experiment
2 outperformed all the other methods on all the metrics, followed by experiment 4, then experiment
1, and finally experiment 3. Paired samples t-tests showed significant differences p < 0.01 on all
reconstruction performance metrics between all parameterizations, except for experiment 1 and 3,
where the MSE and r2 score had a p > 0.05.
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Table 1: Experiments with stacked C-LSTM parameter settings, spatial input size and batch size used
for training, and average test set performance after 500 iteration on mean absolute error (MAE), mean
squared error (MSE), explained variance (EV), and r2 score. The baseline reconstruction models
(t=0, t=0-2. t=all) have been added for reference.

exp. input batch K ∗x ∗h f L g MAE MSE EV r2
1 403 2 1 33 13 64 0 - 7.17 96.36 0.530 0.470
2 403 2 1 33 33 64 0 - 6.17 71.96 0.625 0.606
3 303 5 2 33 13 40 1 50 7.48 101.32 0.547 0.444
4 303 5 3 33 13 40 1 50 6.53 81.60 0.581 0.552

t=0 - - - - - - - - 10.28 194.03 -0.013 -0.076
t=0-2 - - - - - - - - 9.77 177.40 0.078 0.014
t=all - - - - - - - - 10.64 288.68 -0.577 -0.626

Figure 4 shows some qualitative slices from the test set of the temporally averaged input CTP volumes,
target NCCT volumes, reconstructed NCCT volumes by the stacked C-LSTM model from experiment
2, and the difference volume between target and reconstruction.
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Figure 3: Final results on the test set (16 cases) for all methods: experiment 1-4 (exp. 1-4) and the 3
baseline methods (t=0, t=0-2, t=all). Metrics from left to right: mean absolute error (MAE), mean
squared error (MSE), explained variance (EV), and r2 score (r2).

7 Discussion

In this work we have presented a stacked C-LSTM architecture for 3D reconstruction from 4D
spatiotemporal data. Furthermore, we have shown that using four different parameterizations of
this model we were able to reconstruct the NCCT from the 4D spatiotemporal CTP data with better
performance on MAE, MSE, explained variance score, and r2 score than three baseline methods
(Figure 3).

Figure 4 gives a good impression of the expressiveness of the C-LSTM model to encode both the
spatial and the temporal information. In general the vessels were completely suppressed in the final
model predictions, but the calcification traces (bright small spots on the NCCT and reconstruction
seen in the top row image), were not. When contrasting the temporal average of the CTP with the
reconstruction it can be seen that the model was able to overcome the general intensity bias from the
CTP with respect to the NCCT target. The model also creates better contrast of the cerebrospinal
fluid at the giri and sulci with the brain tissue. Furthermore, the reconstruction contains much less
noise and produces a smoother result, which might be relevant for finding diagnostic markers.

Figure 3 shows the expected results between the baseline methods, where t=0-2 performed best
followed by t=0 and t=all performed the worst. The earlier time points (t=0, t=0-2) show less
expression of the contrast agent – because the contrast agent is injected approximately around the first
time point t=0 and it takes some time to circulate – and generally have a better signal to noise ratio,
but a single time point (t=0) contains more noise than averaging over multiple time points (t=0-2) at
the start of the CTP sequence.
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Figure 4: Qualitative results on three different cases from the test set showing slices of the intracranial
tissue. From top to bottom: an axial, coronal, and sagittal slice. From left to right: Temporal average
of CTP, target NCCT, reconstructed NCCT by best trained model from experiment 2, and difference
image between target and reconstruction. The scales at the bottom are in Hounsfield units (HU).

Table 1 shows that the best performing parameterizations (experiment 2) of the stacked C-LSTM
model was just a single C-LSTM layer with a recurrent kernel size of 33 (∗h = 33), which improved
performance over experiment 1, which had the same settings except a smaller recurrent kernel size of
13. This finding is somewhat surprising, since the CTP data do not necessarily show much motion
between time points, which justifies the smaller recurrent kernel size better. However, upon closer
examination, the bigger kernel size might compensate for minor intra registration errors of the CTP
time points with t > 0 to the first time point t=0. Furthermore, comparing experiment 3 (K = 2)
and experiment 4 (K = 3) suggests that stacking more C-LSTM layers helps to achieve better
performance. The parameterization and extension of the stacked C-LSTM architecture is still open
for much experimentation, but this remains for future work.

The C-LSTM is better suited for spatiotemporal data than CNN and LSTM methods separately.
While it is possible to parse sequential data using CNNs [23], it is not a natural fit and requires some
workarounds. Also, parsing spatiotemporal data with only LSTM using flattened spatial data would
make it more difficult to encode spatial features like edges.

The proposed C-LSTM models and training scheme are not limited to the application of NCCT
reconstruction and could be utilized for other applications involving spatiotemporal data. This work
employs a regression scheme for training, but it is easy to make it into a segmentation scheme, by
adding a softmax to the model and changing the loss. The results show that the C-LSTM model was
able to suppress the vessels within the CTP, but it might also be used to filter other information as
well. Another interesting future direction is the use of the model for computing perfusion images.

To further the acceptance of the method as a replacement for a normal NCCT scan the evaluation
of the reconstruction results could be extended with a qualitative assessment of diagnostic relevant
information like: hemorrhages, dense vessel sign, and infarcts. This information could be graded
for both the NCCT and the reconstructions by experienced radiologists and be compared to assess
whether all diagnostically relevant information is still present in the reconstruction.
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An interesting direction is to integrate the C-LSTM network within a generative adversarial network
(GAN) [24] for reconstruction [25]–[27]. In this setting, two networks are trained in competition,
a generator which tries to generate images looking similar to a target image distribution and a
discriminator which tries to distinguish between images made by the generator and the real images.
A well trained generator can create images looking very close to the real target data distribution
intrinsics. However, while a generator might be better able to mimic the target data distribution this
is not necessarily the signal of interest. For example, if the target image contains a lot of noise, the
generator will start to mimic this to be able fool the discriminator and give high error on normal
regression error measures (like the Euclidean distance) and induces noise which suppresses potential
important diagnostic findings. This work does not employ a GAN scheme, since the NCCT is
inherently very noisy and a noise free signal to clearly distinguish diagnostic findings is desirable.

To the best of our knowledge we have presented the first deep learning application of C-LSTM for 3D
NCCT reconstruction from 4D spatiotemporal CTP, which could potentially simplify current stroke
workup. Furthermore, the proposed C-LSTM models and training scheme pose promising tools for
handling spatiotemporal data in medical imaging and can be used for other problems as well.
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