
Under review as a conference paper at ICLR 2018

REGULARIZATION NEURAL NETWORKS VIA CON-
STRAINED VIRTUAL MOVEMENT FIELD

Anonymous authors
Paper under double-blind review

ABSTRACT

We provide a novel thinking of regularization neural networks. We smooth the ob-
jective of neural networks w.r.t small adversarial perturbations of the inputs. Dif-
ferent from previous works, we assume the adversarial perturbations are caused by
the movement field. When the magnitude of movement field approaches 0, we call
it virtual movement field. By introducing the movement field, we cast the problem
of finding adversarial perturbations into the problem of finding adversarial move-
ment field. By adding proper geometrical constraints to the movement field, such
smoothness can be approximated in closed-form by solving a min-max problem
and its geometric meaning is clear. We define the approximated smoothness as
the regularization term. We derive three regularization terms as running exam-
ples which measure the smoothness w.r.t shift, rotation and scale respectively by
adding different constraints. We evaluate our methods on synthetic data, MNIST
and CIFAR-10. Experimental results show that our proposed method can signif-
icantly improve the baseline neural networks. Compared with the state of the art
regularization methods, proposed method achieves a tradeoff between accuracy
and geometrical interpretability as well as computational cost.

1 INTRODUCTION

Deep neural networks have achieved great success in recent years Lecun et al. (2015). By improving
the depth of computational graphs and the accounts of trainable parameters, neural networks can fit
the training dataset better. However, overfitting becomes a serious problem in supervised training
especially when the free parameters are numerous.

One of the most effective ways to against overfitting is adding regularization terms into the original
supervised objective function. Many regularization methods have been proposed for training neural
networks, such as dropout Srivastava et al. (2014) and its variants Wang & Manning (2013); Kingma
et al. (2015). From a Bayesian perspective, dropout regularizes neural networks by introducing
randomness into the parameters. Another regularization way to against overfitting is generating
new data by transform or perturbation the existing data. The objective of the generated data or
the smoothness w.r.t the small perturbations can be regarded as a regularization term. Bachman
et al. (2014) assume the perturbations are fully random. They use the model’s sensitivity to those
random perturbations in their construction of the regularization function. However, Goodfellow
et al. (2015); Szegedy et al. (2014) found the robustness of neural networks can’t be improved
sufficiently with random noise. Instead of using random perturbations, adversarial training (AT)
Goodfellow et al. (2015) and virtual adversarial training (VAT) Miyato et al. (2016) find the so-called
adversarial perturbations by optimizing some objectives under simple constraints, such as L∞ norm
and L2 norm. Specifically, AT selects the adversarial perturbation direction which maximizes the
objective of neural networks. This lead to set the direction of perturbation the same as the gradients
of objective w.r.t the inputs. Once the optimal perturbation is obtained, they apply it to the inputs
and get the perturbated inputs. Then AT minimizes the objective of both the original inputs and
the perturbated inputs. VAT follows similar spirits of AT. The key difference is that VAT obtains
the optimal perturbation by maximizing Kullback-Leibler divergence (KLD) between the outputs
of models. This makes VAT applicable for semi-supervised learning. VAT also designs an iterative
algorithm to approximate the optimal perturbation. Experimental results demonstrate that AT and
VAT against the adversarial perturbation as well as improve the generalization ability of neural
networks. However, there are two drawbacks of AT and VAT.

1

Under review as a conference paper at ICLR 2018

• For a single batch of data, both AT and VAT need to run at least two forward-backward
loops to complete the training process, which is time-consuming for big models.

• The obtained optimal perturbation lacks geometrical interpretability. It is hard to fully
understand why those adversarial perturbations are most likely to fool neural networks.

We try to overcome the above drawbacks by introducing constraints into the space of perturbations.
In this work, we assume perturbations are caused by the movement field of the lattice structured
data, such as speech signals, images and videos. Movement field represents the motion vector of
each pixel in the lattice. We call it virtual movement field when the magnitude of the movement
field is sufficiently small. We smooth the objective of neural networks when the virtual movement
field is applied to the inputs. Inspired by VAT, we first find the so-called adversarial movement field
which maximizes above smoothness under a set of constraints. Then we minimize the corresponding
smoothness under the adversarial virtual movement field. That is to obtain the smoothness, we
need to solve a min-max problem with constraints. This can be done in closed-form if the set of
constraints are carefully designed. Once this smoothness term is obtained, we minimize the objective
of neural networks together with it. Because the movement field is virtual, it is unnecessary to get
the perturbated inputs. Instead, the smoothness is expressed by the derivative of the objective w.r.t
the movement field. Thus, the training process of each batch is completed in a single forward-
backward loop which yields lower computational costs. Moreover, the obtained perturbations or
smoothness term are much more interpretable because of the constraints. For example, we can see
which direction of movement of an image is most likely to fool neural networks. We call our method
as virtual movement training (VMT). We summarize the novelties of VMT as follows:

• The assumption of “small perturbations are caused by the virtual movement field” is a
completely new idea in the literature of adversarial training or adversarial examples. By
this assumption, we introduce data dependent constraints into the space of perturbations.
And we cast the problem of finding perturbations into the problem of finding movement
field.

• We develop a general framework to design regularization terms for neural networks trained
with lattice structured data, i.e. solving a min-max problem associated with the movement
field. closed-form terms are obtained by introducing proper geometrical constraints to the
movement field.

In this work, we focus more on computational efficiency and geometrical interpretability of our
method instead of against adversarial examples Szegedy et al. (2014). We derive three simple reg-
ularization terms as running examples based on introducing different constraints (shift, rotation and
scale) into movement fields. These regularization terms measure how sensitive of neural networks
under virtual (extremely small) shift, rotation and scale perturbations respectively.

We evaluate our method in a 1D synthetic data and two benchmark image classification datasets:
MNIST and CIFAR-10. Experimental results demonstrate that our method remarkably improves the
baseline neural networks. Compared with AT and VAT, VMT achieves a tradeoff between accuracy
and geometrical interpretability as well as computational cost.

2 METHODS

We first formally define the movement field and the virtual movement field. Then we formulate our
method. Finally, we provide three running examples.

2.1 VIRTUAL MOVEMENT FIELD

For data I ∈ Rd1×d2···×dn , i.e. n dimension lattice structure and the length of ith dimension is
di, we define the movement field V of as an n + 1 dimension tensor, that is V ∈ Rd1×d2···×dn×n.
Denote p ∈ Zn as the position vector of I and Ip is the value in that position. Then Vp ∈ Rn is the
movement of location p, i.e. its new position would be p+Vp. Note that for 2 dimension lattice data
such as images, their movement field is somewhat similar to the concept of optical flow. However,
throughout this paper, we still use the word of “movement field” because it is generalized to any
dimension of lattice data. If we assume data I is sampled from an underlying continues space or

2

Under review as a conference paper at ICLR 2018

the first order derivatives of I exists, we can approximate the value of the new position with the first
order Taylor series of the value of the original position (when the movement is small). Formally

Ip+Vp
= Ip +

(
∂Ip
∂p

)T
Vp (1)

For Vp, there are two factors: the length and the direction. In some cases, it is necessary to decom-
pose those two factors. So we normalize it as follows:

Ṽp =
Vp
Z
, Z =

√
E[V Tp Vp] (2)

Then the averege square length of Ṽ is equal to one. Denote εṼ as the actual movement field. We
call ε the degree of the movement field. When ε approaches 0, we call Ṽ the virtual movement field.
Based on (1) and (2), if Ṽ is given, we have:

∂Ip
∂ε

=

(
∂Ip
∂p

)T
Ṽp (3)

2.2 PROBLEM FORMULATION

Given a dataset D = {(In, yn)|n = 1, 2, . . . , N}, where In and yn are ith pair of input and label
in D. Denote fθ as a function which is parameterized by θ. fθ maps the input space into the output
space. For each pair of {In, yn}, we minimize the predefined loss function between the predicted
output and the label w.r.t θ.

argmin
θ
L(In, yn) (4)

We expect that L is stable for some particular kind of movements of I , e.g. rotation for images.
We can apply a small movement εṼ to In and we get the new input In(εṼ). Intuitively, since Ṽ is
normalized we can measure the smoothness of L under the movement field Ṽ as follows:∣∣∣∣∣L(In(εṼ), yn)− L(In, yn)

ε

∣∣∣∣∣ (5)

That is the proportion between the change of objective and the degree of inputs movement. When
training neural networks, in order to obtain the above smoothness, we need to run the forward
computational graph two times: the one for L(In, yn), the other for L(In(εṼ), yn). However, in
this work, we are interested in the extreme situation of (5): what if we apply a virtual movement
field to Ip? Or how sensitive the objective w.r.t ε when ε → 0. Note that L can be reparameterized
as a function of ε by fixing other variables. Thus when ε→ 0, (5) is equivalent to

lim
ε→0

∣∣∣∣L(ε)− L(0)ε

∣∣∣∣ = ∣∣∣∣∂L∂ε ∣∣∣In,yn,θ,Ṽ
∣∣∣∣ (6)

By the chain rule for differentiation

∂L
∂ε

=
∑
p

∂L
∂Ip

∂Ip
∂ε

(7)

Substitute (3) into it, we have
∂L
∂ε

=
∑
p

∂L
∂Ip

(
∂Ip
∂p

)T
Ṽp (8)

The first term on the right side of the above equation is the gradient of objective w.r.t the input which
is easily obtained by back propagation. The second term is the gradient of input w.r.t its coordinates
which is also called the directional derivative of signals. For discrete signal, it is approximated
by finite difference operator in practice. Thus, once Ṽ is given, we can obtain the smoothness of
objective w.r.t ε when the corresponding virtual movement field applied to the input in a single
forward-backward loop.

3

Under review as a conference paper at ICLR 2018

0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

14

(a) Shift

0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

14

(b) Rotation

0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

14

(c) Scale

Figure 1: Three kinds of movement fields: shift, rotation and scale are shown in (a), (b) and (c)
respectively. These fields are generated in a 15× 15 image.

Table 1: Summarization of movement fields and their corresponding regularization terms. The
meaning of symbols can be found in section 2.2 and 2.3.

Ṽ shiftp =

(
cosφ
sinφ

)
Rshift

def
=

√(∑
p
∂L
∂Ip

∂Ip
∂p1

)2
+
(∑

p
∂L
∂Ip

∂Ip
∂p2

)2
Ṽ rotationp = 1

Z

(
−p2 − c1
p1 − c2

)
Rrotation

def
=
∣∣∣∑p

∂L
∂Ip

(
∂Ip
∂p

T
)
Ṽ rotationp

∣∣∣
Ṽ scalep = 1

Z

(
(p1 − c1) cosφ
(p2 − c2) sinφ

)
Rscale

def
= 1

Z

√(∑
p
∂L
∂Ip

∂Ip
∂p1

(p1 − c1)
)2

+
(∑

p
∂L
∂Ip

∂Ip
∂p2

(p2 − c2)
)2

However, the degree of freedom of Ṽ is extremely high for real-world data. Search for such high
dimension is inefficient. Thus it is necessary to introduce constraints into Ṽ . Those constraints
should embody the priors of data and physical mechanisms of how it is generated. For example, the
movement field of natural images should enjoy the properties of local smoothness and isotropy. We
denote the set of constraints as C(Ṽ). Note that the normalization constraint in (2) is included in
C(Ṽ). We can expect that the degree of freedom of Ṽ is sufficiently reduced under those constraints.
If there are still freedom of Ṽ , we can randomly draw samples over those freedom. However,
inspired by the adversarial training, we first find the adversarial movement field Ṽ ∗ which maximizes
the smoothness of neural networks then we minimize the obtained smoothness term plus the original
objective w.r.t θ under Ṽ ∗. Similar to the generative adversarial networks (GAN) Goodfellow et al.
(2014), above problem can be formulated as a min-max game under constraints:

min
θ

max
Ṽ

L(I, y) + λ

∣∣∣∣∂L∂ε ∣∣∣I,Ṽ ,y,θ
∣∣∣∣ , s.t. C(Ṽ) (9)

Once Ṽ ∗ is obtained by solving the above max problem, the second term in (9) is determined. We
call it as the corresponding regularization term of Ṽ ∗. Then (9) is reduced to

min
θ

L(I, y) + λR(Ṽ ∗) (10)

Generally, solving the max problem in (9) is not an easy task. However, we will show that Ṽ ∗ can be
obtained in closed-form if the constraint set is carefully designed. And in this paper, we just focus
on this simple case because we hope to train each batch of data in a single forward-backward loop.

2.3 DESIGN THE MOVEMENT FIELD

Now we provide three sets of constraints for Ṽ which make the corresponding Ṽ ∗ solved in closed-
form. All these movement fields are designed for 2D lattice data since image is one of the most
important types of data in real world.

The first one is called Shift field. That is all pixels in 2D lattice are shifted by the same vector.
Because Ṽ is normalized, the only freedom is the direction of the vector in 2D space. Formally

Ṽ shiftp = (cosφ, sinφ)T , ∀p (11)

4

Under review as a conference paper at ICLR 2018

Combination (11) and (8), the max problem in (9) is equivalent to

max
φ

∣∣∣∣∣
(∑

p

∂L
∂Ip

∂Ip
∂p1

)
cosφ+

(∑
p

∂L
∂Ip

∂Ip
∂p2

)
sinφ

∣∣∣∣∣ (12)

where p1 and p2 are the first coordinate and the second coordinate of an image respectively. Then
the optimal value of φ is obtained easily. And the corresponding maximum value of |∂L/∂ε| in this
case is

Rshift
def
=

√√√√(∑
p

∂L
∂Ip

∂Ip
∂p1

)2

+

(∑
p

∂L
∂Ip

∂Ip
∂p2

)2

(13)

See Appendix C for derivation. The second movement field is rotation field. In this work, we simply
assume the center of rotation is the center of the image, i.e. (c1, c2).

Ṽ rotationp =
1

Z
(−p2 − c1, p1 − c2)T (14)

where Z is the normalization constant described in (2). Thus the degree of freedom is 0 (The
direction of rotation doesn’t matter because we care about the absolute value of ∂L/∂ε). Then
Rrotation is obtained straightforwardly.

The third movement field is scale field which scales an image by different factors along two coordi-
nates. Thus the degree of freedom is 1. We parameterize it by

Ṽ scalep =
1

Z
((p1 − c1) cosφ, (p2 − c2) sinφ)T (15)

Then Rscale is obtained in a similar way as Rshift. We summary these three movement fields and
their corresponding derived regularization terms in Tab 1. Although other kinds of movement fields
are possible to be designed, we just use them to evaluate our method because they are simple, easy
to implementation and geometrically meaningful.

2.4 PRACTICAL CONSIDERATIONS

As mentioned in section 2.2, for lattice data, the directional gradients are approximated by finite
difference operator. In this work, we choose the simplest one:

∂Ix
∂x
≈ Ix+1 − Ix−1

2
(16)

where x is an arbitrary coordinate in p. If the local smooth property is not well satisfied, above
approximation is not accurate. This suggests that our method is more suitable for smooth data.

Another problem is that we find the magnitudes of ∂L/∂I change rapidly with the network config-
urations. This makes the values of the corresponding regularization terms change rapidly with the
network configurations. To keep the values of R in a stable range, we normalize ∂L/∂I into a unit
tensor.

3 DISCUSSIONS AND RELATED WORKS

Our work was mainly motivated by the adversarial training Goodfellow et al. (2015) and was related
to the virtual adversarial training Miyato et al. (2016). Adversarial training can be reformulated as
follows:

min
θ

max
δI
L(I, y) + λL(I + εδI, y), s.t. ||δI||∞ < 1 (17)

and δI is approximated by sign(∂L/∂I) in their paper because the only constraint of δI is L∞
norm. However, in our work, we assume δI is caused by the movement field Ṽ .

I(εṼ)→ I + εδI (18)

That is the perturbation δI is constrained by both the movement field Ṽ and the directional gradients
of I , instead of the simple norm constraint. Another key difference between AT and our method is

5

Under review as a conference paper at ICLR 2018

ε→ 0 in our work, thus it is unnecessary to generate I + εδI and run additional forward-backward
loop. By setting ε sufficiently small, (17) is equivalent to

min
θ

max
δI

(1 + λ)L(I, y) + λε
∂L
∂ε

∣∣∣
I,δI,y,θ

(19)

This formulation is similar to ours which suggests our method is an extreme case of AT if we ignore
the difference between constraints of perturbations.

Denote fθ as the forward function of neural networks parameterized by θ. Then virtual adversarial
training can be reformulated as follows:

min
θ

max
δI
L(I, y) +KLD[fθ(I)||fθ(I + εδI)], s.t. ||δI||2 < 1 (20)

The core difference between VAT and AT is that VAT minimizes KLD of the outputs of neural
networks under adversarial perturbations. This property makes VAT applicable for semi-supervised
learning. However, the KLD term makes it difficult to find the optimal perturbation. Thus Miyato
et al. (2016) developed an iterative algorithm for approximation.

The idea of smooth the objective w.r.t small perturbations also has appeared in earlier works, such as
tangent propagation Simard et al. (1998) and influence function Koh & Liang (2017). The derivative
of the objective w.r.t perturbations is obtained by chain rule. However, the transformations are
predefined in Simard et al. (1998) while the transformations in VMT are obtained by solving a
constrained min-max problem though the freedom of those transformations is low currently. For
influence function, there are no constraints in the space of perturbations. And the smoothness w.r.t
small perturbations is mainly used to analyze the behaviors of a trained model instead of regularizing
it during training.

In summary, we focus more on geometrical interpretability and computational efficiency of our
method. Thus our method is not required to be better than VT and VAT. However, we still compare
them in next section.

4 EXPERIMENTAL RESULTS

We evaluate our proposed method for supervised classifications in three datasets: 1D synthetic
dataset, MNIST and CIFAR-10. We compare it with the baseline, adversarial training with L2

constraint and virtual adversarial training. For each dataset, the shared hyper-parameters keep same
for all methods. While separate hyper-parameters are tuned by cross-validation using grid-search
or copied from literature if they are provided. ε in (17) and (20) is searched over [0.01, 10] and λ
in (10) is searched over [0.005, 5]. All neural networks are implemented in Tensorflow Abadi et al.
(2015). We call our method VMT-shift, VMT-rotation and VMT-scale when we use the correspond-
ing regularization terms.

4.1 THE BINARY CLASSIFICATION OF 1D SYNTHETIC DATASET

We create a 1D synthetic dataset with two classes using the following random process:

x = sin(ωt+ φ) + η (21)

φ ∼ U(0, π
2
)

η ∼ N (0, 0.12)

where t ∈ R100 is uniformly sampled from [−2π, 2π]. Thus x ∈ R100 is a 1D lattice signal. Based
on (21), we generate 5000 positive samples by setting ω = 0.99 and 5000 negative samples by
setting ω = 1.01. We randomly select 1000 samples as training set and the rest as test set.

We train neural networks with two hidden layers each of which has 128 units and is followed by
batch normalization Ioffe & Szegedy (2015) and ReLU activation Glorot et al. (2011). We set
batchsize to 20 and run 100 epochs using ADAM optimizer Kingma & Ba (2015). We run each
method 5 times and report the average test errors.

We summarize the results in Tab 2. VMT-shift is significantly better than the baseline and is slightly
better than AT. We show values of Rshift on test set over epochs in Fig 2(b). The values of Rshift

6

Under review as a conference paper at ICLR 2018

0 20 40 60 80 100
t

1.5

1.0

0.5

0.0

0.5

1.0

1.5

x

negative
positive

(a) Samples

10 20 30 40 50 60 70 80 90 100
Epoch

0.025

0.030

0.035

0.040

0.045

0.050

R
sh
if
t o

n
te

st
 s

et

Baseline
AT
VAT
VMT-shift

(b) Rshift

10 20 30 40 50 60 70 80 90 100
Epoch

0.04

0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Ge
ne

ra
liz

at
io

n
ga

p

Baseline
AT
VAT
VMT-shift

(c) Generalization gaps

Figure 2: (a) shows an example pair of data with different labels. They are hard to distinguish by
human-eye. (b) shows the values of Rshift on test set over epochs. (c) shows the generalization
gaps for different methods. The values in the first 10 epochs are omitted for better visualization.

are consistent with the test errors. That is the smaller the values of Rshift at the end of training,
the smaller the test errors. We also empirically compare the generalization abilities of those meth-
ods. The generalization ability is measured by the so-called generalization gap, i.e. the difference
between the empirical risks on test set and training set.

E(I,y)∈Dtest
L(I, y)−E(I,y)∈Dtrain

L(I, y) (22)
It is suggested by Fig 2(c) that Rshift is an appropriate regularization term which can improve the
generalization ability of baseline on our hand-created data.

We find that VMT-scale is inferior to baseline on our hand-created data. This is not surprising
because each sample is labeled by its angular frequency, i.e. ω. When we scale a sample, its angular
frequency will be changed. Thus the assumption of the smoothness under small scale perturbations
is not satisfied in this case. In fact, the priors of data can be encoded in the constraints of movement
field. Thus, for VMT, it is possible to targeted design regularization terms based on the properties
of data.

4.2 THE CLASSIFICATION OF MNIST DATASET

We tested the performance of our regularization method on the MNIST dataset, which consists of
handwritten digits with size 28 × 28 and their corresponding labels from 0 to 9. We train our
models using the whole 60000 training samples. For network structures, we follow the setting
used in Miyato et al. (2016). Specifically, we train NNs with 4 hidden dense layers with nodes
(1200, 600, 300, 150) respectively. Each hidden layer is followed by batch normalization and ReLU
activation.

We apply all of the three regularization terms in Tab 1 and compare them with the baseline, dropout,
AT and VAT. We run each method 5 times and report the average test errors. The results are summa-
rized in Tab 2 which show our methods are inferior to AT and VAT but are significantly better than
baseline.

The training time on Synthetic dataset and MNIST is summarized in Appendix B.

4.3 THE CLASSIFICATION OF CIFAR-10 DATASET

We also conducted studies on the CIFAR-10 dataset (without data argument) which consists of
50000 training images and 10000 testing images in 10 classes, each image with size 32 × 32 × 3.
Our focus is on the behaviors of different regularization methods, but not on pushing the state-
of-the-art results, so we use a relatively small neural network for evaluation and comparison of
those regularization methods. Specifically, we configure the neural networks as the “conv-small”
used in Salimans et al. (2016) which contains 9 convolutional layers. See appendix A for detailed
architecture. All neural networks are trained by SGD with momentum with 80 epochs. We evaluate
the test errors and the average training time of each epoch. We defineRall as the linear combination
of the regularization terms in Tab 1. Formally

Rall =
w1Rshift + w2Rrotation + w3Rscale

w1 + w2 + w3
(23)

7

Under review as a conference paper at ICLR 2018

Table 2: Test errors (%) on MNIST and synthetic dataset. Test errors in the bottom panel are the
results of our methods. Test errors with “*” are the ones reported in the literature.

Methods Synthetic MNIST
Baseline 1.24 1.12

Dropout Srivastava et al. (2014) 0.97 0.95*
AT(with L∞ constraint) Goodfellow et al. (2015) 1.00 0.72
AT(with L2 constraint) Goodfellow et al. (2015) 0.94 0.70

VAT Miyato et al. (2016) 0.76 0.64
VMT-shift 0.89 0.92

VMT-rotation - 0.95
VMT-scaling - 0.92

Table 3: Test errors (%) and running time (s) on CIFAR-10. Running time in this table means the
average training time of each epoch.

Methods Test errors Time
Baseline 10.79 27.23

AT(with L2 constraint)Goodfellow et al. (2015) 10.42 55.48
VAT Miyato et al. (2016) 9.62 59.95

VMT-shift 9.68 37.55
VMT-rotation 9.75 37.57

VMT-scale 9.74 37.59
VMT-all 9.31 37.68

10 20 30 40 50 60 70 80
Epoch

0.015

0.020

0.025

0.030

0.035

0.040

R
sh
if
t o

n
te

st
 s

et

Baseline
AT
VAT
VMT-all
VMT-shift

(a) Rshift

10 20 30 40 50 60 70 80
Epoch

0.006

0.008

0.010

0.012

0.014

0.016

0.018

R
ro
ta
ti
on

 o
n

te
st

 s
et

Baseline
AT
VAT
VMT-all
VMT-rotation

(b) Rrotation

10 20 30 40 50 60 70 80
Epoch

0.012

0.014

0.016

0.018

0.020

0.022

0.024

0.026

0.028

0.030

R
sc
a
le
 o

n
te

st
 s

et

Baseline
AT
VAT
VMT-all
VMT-scale

(c) Rscale

Figure 3: (a), (b) and (c) show the values ofRshift,Rrotation andRscale respectively for different
methods on test set over epochs.

8

Under review as a conference paper at ICLR 2018

where wi ∼ U(0, 1). We randomly sample wi for each batch. VMT-all means we use Rall as the
regularization term. Results are summarized in Tab 3. All our regularization terms are significantly
better than the baseline and AT. And they are competitive compared with VAT. When we linearly
combine Rshift, Rrotation and Rscale, the performance is further improved by a relatively large
margin. Such combination is cheap in practice (See running time in Tab 3). We believe that the
performance can be improved to a higher level if we design and combine more regularization terms.
And our method is faster than AT and VAT. We show the values of the regularization terms in Fig 3.
All these values of our methods are smaller than the values of baseline.

5 CONCLUSIONS

In this paper, we have provided a novel thinking of regularization neural networks. We smooth
the objective function of neural networks when the virtual moment field is applied to lattice data.
By carefully introducing constraints into the movement field, we have derived the smoothness in
closed-form by solving a min-max problem. We have provided three regularization terms which
measure the smoothness w.r.t the transformations of shift, rotation and scale respectively. Experi-
mental results demonstrate that our method remarkably improves the baseline neural networks on
1D synthetic data, MNIST and CIFAR-10. Compared with AT and VAT, VMT achieves a tradeoff
between accuracy and geometrical interpretability as well as computational cost. Unlike AT and
VAT, the training process of each batch is completed in a single forward-backward loop. Moreover,
by control the movement field, we can understand the geometric meaning of perturbations and what
kind of smoothness the regularization term is measured.

REFERENCES

Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah,
Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vin-
cent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Watten-
berg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning
on heterogeneous systems, 2015. URL https://www.tensorflow.org/. Software avail-
able from tensorflow.org.

Philip Bachman, Ouais Alsharif, and Doina Precup. Learning with pseudo-ensembles. neural infor-
mation processing systems, pp. 3365–3373, 2014.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks. 15:
315–323, 2011.

Ian J Goodfellow, Jean Pougetabadie, Mehdi Mirza, Bing Xu, David Wardefarley, Sherjil Ozair,
Aaron C Courville, and Yoshua Bengio. Generative adversarial networks. arXiv: Machine Learn-
ing, 2014.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. international conference on learning representations, 2015.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. international conference on machine learning, pp. 448–456,
2015.

Diederik P Kingma and Jimmy Lei Ba. Adam: A method for stochastic optimization. international
conference on learning representations, 2015.

Diederik P Kingma, Tim Salimans, and Max Welling. Variational dropout and the local reparame-
terization trick. neural information processing systems, 28:2575–2583, 2015.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. arXiv
preprint arXiv:1703.04730, 2017.

9

https://www.tensorflow.org/

Under review as a conference paper at ICLR 2018

Yann Lecun, Yoshua Bengio, and Geoffrey E Hinton. Deep learning. Nature, 521(7553):436–444,
2015.

Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier nonlinearities improve neural net-
work acoustic models. In Proc. ICML, volume 30, 2013.

Takeru Miyato, Shinichi Maeda, Masanori Koyama, Ken Nakae, and Shin Ishii. Distributional
smoothing with virtual adversarial training. international conference on learning representations,
2016.

Tim Salimans, Ian J Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. neural information processing systems, pp. 2234–2242,
2016.

Patrice Simard, Yann LeCun, John Denker, and Bernard Victorri. Transformation invariance in
pattern recognitiontangent distance and tangent propagation. Neural networks: tricks of the trade,
pp. 549–550, 1998.

Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. Journal of Machine Learning
Research, 15(1):1929–1958, 2014.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J Good-
fellow, and Rob Fergus. Intriguing properties of neural networks. international conference on
learning representations, 2014.

Sida I Wang and Christopher D Manning. Fast dropout training. pp. 118–126, 2013.

10

Under review as a conference paper at ICLR 2018

A DETAILED ARCHITECTURE OF “CONV-SMALL”

Table 4: CNN model used in our experiments on CIFAR-10 whose architecture are same as the
architecture of “conv-samll” in Salimans et al. (2016). The slopes of all LeakyReLU (LReLU)
functions Maas et al. (2013) are set to 0.1.

3× 3 conv. 64→ batch normalization→ LReLU
3× 3 conv. 64→ batch normalization→ LReLU
3× 3 conv. 64→ batch normalization→ LReLU

2× 2 max pooling
dropout, p = 0.5

3× 3 conv. 128→ batch normalization→ LReLU
3× 3 conv. 128→ batch normalization→ LReLU
3× 3 conv. 128→ batch normalization→ LReLU

2× 2 max pooling
dropout, p = 0.5

3× 3 conv. 128→ batch normalization→ LReLU
1× 1 conv. 128→ batch normalization→ LReLU
1× 1 conv. 128→ batch normalization→ LReLU

global average pooling
dense. 10→ softmax

B TRAINING TIME ON SYNTHETIC DATA AND MNIST

Table 5: Average training time (s) of each epoch on Synthetic data and MNIST. Since the training
time of VMT-shift, VMT-rotation and VMT-shift are almost the same, we use their averaged training
time.

Dataset baseline AT-L2 VAT VMT
Synthetic 0.183 0.288 0.329 0.279
MNIST 3.635 6.170 7.122 5.950

C DERIVATION OF Rshift

By setting

a =
∑
p

∂L
∂Ip

∂Ip
∂p1

, b =
∑
p

∂L
∂Ip

∂Ip
∂p2

(12) is equivalent to
|a cosφ+ b sinφ| =

∣∣∣√a2 + b2 cos(φ− α)
∣∣∣

where α = tan−1 b
a . Thus the maximum value of (12) is

√
a2 + b2 when φ = α.

11

	Introduction
	Methods
	Virtual Movement Field
	Problem Formulation
	Design the Movement Field
	Practical Considerations

	Discussions and related works
	Experimental Results
	The Binary Classification of 1D Synthetic Dataset
	The Classification of MNIST Dataset
	The classification of CIFAR-10 dataset

	Conclusions
	Detailed architecture of ``conv-small''
	Training time on Synthetic data and MNIST
	Derivation of Rshift

