
Learning Neuro-Symbolic World Models
with Conversational Proprioception

Anonymous ACL submission

Abstract

The recent emergence of Neuro-Symbolic001
Agent (NeSA) approaches to natural language-002
based interactions calls for the investigation of003
model-based approaches. In contrast to model-004
free approaches, which existing NeSAs take,005
learning an explicit world model has an inter-006
esting potential especially in the explainability,007
which is one of the key selling points of NeSA.008
To learn useful world models, we leverage009
one of the recent neuro-symbolic architectures,010
Logical Neural Networks (LNN). Here, we de-011
scribe a method that can learn neuro-symbolic012
world models on the TextWorld-Commonsense013
set of games. We then show how this can be im-014
proved further by adding a proprioception that015
gives better tracking of the internal logic state016
and model. Also, the game-solving agents per-017
formance in a TextWorld setting shows a great018
advantage over the baseline with 85% average019
steps reduction and ×2.3 average scoring.020

1 Introduction021

Recent emergence of neuro-symbolic (NS) ap-022

proaches include natural language-based sequential023

decision making (Kimura et al., 2021b; Chaudhury024

et al., 2021; Kimura et al., 2021a). They propose025

a model-free approach of learning a logical policy,026

and tested with interactive-text games (Narasimhan027

et al., 2015; Côté et al., 2018; Hausknecht et al.,028

2020; Murugesan et al., 2021), which have become029

an interesting benchmark in the intersection of nat-030

ural language processing and sequential decision031

making. NS approaches give the direct explainabil-032

ity of what is learned and allow natural integration033

of external knowledge as logic. Despite that, ex-034

isting NS approaches are of model-free reinforce-035

ment learning (RL) but it would be useful if we036

could have model-based approaches that are poten-037

tially more sample efficient and can reach higher038

cumulative rewards as shown by neural world mod-039

els (Hafner et al., 2019; Łukasz Kaiser et al., 2020).040

In contrast to these, a logical world model learned041
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Figure 1: Overview of proposed method

using NS approaches would allow an agent to use 042

logical reasoning which enables us to obtain a 043

trace of logical steps for better explainability. In 044

fact, several sets of benchmarks and game environ- 045

ments have been proposed such as TextWorld (Côté 046

et al., 2018), Jericho (Hausknecht et al., 2020) 047

and TextWorld Commonsense (TWC) (Murugesan 048

et al., 2021), which are far too complicated to solve 049

without reasoning and common sense, compared to 050

the original game setting (Narasimhan et al., 2015). 051

Also, existing implementation of NS approaches do 052

not really interpret a natural language but rely on 053

the logical facts provided from the game engines. 054

In this paper, we focus on the problem of learn- 055

ing logical world models in NS methods. The main 056

research question to be addressed is then how we 057

can learn such models for text-based games us- 058

ing a general semantic parser. As a state-of-the-art 059

interactive-text agent, GATA (Adhikari et al., 2020) 060

constructs belief graphs used to enhance deep RL 061

methods. In contrast to understanding the world 062

state in a latent space, we want to explicitly use 063

the logical world models to plan optimal action 064

sequences and to provide direct explainability of 065

the decision making policy. For the explainabil- 066

ity purpose, we leverage general semantic parsing, 067

following one of the early work constructing knowl- 068

edge graphs (Ammanabrolu and Riedl, 2019). 069

An overview of our proposed method is depicted 070

by Figure 1. The left side depicts that the envi- 071

ronment state can be sufficiently approximated as 072

a set of logical facts. Continuing in the bottom 073
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right, the agent can get textual observations of the074

environment. We assume that we have a semantic075

parser (Drozdov et al., 2022) that converts these076

observations into a logical form. In the real situ-077

ation the semantic parsing is good, but won’t be078

perfect, hence we require that our agent should be079

capable of handling noisy logical states. From such080

states, our agent should produce suitable actions081

for accomplishing its tasks in the environment.082

The main contributions of this paper are: the pro-083

posal of a novel world model-learning method with084

a neuro-symbolic approach, and its experimental085

results with TWC.086

2 Problem Definition087

Text-based games are often modelled with the RL088

problem setting in mind as Partially Observable -089

Markov Decision Processes (PO-MDP) (Côté et al.,090

2018; Hausknecht et al., 2020). As a first approach,091

we add an assumption - that the semantic parser092

can remove partial observability and that we are093

dealing with an MDP. At each time step the agent094

uses the information in a state, s, to take an action,095

a, which transitions the state to the new state, s′096

according to the state transition function T such097

that s′ = T (s, a). While acting in this environment098

the agent also gets rewards, r, according to an un-099

known reward function, R, such that r = R(s, a).100

In the model-free RL setting, the agent learns a101

policy or value function which directly governs the102

actions. Here, we are interested in the model-based103

RL setting where the agent learns a model of the104

world which usually consists of both T and R. This105

model can then be used with planning methods to106

find the optimal actions.107

Based on the classical model-based RL setting,108

our problem has two more important specifications.109

First, we assume that our environment is relational,110

similar to (Lang et al., 2012). This means that111

all actions and states are composed of relational112

logic. They may be in the propositional form but113

there must be a corresponding lifted form that has a114

consistent meaning. For example, the propositional115

state, on(book,table) can be abstracted or lifted into116

on(x,y) with predicate, on, and the variables, (x, y).117

The first assumption is that all states and actions118

handled by the agent are in this relational lifted119

form. This assumption can be handled as a design120

specification of the semantic parser. The second121

assumption is that the goal state is given. This is a122

weaker assumption that is already used in current123

RL research, the so-called goal-conditioned RL. 124

Here, it allows us to concentrate only on learning 125

T since R is no longer required for planning when 126

we are given the goal state. 127

3 Learning Logical World Models 128

The problem of learning logical rules that explain 129

a given set of logical examples can be cast into 130

the general problem called Inductive Logic Pro- 131

gramming (ILP) (Muggleton and De Raedt, 1994). 132

What needs to be done is then to cast our relational 133

model-based RL problem into ILP form. But be- 134

fore going into that detail, it is important to note 135

that relying on classical ILP has significant failings. 136

In particular, it is not well suited to noisy data to 137

the extent that a single erroneous data point may 138

cause the whole system to fail. 139

However, newer methods that leverage neural 140

networks have shown great promise on working 141

even with noisy data (Evans and Grefenstette, 142

2018). These are sometimes called neural ILP, 143

differentiable ILP or neuro-symbolic ILP. These 144

advances are the main impetus for us to research 145

on the learning of logical world models. 146

We may use any such ILP method that is noise- 147

resistant but here we use the Logical Neural Net- 148

work (LNN) (Riegel et al., 2020) as a Neuro- 149

Symbolic AI framework. It is an end-to-end dif- 150

ferentiable system that enables scalable gradient- 151

based learning and it has a real-valued logic repre- 152

sentation of each neuron that enables logical rea- 153

soning (Riegel et al., 2020). 154

Action ILP with LNN 155

Now, getting back to the task of expressing our 156

relational model-based RL problem as ILP, we first 157

gather data samples which are triples of lifted logic, 158

(s, a, s′). This is gathered by using an exploration 159

policy to generate actions. Here, we used a policy 160

that uniformly randomly samples the action space 161

but better exploration methods may be used, such 162

as that outlined in (Lang et al., 2012). This data 163

collection may be done in an offline or online RL 164

setting but we assume that a large enough batch is 165

available in the online RL setting before we start 166

the learning procedure. 167

Given a batch of data samples, the learning pro- 168

cedure must produce an estimate of T . This T will 169

be the hypothesis to be generated by our ILP. This is 170

a set of logical rules that best fits the data. To make 171

learning more efficient we need to narrow down 172

2



the definition of T . Because we are ultimately in-173

terested in using T for planning, we define it as174

a set of planning operators where each one is a175

quadruple of (α, β, γ, σ). Each element is a set of176

logical conditions. The conditions (α, β) are pre-177

conditions where α are conditions that must be true178

for the action to be executable, β are ones that must179

be false. The conditions (γ, σ) are post-conditions180

where γ are ones made true by the action and σ are181

ones made false. These conditions are the lifted182

logic statements that comprise a state, s, and the183

set of all possible conditions is P .184

We model each of the operator elements as an185

LNN conjunction operator whose inputs are P . The186

LNN learning procedure can learn weights for each187

of these inputs that correspond to real-valued logic188

(Riegel et al., 2020; Sen et al., 2021). For the LNNs189

of α and β, the inputs are given the corresponding190

logical values of the conditions in s. The output191

is true when action, a, corresponds and s ̸= s′192

otherwise it is false. For the LNNs of γ and σ, the193

inputs are given the logical values corresponding194

to the difference in the conditions of s and s′ such195

that γ are the the conditions made true and σ those196

that are made false. The output is true when action,197

a, corresponds otherwise it is false.198

Using these inputs and outputs to the LNN,199

gradient-based optimization can be used for super-200

vised learning (Riegel et al., 2020; Sen et al., 2021).201

When learning converges, we have a set of weights202

for each of the corresponding elements. These may203

be interpreted as probabilistic transitions but here204

we simply threshold them and maintain a determin-205

istic transition system for our final estimate of T .206

Given this operator transition model and the goal,207

we can be in any state and use classical planning208

methods to find a series of actions to reach the goal.209

Conversational Proprioception210

Proprioception (Tuthill and Azim, 2018) is the211

sensation of body position and movement critical212

to human experience, while it is typically absent213

from conscious perception. This concept is used214

in imitation learning (Torabi et al., 2019) and in215

robotics (Cong et al., 2022), however to our knowl-216

edge it has not been proposed for text-based games217

or tasks with logical state represenatations.218

In general, proprioception is a prediction of the219

next state, s′ = T̂ (s, a), based on the existing220

knowledge of one’s body dynamics in the form of221

the transition model estimate, T̂ , the current state,222

s, and the action taken, a. This additional informa- 223

tion is crucial to help us disambiguate and better 224

locate the next state. For our task where T is a log- 225

ical model, we propose to augment our learned T 226

with a set of proprioception rules, ϵ(s, a), such that 227

our T will now be defined as (α, β, γ, σ, ϵ(s, a)). 228

For our agent, we define ϵ very generally such that 229

it only consists of 2 rules. First, it tracks state- 230

action pairs that were already tried and augments 231

the state with this information. Second, it adds a 232

precondition that prevents state-action pairs from 233

repeating which is a common problem of conver- 234

sational agents. These 2 rules are general enough 235

to apply to any TWC environment and possibly be- 236

yond. We leave the design of further proprioception 237

rules as a possible future work. 238

4 Experiment and Discussion 239

For evaluating the quality of world model learned, 240

we first qualitatively analyze the learned action 241

models. Then we see the interactive-text agent per- 242

formance with a TextWorld benchmark. In this 243

paper, we experiment on the TextWorld Common- 244

sense (TWC) set of games (Murugesan et al., 2021) 245

with the same experimental settings. 246

Once we have a logical world model, we can use 247

it with a planner. Here, we use the Fast-Downward 248

systsem (Helmert, 2006). For convenience we con- 249

vert the learned operators into the PDDL (Planning 250

Domain Definition Language) format by combin- 251

ing (α, β, ϵ) into the preconditions and (γ, σ) into 252

the effects. We also augment the state with ϵ(s, a). 253

Learned Models 254

We confirmed that the world models were meaning- 255

fully learned by any of model-based approaches. 256

Figure 2 shows example learned action models in 257

a converted PDDL form for an action insert_into 258

(insert XX into YY) by model-based approaches 259

from AMR-based logical facts. For our results, we 260

first show some examples of the learned rules in 261

our logical world model in Figure 2. Here, we can 262

visually inspect the validity of the rules. For exam- 263

ple with the left case, the effect would be that the 264

object v0 is at/in/on the container v1 (has_location- 265

2) but now it is no longer in the inventory (carry-1). 266

This level of explainability is inherent in logical 267

models although it requires careful inspection. 268

The effect of proprioception can be seen in 269

the right-hand side of Figure 2. The predicate 270

of tried_insert_into is from an AMR-based pred- 271
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Table 1: Scores on the TextWorld Commonsense(TWC) set of games

Semantic parsing Handicap Easy Medium Hard
Valid Test Valid Test Valid Test

TWC agent (DL-only)
[AAAI 2021] Word embedding

(these are common)
Admissible action
Inventory
Curated Common Sense

17.65 ± 3.62
85% ± 7%

18.00 ± 3.24
87% ± 5%

37.18 ± 4.86
72% ± 7%

43.08 ± 4.13
54% ± 17%

49.36 ± 7.50
46% ± 10%

49.96 ± 0.00
22% ± 0%

Model-free NeSA
based on [EMNLP 2021] Skipped Game-engine facts - 15.00

100% - 28.60
100% - -

Model-free NeSA
(REINFORCE) AMR-based facts - - 32.28 ± 3.24

63% ± 5% - 43.68 ± 5.36
38% ± 25% - 49.48 ± 1.04

28% ± 13%
Planning
(Model-based NeSA) Skipped Action transition

Game-engine facts
2.4
100%

2.4
100%

4.4
100%

3.6
100%

13.6
100%

14.0
100%

Model-based NeSA
(Learned action transition) Skipped Game-engine facts 2.4 ± 0.0

100%
2.4 ± 0.0
100%

4.4 ± 0.0
100%

3.6 ± 0.0
100%

13.6 ± 0.0
100%

28.4 ± 0.0
60.6%

Model-based NeSA AMR-based facts - 21.4 ± 0.0
57.1%

21.2 ± 0.0
42.9%

31.6 ± 0.0
38.5%

31.6 ± 0.0
50.0%

42.8 ± 0.0
20.6%

42.8 ± 0.0
24.2%

Model-based NeSA
w/ proprioception AMR-based facts - 3.6 ± 0.0

100%
4.0 ± 0.0
100%

7.6 ± 0.0
100%

5.6 ± 0.0
100%

33.2 ± 0.0
64.7%

42.8 ± 0.0
24.2%

icate insert_into but with the intention modality272

of the agent, which is encoded in first-order logic.273

This recognition of an already-performed action in-274

sert_into should contribute to avoiding repeatedly275

performing failed actions.276

TWC Performance277

It would be more interesting if we take altogether278

to see if the learned rules allow us to plan optimal279

actions in the world. To answer this, we present280

our results in Table 1. Here, there are 7 meth-281

ods: the first row is a deep-learning-only method,282

second and third are model-free neuro-symbolic283

methods, forth is a planning result which is an284

upper bound, fifth is a model-based RL method285

with game-engine facts, sixth is a model-based RL286

method, and seventh is a model-based RL method287

with proprioception.288

For comparison, we show the best performing289

deep RL agent in (Murugesan et al., 2021) and290

the optimal agent using perfect game knowledge.291

Note that we have additional assumptions differing292

from the plain deep RL setting of the original setup293

in (Murugesan et al., 2021) but we give this as a294

reference on the potential improvement our overall295

approach might provide. The TWC games are cate-296

gorized into Easy-Medium-Hard with a validation297

and testing set for each as shown in the columns.298

Our results show that planning on our learned299

model can produce the same optimal actions for all300

the Easy and Medium games and for the validation301

set of the Hard games. An interesting limitation302

appears in the test set of the Hard games wherein303

novel predicates appear in the test set that do not304

appear in any of the training or validation set. This305

is a current limitation of our system.306

The significant effects of AMR-originated noise307

or lack of information can be seen in the last two308

rows. However, thanks to the proprioception (the309

(:action insert_into
:parameters (?v0 ?v1)
:precondition
(and

(not (tried_insert_into ?v0 ?v1))
(carry-1 ?v0)
(not (has_location-2 ?v0 ?v1)))

:effect
(and

(has_location-2 ?v0 ?v1)
(not (carry-1 ?v0))
(tried_insert_into ?v0 ?v1)))

(:action insert_into
:parameters (?v0 ?v1)
:precondition
(and

(carry-1 ?v0)
(not (has_location-2 ?v0 ?v1)))

:effect
(and

(has_location-2 ?v0 ?v1)
(not (carry-1 ?v0))))

Figure 2: Examples of the learned action models

last row), it has been improved to be competitive 310

to the model-based approach from game-engine 311

provided logical facts (3rd-last row). 312

5 Conclusion 313

We proposed a model-based RL agent for text- 314

based games which comprises of a semantic parser 315

producing logical states, a neuro-symbolic ILP 316

module for learning logical world models, and an 317

off-the-shelf planning system to produce optimal 318

actions in the game world. We presented results 319

and experiments here on the key component which 320

learns the logical world models. 321

6 Limitations 322

The experimental environment we used for test- 323

ing our agents gives artificially generated natural 324

language text, whose distribution of vocabulary, 325

syntax, and semantic frames is controlled and lim- 326

ited to what the natural language text generators 327

can provide. While we tried to include out of vo- 328

cabulary for entities in our experiments, applying 329

the proposed approach to natural language text in 330

wild, such as chatbots working with human, must 331

be faced with issues such as out of vocabulary for 332

relations, etc. We believe, however, approaching 333

from controlled “wildness” is an important direc- 334

tion of the work for interactive-text agents. 335
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