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ABSTRACT

We propose DE-RNN to learn the probability density function (PDF) of a nonlin-
ear time series, and compute the temporal evolution of the PDF for a probabilistic
forecast. A Recurrent Neural Network (RNN) based model is employed to learn a
nonlinear operator for temporal evolution of the stochastic process. We use a soft-
max layer for a numerical discretization of a PDF, which transforms a function
approximation problem to a classification problem. Explicit and implicit regu-
larization strategies are introduced to impose a smoothness condition on the esti-
mated probability distribution. A multiple-step forecast is achieved by computing
the time evolution of PDF.

1 INTRODUCTION

We consider a problem of learning a PDF of a noisy nonlinear dynamical system, or a stochastic
process with an underlying nonlinear structure. The stochastic process is given as

ge=y(t) + e, (D
in which ¢; is a noise process and y(t) is an underlying nonlinear dynamics, e.g.,
dy

Here, y(t) is a continuous process, F is a nonlinear operator, 7 is a delay-time parameter, and
u(t) is an exogenous forcing, such as control parameters. In and (I), F is assumed unknown,
and we do not assume any distributional properties of ¢;, but assume the knowledge of the control
u(t). We are interested in computing temporal evolution of PDF of ¢, given the observations up

to time step ¢, i.e., p(g}t+n|f’0:t, Uo.tyn—1) forn > 1, where }A’U;t = (Jo,- - ,¥¢) is a trajectory
of the past observations and Up.;+n—1 = (W0, -, Usyn—1) consists of the history of the known

control actions, Uy.;—1, and a future control scenario, Uy.;,,—1. Hereafter, we use DE-RNN for the
proposed RNN model, considering the similarity with the density estimation. Note that DE-RNN
has a direct relevance to many applications in manufacturing processes (Lasi et al., [ 2014)).

2 DE-RNN FOR NOISY DYNAMICAL SYSTEM

DE-RNN is based on the Long Short-Term Memory (LSTM) network (Hochreiter & Schmidhuber,
1997} [Gers et al.| [2000) for the modeling of time evolution. LSTM consists of a set of nonlinear
transformations of the input variable &; = ({, u;) and the output of the previous time step, h;_1.
A single layer LSTM model can be summarized by the following set of equations;

8¢ = Uo(xy, Se—1, hi—1), hy = Up(xy, 8¢, he—1), Pipr = Up(hy), 3)

in which s; and h, are the internal state and output of LSTM, respectively.

2.1 DISCRETIZATION OF PROBABILITY DENSITY FUNCTION

We first consider the problem of modeling the PDF of a random variable ¢, given an input z, i.e.,
p(g|x). The obtained results can be directly applied to the original problem, p(g:+1|Yo:t, Uo.t)-
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Let @ = (ayp, -+ , i) denote a set of real numbers, such that o;_1 < «; fori = 1,--- , K, which
defines K disjoint intervals, Z; = («;_1, «; ). Then, a discrete probability can be defined
p(klo) = | plale)dy, fork=1..... K. @
Iy

It is clear that p(k|x) is a numerical discretization of the continuous PDF, p(§j|x). The discrete
probability p(k|z) can be modeled by a softmax layer (P) as an output of ¥, in (3) such that

p(k|lz) = Py, fork=1,..., K. (5)
The discretization naturally leads to the conventional cross-entropy (CE) minimization. Suppose we
have a data set, Dr = {(9;,2;);9; € R,x; € Ryand ¢ = 1,..., N}. We can define a mapping
C :R — Ny such that C(§) = k, if y € Z,. Then, Dg can be easily converted to a new data set for
target labels, Do = {(¢;, i, @:);¢;i € Ny, ; € Ryz; € Ryand i = 1,..., N}, where ¢; = C(;).
D¢ provides a training data set for the following CE loss,

N K N
CE = — Z Z de i log Pp = — Z;log P, (6)

n=2 k=1

in which P, = (¥, o (¥}, 0 ¥y))(®p—_1, Sp—2, hy_2). Note, however, that the CE minimization
does not explicitly guarantee the smoothness of the estimated distribution. To address this issue, we
propose a regularized CE loss.

2.1.1 REGULARIZATION OF CROSS-ENTROPY LOSS

To explicitly impose the smoothness between the classes, we propose to use a regularized cross-
entropy (RCE) minimization, defined by the following loss function

N K 1 -2 1 0 --- 0
T 0O 1 -2 1 --- 0

RCE = "$ 3" 4. xlog Pk +A(LP,)" LP, ¢, L= o
n=2 k=1 0 ) ! U

where ) is a penalty parameter and the Laplacian matrix L € R¥~=2K_ RCE is similar to the
penalized maximum likelihood solution for density estimation (Silverman, |1986)), because

PTLTLP, ~ / " (512 dy. ®)

Alternative to adding an explicit regularization to CE, the smoothness can be achieved by enforcing
a spatial correlation in the network output by using a convolution layer. Let 0 € RX denote the
last layer of DE-RNN, which was the input to the softmax layer. We can add a convolution layer,

o € R¥ on top of 0, such that
S 1 (i—5\°
0= pexp |3 (hj) ]@, for i=1,---, K, 9)
j=1

where the parameter /i determines the smoothness of the estimated distribution. Then, o is supplied
to the softmax layer. Using (9), DE-RNN can now be trained by the standard CE. The implicit
regularization, here we call convolution CE (CCE), is analogous to a kernel density estimation.

2.2  MULTIVARIATE TIME SERIES

We propose to train a set of DE-RNNs to compute the joint PDF of a [-dimensional multivariate
time series; §; = (g),fl), e ,gt(“) by using the product rule,
1

p(Ge1 1Yo, Uoe) = p(ih) [ ] p(@2s
j=2

~(7—1 ~(1 >
ygl»l )5 e ?y)§+)17 Yb:tv UO:t)'

Note that, although it requires training [ DE-RNNs to compute the full joint PDF, there is no de-
pendency between the DE-RNNSs in the training phase. So, the set of DE-RNNs can be trained in
parallel, which can greatly reduce the training time.
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Figure 1: Comparison of DE-RNN and DeepAR(Flunkert et al., 2017) for (a) Mackey-Glass time
series with Laplace noise and (b) CPU temperature data. In (a), the ground truth is shown in the
dashed line. DE-RNN (e) and DeepAR (o) are denoted by circles. In (b), the circles denote DE-
RNN, while the solid line is from DeepAR.

Table 1: Normalized errors of the Lorenz time series. DE-RNN results are compared with DeepAR
(DAR), Gaussian Process (GP), and Vector AutoRegressive model (VAR.)

DE-RNN DAR GP VAR

e 0.134 0.140 0.506 0.917

ex 0.040 0.560 0.596 0.558

2.3 COMPUTING TIME EVOLUTION OF PROBABILITY DISTRIBUTION

Note that even though H; 1 = (S¢4+1, ht+1) is computed from deterministic functions from data,

Se41 = Vo(Upy1, Hy), hegr = Vi (Jig1, St41, he),

H,,, is a random variable, because §;+; is a random variable. A multiple-step forecast can be
computed by repeatedly computing the time evolution of H; as

t+n—1
Pten Yo Unien) = [ il [] p(H|H 2 w)dB 10
1=t+1

The high dimensional integration in (I0) can be evaluated by a Sequential Monte Carlo method.

3 EXPERIMENTS

DE-RNN is tested against three synthetic and two real data sets. For the synthetic data, a modi-
fied Cox-Ingersoll-Ross process, which is a multiplicative noise process, Mackey-Glass with non-
Gaussian noise, and (multivariate) Lorenz times series with a Gaussian noise are used. For the real
data, Mauna Loa CO, observations and CPU temperature of IBM Power System S822LC are used.

Figure |1| shows the probability distribution, p(g:+1 ‘i}O:t)’ estimated by DE-RNN. It is shown that
DE-RNN represents the Laplace distribution without any special modeling (Figure[T|a). The temper-
ature in the CPU data set is discrete, because the resolution of the temperature sensor is 1°C. Figure
[1] (b) shows that DE-RNN well captures the bimodal distribution due to the 1°C sensor resolution.

Table |I| shows the normalized root mean-square errors in the expectation (e,,) and covariance (ex)
for the Lorenz time series. ey, is defined by the Frobenius norm. It is shown that DE-RNN makes
a very good prediction of both the expectation and covariance. The error in the covariance in DE-
RNN is only about 4%. Because DeepAR and GP do not consider the off-diagonal components of
the covariance matrix, ex; of those models are much larger than DE-RNN.

Multiple-step forecasts of DE-RNN show that the prediction uncertainty by DE-RNN does not grow
monotonically in time. For 1,500-step-ahead prediction of the CPU temperature, RMSE is only
0.83°C, compared to 0.56°C of the one-step-ahead prediction.

The evaluation of DE-RNN on the synthetic and real data sets shows advantage of DE-RNN over
the compared baselines.
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