
Workshop track - ICLR 2018

FORECASTING PROBABILITY DISTRIBUTION OF NON-
LINEAR TIME SERIES

Kyongmin Yeo, Igor Melnyk, Nam Nguyen & Eun Kyung Lee
IBM T.J. Watson Research Center
Yorktown Heights, NY, USA
{kyeo,nnguyen,eunkyung.lee}@us.ibm.com, igor.melnyk@ibm.com

ABSTRACT

We propose DE-RNN to learn the probability density function (PDF) of a nonlin-
ear time series, and compute the temporal evolution of the PDF for a probabilistic
forecast. A Recurrent Neural Network (RNN) based model is employed to learn a
nonlinear operator for temporal evolution of the stochastic process. We use a soft-
max layer for a numerical discretization of a PDF, which transforms a function
approximation problem to a classification problem. Explicit and implicit regu-
larization strategies are introduced to impose a smoothness condition on the esti-
mated probability distribution. A multiple-step forecast is achieved by computing
the time evolution of PDF.

1 INTRODUCTION

We consider a problem of learning a PDF of a noisy nonlinear dynamical system, or a stochastic
process with an underlying nonlinear structure. The stochastic process is given as

ŷt = y(t) + εt, (1)

in which εt is a noise process and y(t) is an underlying nonlinear dynamics, e.g.,
∂y

∂t
= F(y(t), y(t− τ),u(t)). (2)

Here, y(t) is a continuous process, F is a nonlinear operator, τ is a delay-time parameter, and
u(t) is an exogenous forcing, such as control parameters. In (2) and (1), F is assumed unknown,
and we do not assume any distributional properties of εt, but assume the knowledge of the control
u(t). We are interested in computing temporal evolution of PDF of ŷ, given the observations up
to time step t, i.e., p(ŷt+n|Ŷ0:t,U0:t+n−1) for n ≥ 1, where Ŷ0:t = (ŷ0, · · · , ŷt) is a trajectory
of the past observations and U0:t+n−1 = (u0, · · · ,ut+n−1) consists of the history of the known
control actions,U0:t−1, and a future control scenario,Ut:t+n−1. Hereafter, we use DE-RNN for the
proposed RNN model, considering the similarity with the density estimation. Note that DE-RNN
has a direct relevance to many applications in manufacturing processes (Lasi et al., 2014).

2 DE-RNN FOR NOISY DYNAMICAL SYSTEM

DE-RNN is based on the Long Short-Term Memory (LSTM) network (Hochreiter & Schmidhuber,
1997; Gers et al., 2000) for the modeling of time evolution. LSTM consists of a set of nonlinear
transformations of the input variable xt = (ŷt,ut) and the output of the previous time step, ht−1.
A single layer LSTM model can be summarized by the following set of equations;

st = Ψs(xt, st−1,ht−1), ht = Ψh(xt, st,ht−1), Pt+1 = Ψp(ht), (3)

in which st and ht are the internal state and output of LSTM, respectively.

2.1 DISCRETIZATION OF PROBABILITY DENSITY FUNCTION

We first consider the problem of modeling the PDF of a random variable ŷ, given an input x, i.e.,
p(ŷ|x). The obtained results can be directly applied to the original problem, p(ŷt+1|Ŷ0:t,U0:t).

1

Workshop track - ICLR 2018

Let α = (α0, · · · , αK) denote a set of real numbers, such that αi−1 < αi for i = 1, · · · ,K, which
defines K disjoint intervals, Ii = (αi−1, αi). Then, a discrete probability can be defined

p(k|x) =

∫
Ik
p(ŷ|x)dy, for k = 1, . . . ,K. (4)

It is clear that p(k|x) is a numerical discretization of the continuous PDF, p(ŷ|x). The discrete
probability p(k|x) can be modeled by a softmax layer (P) as an output of Ψp in (3) such that

p(k|x) = Pk, for k = 1, . . . ,K. (5)

The discretization naturally leads to the conventional cross-entropy (CE) minimization. Suppose we
have a data set, DR = {(ŷi, xi); ŷi ∈ R, xi ∈ R, and i = 1, . . . , N}. We can define a mapping
C : R→ N+ such that C(ŷ) = k, if y ∈ Ik. Then,DR can be easily converted to a new data set for
target labels, DC = {(ci, ŷi, xi); ci ∈ N+, ŷi ∈ R, xi ∈ R, and i = 1, . . . , N}, where ci = C(ŷi).
DC provides a training data set for the following CE loss,

CE = −
N∑
n=2

K∑
k=1

δcnk logPn,k = −
N∑
n=2

logPn,cn , (6)

in which Pn = (Ψp ◦ (Ψh ◦ Ψs))(xn−1, sn−2,hn−2). Note, however, that the CE minimization
does not explicitly guarantee the smoothness of the estimated distribution. To address this issue, we
propose a regularized CE loss.

2.1.1 REGULARIZATION OF CROSS-ENTROPY LOSS

To explicitly impose the smoothness between the classes, we propose to use a regularized cross-
entropy (RCE) minimization, defined by the following loss function

RCE =

N∑
n=2

{
K∑
k=1

−δcnk logPn,k + λ (LPn)
T
LPn

}
,L =

1 −2 1 0 · · · 0
0 1 −2 1 · · · 0
. .
0 · · · 0 1 −2 1

 . (7)

where λ is a penalty parameter and the Laplacian matrix L ∈ RK−2,K . RCE is similar to the
penalized maximum likelihood solution for density estimation (Silverman, 1986), because

P T
n L

TLPn ∼
∫

[p′′(ŷ|x)]
2
dy. (8)

Alternative to adding an explicit regularization to CE, the smoothness can be achieved by enforcing
a spatial correlation in the network output by using a convolution layer. Let õ ∈ RK denote the
last layer of DE-RNN, which was the input to the softmax layer. We can add a convolution layer,
o ∈ RK , on top of õ, such that

oi =

K∑
j=1

1

h
exp

[
−1

2

(
i− j
h

)2
]
õj , for i = 1, · · · ,K, (9)

where the parameter h determines the smoothness of the estimated distribution. Then, o is supplied
to the softmax layer. Using (9), DE-RNN can now be trained by the standard CE. The implicit
regularization, here we call convolution CE (CCE), is analogous to a kernel density estimation.

2.2 MULTIVARIATE TIME SERIES

We propose to train a set of DE-RNNs to compute the joint PDF of a l-dimensional multivariate
time series; ŷt = (ŷ

(1)
t , · · · , ŷ(l)

t) by using the product rule,

p(ŷt+1|Ŷ0:t,U0:t) = p(ŷ
(1)
t+1)

l∏
j=2

p(ŷ
(j)
t+1

∣∣∣ŷ(j−1)
t+1 , · · · , ŷ(1)

t+1, Ŷ0:t,U0:t).

Note that, although it requires training l DE-RNNs to compute the full joint PDF, there is no de-
pendency between the DE-RNNs in the training phase. So, the set of DE-RNNs can be trained in
parallel, which can greatly reduce the training time.

2

Workshop track - ICLR 2018

Figure 1: Comparison of DE-RNN and DeepAR(Flunkert et al., 2017) for (a) Mackey-Glass time
series with Laplace noise and (b) CPU temperature data. In (a), the ground truth is shown in the
dashed line. DE-RNN (•) and DeepAR (◦) are denoted by circles. In (b), the circles denote DE-
RNN, while the solid line is from DeepAR.

Table 1: Normalized errors of the Lorenz time series. DE-RNN results are compared with DeepAR
(DAR), Gaussian Process (GP), and Vector AutoRegressive model (VAR.)

DE-RNN DAR GP VAR
eµ 0.134 0.140 0.506 0.917
eΣ 0.040 0.560 0.596 0.558

2.3 COMPUTING TIME EVOLUTION OF PROBABILITY DISTRIBUTION

Note that even thoughHt+1 = (st+1,ht+1) is computed from deterministic functions from data,

st+1 = Ψs(ŷt+1,Ht), ht+1 = Ψh(ŷt+1, st+1,ht),

Ht+1 is a random variable, because ŷt+1 is a random variable. A multiple-step forecast can be
computed by repeatedly computing the time evolution ofHt as

p(ŷt+n|Ŷ0:t,U0:t+n−1) =

∫
p(ŷt+n|ht+n−1)

t+n−1∏
i=t+1

p(Hi|Hi−1,ui) dHi. (10)

The high dimensional integration in (10) can be evaluated by a Sequential Monte Carlo method.

3 EXPERIMENTS

DE-RNN is tested against three synthetic and two real data sets. For the synthetic data, a modi-
fied Cox-Ingersoll-Ross process, which is a multiplicative noise process, Mackey-Glass with non-
Gaussian noise, and (multivariate) Lorenz times series with a Gaussian noise are used. For the real
data, Mauna Loa CO2 observations and CPU temperature of IBM Power System S822LC are used.

Figure 1 shows the probability distribution, p(ŷt+1|Ŷ0:t), estimated by DE-RNN. It is shown that
DE-RNN represents the Laplace distribution without any special modeling (Figure 1 a). The temper-
ature in the CPU data set is discrete, because the resolution of the temperature sensor is 1◦C. Figure
1 (b) shows that DE-RNN well captures the bimodal distribution due to the 1◦C sensor resolution.

Table 1 shows the normalized root mean-square errors in the expectation (eµ) and covariance (eΣ)
for the Lorenz time series. eΣ is defined by the Frobenius norm. It is shown that DE-RNN makes
a very good prediction of both the expectation and covariance. The error in the covariance in DE-
RNN is only about 4%. Because DeepAR and GP do not consider the off-diagonal components of
the covariance matrix, eΣ of those models are much larger than DE-RNN.

Multiple-step forecasts of DE-RNN show that the prediction uncertainty by DE-RNN does not grow
monotonically in time. For 1,500-step-ahead prediction of the CPU temperature, RMSE is only
0.83◦C, compared to 0.56◦C of the one-step-ahead prediction.

The evaluation of DE-RNN on the synthetic and real data sets shows advantage of DE-RNN over
the compared baselines.

3

Workshop track - ICLR 2018

REFERENCES

V. Flunkert, D. Salinas, and J. Gasthaus. Deepar: Probabilistic forecasting with autoregressive
recurrent network. arXiv preprint arXiv:1704.04110, 2017.

F. A. Gers, J. Schmidhuber, and F. Cummins. Learning to forget: Continual prediction with LSTM.
Neural Comput., 12:2451 – 2471, 2000.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Comput., 9:1735 – 1780, 1997.

H. Lasi, P. Fettke, H. Kemper, T. Feldand, and M. Hoffmann. Industry 4.0. Business & Information
Systems Engineering, 6(4):239–242, 2014.

B. W. Silverman. Density estimation for statistics and data analysis. Chapman & Hall, 1986.

4

	Introduction
	DE-RNN for Noisy Dynamical System
	Discretization of Probability Density Function
	Regularization of Cross-Entropy Loss

	Multivariate Time Series
	Computing Time Evolution of Probability Distribution

	Experiments

