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Abstract
Word embeddings extract semantic features of words from large datasets of text.
Most embedding methods rely on a log-bilinear model to predict the occurrence
of a word in a context of other words. Here we propose word2net, a method that
replaces their linear parametrization with neural networks. For each term in the
vocabulary, word2net posits a neural network that takes the context as input and
outputs a probability of occurrence. Further, word2net can use the hierarchical
organization of its word networks to incorporate additional meta-data, such as
syntactic features, into the embedding model. For example, we show how to share
parameters across word networks to develop an embedding model that includes
part-of-speech information. We study word2net with two datasets, a collection
of Wikipedia articles and a corpus of U.S. Senate speeches. Quantitatively, we
found that word2net outperforms popular embedding methods on predicting held-
out words and that sharing parameters based on part of speech further boosts
performance. Qualitatively, word2net learns interpretable semantic representations
and, compared to vector-based methods, better incorporates syntactic information.

1 Introduction

Word embeddings are an important statistical tool for analyzing language, processing large datasets of
text to learn meaningful vector representations of the vocabulary (Bengio et al., 2003; 2006; Mikolov
et al., 2013b; Pennington et al., 2014). Word embeddings rely on the distributional hypothesis, that
words used in the same contexts tend to have similar meanings (Harris, 1954). More informally (but
equally accurate), a word is defined by the company it keeps (Firth, 1957).
While there are many extensions and variants of embeddings, most rely on a log-bilinear model. This
model posits that each term is associated with an embedding vector and a context vector. Given a
corpus of text, these vectors are fit to maximize an objective function that involves the inner product
of each observed word’s embedding with the sum of the context vectors of its surrounding words.
With useful ways to handle large vocabularies, such as negative sampling (Mikolov et al., 2013a) or
Bernoulli embeddings (Rudolph et al., 2016), the word embedding objective resembles a bank of
coupled linear binary classifiers.
Here we introduce word2net, a word embedding method that relaxes this linear assumption. Word2net
still posits a context vector for each term, but it replaces each word vector with a term-specific neural
network. This word network takes in the sum of the surrounding context vectors and outputs the
occurrence probability of the word. The word2net objective involves the output of each word’s network
evaluated with its surrounding words as input. The word2net objective resembles a bank of coupled
non-linear binary classifiers.
How does word2net build on classical word embeddings? The main difference is that the word
networks can capture non-linear interaction effects between co-occurring words; this leads to a better
model of language. Furthermore, the word networks enable us to share per-term parameters based
on word-level meta-data, such as syntactic information. Here we study word2net models that share
parameters based on part-of-speech (pos) tags, where the parameters of certain layers of each network
are shared by all terms tagged with the same pos tag.
Figure 1a illustrates the intuition behind word2net. Consider the term increase. The top of the
figure shows one observation of the word, i.e., one of the places in which it appears in the data. (This
excerpt is from U.S. Senate speeches.) From this observation, the word2net objective contains the
probability of a binary variable wn;increase conditional on its context (i.e., the sum of the context
vectors of the surrounding words). This variable is whether increase occurred at position n.

1



Under review as a conference paper at ICLR 2018
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verb (v) noun (n)

decrease v cut n
doubling v amount n
increases v saving n

supply v limit n
cost v amounts n

estimates v decreases n
cut v increases n

raising v decrease n
amount v declines n
half adj amounting n

Figure 1: An illustration of deep Bernoulli embeddings. (top left) In word2net, each vocabulary
word v is represented by a neural network parameterized by ˇv . The word network takes as input
the sum of the context vectors ˛v0 of the words in the context and outputs the occurrence probability
of the target word. (bottom left) Word2net enables sharing one the layers across all occurrences of
words with a given ��� tag. (right) Using ��� sharing, we can find the most similar word/tag pairs
to a given query. In the example, the queries are ��������/���� and ��������/����. The most
similar word/tag pairs for the former include mostly verbs such as “decrease,” while for the latter the
most similar results are nouns such as “cut.”

neural network that outputs the probability of that word (Figure 1a). If we are given the ��� tags
of the words, we may use parameter sharing instead in order to form a per-word per-tag neural
network (Figure 1b). Finally, we also propose a method for computing similarities between the neural
network representations of the words and demonstrate that they capture semantic (and even syntactic)
similarities (Figure 1c).

In our empirical study, we show that parameter sharing in word2net performs better than applying
word2vec or standard Benoulli embeddings on the augmented vocabulary of word/tag pairs. We also
demonstrate that deep Bernoulli embeddings provide better predictive log-likelihood when compared
to word2vec or standard Bernoulli embeddings.

� R������ ����

fjrr: moved this to the introduction, needs rewriting here Word embedding models learn semantic
features of words by exploiting the co-occurrence patterns of words in a collection of documents. There
are many extensions and variants of word embeddings (Bengio et al., 2003; 2006; Mnih & Hinton,
2007; Mikolov et al., 2013a;b;c; Pennington et al., 2014; Mnih & Teh, 2012; Mnih & Kavukcuoglu,
2013; Levy & Goldberg, 2014; Vilnis & McCallum, 2015; Barkan, 2016; Bamler & Mandt, 2017).
Most of these approaches rely on a log-bilinear model, in which the emission probabilities depend
on a dot product of the word embedding vectors and the context vectors, as opposed to the deep
neural network architectures proposed by Bengio et al. (2003; 2006) and Mnih & Hinton (2007). Our
model di�ers from these deep neural network architectures in two ways. First, we have a separate
network for each vocabulary word, instead of a single network that outputs the logits for all words in
the vocabulary. Our perspective of a bank of parallel binary classification problems allows for faster
optimization of the networks. Second, our architecture enables incorporating side information (such
as part of speech tags) in specific layers of the network. Recall that word embeddings (without any
further structure) tend to capture semantic properties of the words, and the syntactic properties they
encode are typically redundant (Andreas & Klein, 2014), so there is room for improvement with a
model that allows for additional syntactic structure.

We adopt the perspective of exponential family embeddings (Rudolph et al., 2016), which extend
word embeddings to datasets beyond text. There are also some variants and extensions of exponential
family embeddings (Rudolph & Blei, 2017; Rudolph et al., 2017; Liu & Blei, 2017; Liu et al., 2017),
but they all have in common an exponential family likelihood whose natural parameter is determined
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Figure 1: An illustration of word2net. (a) In word2net, each term v is represented by a neural network
with weights ˇ.`/

v . The word network predicts the probability of a target word (increase, shown
in blue) from its context (green). The input is the sum of the context vectors and the output is the
occurrence probability of the target. (b) Word2net can incorporate syntactic information by sharing an
entire layer (orange) between words with the same pos tag (noun in this case). (c) The fitted word2net
with pos sharing can be queried for semantic similarities of the word networks for each word/tag pair.
In this example, we list the most similar networks to increase/verb and increase/noun.

The idea behind word2net is that the conditional probability ofwn;increase is the output of a multi-layer
network that takes the context as input. Each layer of the network transforms the context into a new
hidden representation, reweighting the latent features according to their relevance for predicting the
occurrence of increase. Note that not illustrated are the 0-variables, i.e., the negative samples,
which correspond to words that are not at position n. In word2net, their probabilities also come from
their corresponding word networks.
Now suppose we have tagged the corpus with pos. Figure 1b shows how to incorporate this syntactic
information into word2net. The network is specific to increase as a noun (as opposed to a verb).
The parameters of the first layer (orange) are shared among all nouns in the collection; the other
layers (blue) are specific to increase. Thus, the networks for increase/noun and increase/verb
differ in how the first layer promotes the latent aspects of the context, i.e., according to which context
features are more relevant for each pos tag. This model further lets us consider these two pos tags
separately. Figure 1c shows the most similar words to each sense of increase; the method correctly
picks out tagged words related to the verb and related to the noun.
Below, we develop the details of word2net and study its performance with two datasets, a collection
of Wikipedia articles and a corpus of U.S. Senate speeches. We found that word2net outperforms
popular embedding methods on predicting held-out words, and that sharing parameters based on pos
further boosts performance. Qualitatively, word2net learns interpretable semantic representations
and, compared to vector-based methods, better incorporates syntactic information.

Related work. Word2net builds on word embeddings methods. Though originally designed as deep
neural network architectures (Bengio et al., 2003; 2006; Mnih & Hinton, 2007), most applications of
word embeddings now rely on log-bilinear models (Mikolov et al., 2013a;b;c; Pennington et al., 2014;
Mnih & Teh, 2012; Mnih & Kavukcuoglu, 2013; Levy & Goldberg, 2014; Vilnis & McCallum, 2015;
Barkan, 2016; Bamler &Mandt, 2017). The key innovation behind word2net is that it represents words
with functions, instead of vectors (Rumelhart et al., 1986) or distributions (Vilnis & McCallum, 2015).
Word2net keeps context vectors, but it replaces the embedding vector with a neural network.
Previous work has also used deep neural networks for word embeddings (Bengio et al., 2003; 2006;
Mnih & Hinton, 2007); these methods use a single network that outputs the unnormalized log proba-
bilities for all words in the vocabulary. Word2net takes a different strategy: it has a separate network
for each vocabulary word. Unlike the previous methods, word2net’s approach helps maintain the
objective as a bank of binary classifiers, which allows for faster optimization of the networks.
To develop word2net, we adopt the perspective of exponential family embeddings (Rudolph et al.,
2016), which extend word embeddings to data beyond text. There are several extensions to exponential
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family embeddings (Rudolph & Blei, 2017; Rudolph et al., 2017; Liu & Blei, 2017), but they all
have in common an exponential family likelihood whose natural parameter has a log-bilinear form.
Word2net extends this framework to allow for non-linear relationships. Here we focus on Bernoulli
embeddings, which are related to word embeddings with negative sampling, but our approach easily
generalizes to other exponential family distributions (e.g., Poisson).

Finally, word embeddings can capture semantic properties of the word, but they tend to neglect most
of the syntactic information (Andreas & Klein, 2014). Word2net introduces a simple way to leverage
the syntactic information to improve the quality of the word representations.

2 Word2Net

In this section we develop word2net as a novel extension of Bernoulli embeddings (Rudolph et al.,
2016). Bernoulli embeddings are a conditional model of text, closely related to word2vec. Specifically,
they are related to continuous bag-of-words (cbow) with negative sampling.1 Wefirst reviewBernoulli
embeddings and then we present word2net as a deep Bernoulli embedding model.

2.1 Background: Bernoulli embeddings

Exponential family embeddings learn an embedding vector �v 2 RK and a context vector ˛v 2 RK

for each unique term in the vocabulary, v D 1; : : : ; V . These vectors encode the semantic properties
of words, and they are used to parameterize the conditional probability of a word given its context.
Specifically, let wn be the V -length one-hot vector indicating the word at location n, such that
wnv D 1 for one term (vocabulary word) v, and let cn be the indices of the words in a fixed-sized
window centered at location n (i.e., the indices of the context words). Exponential family embeddings
parameterize the conditional probability of the target word given its context via a linear combination
of the embedding vector and the context vectors,

p.wnv j cn/ D Bernoulli
�
�.�>v ˙n/

�
; with ˙n ,

X
v02cn

˛v0 : (1)

Here, �.x/ D 1
1Ce�x is the sigmoid function, and we have introduced the notation ˙n for the sum of

the context vectors at location n. Note that Eq. 1 does not impose the constraint that the sum over the
vocabulary words

P
v p.wnv D 1 j cn/ must be 1. This significantly alleviates the computational

complexity (Mikolov et al., 2013b; Rudolph et al., 2016).

This type of exponential family embedding is called Bernoulli embedding, named for its conditional
distribution. In Bernoulli embeddings, our goal is to learn the embedding vectors �v and the context
vectors ˛v from the text by maximizing the log probability of words given their contexts. The data
contains N pairs .wn; cn/ of words and their contexts, and thus we can form the objective function
L.�; ˛/ as the sum of logp.wnv j cn/ for all instances and vocabulary words. The resulting objective
can be seen as a bank of V binary classifiers, where V is the vocabulary size. To see that, we make
use of Eq. 1 and express the objective L.�; ˛/ as a sum over vocabulary words,

L.�; ˛/ D

NX
nD1

VX
vD1

logp.wnv j cn/ D

VX
vD1

0@ X
nW wnvD1

log �.�>v ˙n/C
X

nW wnvD0

log �.��>v ˙n/

1A : (2)

If we hold all the context vectors ˛v fixed, then Eq. 2 is the objective of V independent logistic
regressors, each predicting whether a word appears in a given context or it does not. The positive
examples are those where word v actually appeared in a given context; the negative examples are those
where v did not appear. It is the context vectors that couple the V binary classifiers together.

In practice, we need to either downweight the contribution of the zeros in Eq. 2, or subsample the set
of negative examples for each n (Rudolph et al., 2016). We follow the latter case here, which leads to
negative sampling (Mikolov et al., 2013b). (See the connection in more detail in Appendix B.)

1See Appendix B for more details on the connections.
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2.2 Word2Net as a deep Bernoulli embedding model

Word2net replaces the linear classifiers in Eq. 2 with non-linear classifiers. In particular, we replace
the linear combination �>v ˙n with a neural network that is specific to each vocabulary word v, so that

p.wnv D 1 j cn/ D �
�
f .˙nI ˇv/

�
; (3)

where f .� I ˇv/ W RK ! R is a feed-forward neural network with parameters (i.e., weights and
intercepts) ˇv . The number of neurons of the input layer is K, equal to the length of the context
vectors ˛v . Essentially, we have replaced the per-term embedding vectors �v with a per-term neural
network ˇv . We refer to the per-term neural networks as word networks.
The word2net objective is the sum of the log conditionals,

Lword2net.�; ˛/ D

VX
vD1

0@ X
nW wnvD1

log �
�
f .˙nI ˇv/

�
C

X
nW wnvD0

log �
�
� f .˙nI ˇv/

�1A ; (4)

where we choose the function f .� I ˇv/ to be a three-layer neural network,2

h.1/
nv D tanh

�
˙>n ˇ

.1/
v

�
; h.2/

nv D tanh
�
.h.1/

nv /
>ˇ.2/

v

�
; f .˙nI ˇv/ D .h

.2/
nv /
>ˇ.3/

v : (5)

Replacing vectors with neural networks has several implications. First, the bank of binary classifiers
has additional model capacity to capture nonlinear relationships between the context and the co-
occurrence probabilities. Specifically, each layer consecutively transforms the context to a different
representation until the weight matrix at the last layer can linearly separate the real occurrences of the
target word from the negative examples.
Second, for a fixed dimensionality K, the resulting model has more parameters.3 This increases
the model capacity, but it also increases the risk of overfitting. Indeed, we found that without extra
regularization, the neural networks may easily overfit to the training data. We regularize the networks
via either weight decay or parameter sharing (see below). In the empirical study of Section 3 we
show that word2net fits text data better than its shallow counterparts and that it captures semantic
similarities. Even for infrequent words, the learned semantic representations are meaningful.
Third, we can exploit the hierarchical structure of the neural network representations via parameter
sharing. Specifically, we can share the parameters of a specific layer of the networks of different
words. This allows us to explicitly account for pos tags in our model (see below).
Regularization through parameter sharing enables the use of pos tags. One way to regularize
word2net is through parameter sharing. For parameter sharing, each word is assigned to one of T
groups. Importantly, different occurrences of a term may be associated to different groups.
We share specific layers of the word networks among words in the same group. In this paper, all neural
network representations have 3 layers. We use index ` 2 f1; 2; 3g to denote the layer at which we apply
the parameter sharing. Then, for each occurrence of term v in group t we set ˇ.`/

v D ˇ
.`/
t .

Consider now two extreme cases. First, for T D 1 group, we have a strong form of regularization by
forcing all word networks to share the parameters of layer `. The number of parameters for layer ` has
been divided by the vocabulary size, which implies a reduction in model complexity that might help
prevent overfitting. This parameter sharing structure does not require side information and hence can
be applied to any text corpus. In the second extreme case, each word is in its own group and T D V .
This set-up recovers the model of Eqs. 4 and 5, which does not have parameter sharing.
When we have access to a corpus annotated with pos tags, parameter sharing lets us use the pos
information to improve the capability of word2net by capturing the semantic structure of the data.
Andreas & Klein (2014) have shown that word embeddings do not necessarily encode much syntactic
information, and it is still unclear how to use syntactic information to learn better word embeddings.
The main issue is that many words can appear with different tags; for example, fish can be both
a noun and refer to the animal or a verb and refer to the activity of catching the animal. On the
one hand, both meanings are related. On the other hand, they may have differing profiles of which

2Three layers performed well in our experiments, allowing for parameter sharing to include pos tags.
3For fairness, in Section 3 we also compare to shallow models with the same number of parameters.
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contexts they appear in. Ideally, embedding models should be able to capture the difference. However,
the simple approach of considering fish/noun and fish/verb as separate terms fails because there
are few occurrences of each individual term/tag pair. (We show that empirically in Section 3.)
Exploiting the hierarchical nature of the network representations of word2net, we incorporate pos
information through parameter sharing as follows. Assume that for location n in the text we have a
one-hot vector sn 2 f0; 1gT indicating the pos tag. To model the observation at position n, we use a
neural network specific to that term/tag combination,

p.wnv D 1; snt D 1 j cn/ D �
�
f
�
˙nI ˇ

.:`/
v ; ˇ

.`/
t

��
: (6)

That is, the neural network parameters are combined to form a neural network in which layer ` has
parameters ˇ.`/

t and the other layers have parameters ˇ.:`/
v . Thus, we leverage the information about

the pos tag t by replacing ˇ.`/
v with ˇ.`/

t in layer `, resulting in pos parameter sharing at that layer. If
the same term v appears at a different position n0 with a different pos tag t 0, at location n0 we replace
the parameters ˇ.`/

v of layer ` with ˇ.`/
t 0 . Figure 1b illustrates pos parameter sharing at ` D 1.

Even though now we have a function f .�/ for each term/tag pair, the number of parameters does not
scale with the product V � T ; indeed the number of parameters of the network with pos information
is smaller than the number of parameters of the network without side information (Eq. 5). The reason
is that the number of parameters necessary to describe one of the layers has been reduced from V to
T due to parameter sharing (the other layers remain unchanged).
Finally, note that we have some flexibility in choosing which layer is tag-specific and which layers are
word-specific. We explore different combinations in Section 3, where we show that word2net with
pos information improves the performance of word2net. The parameter sharing approach extends to
side information beyond pos tags, as long as the words can be divided into groups, but we focus on
parameter sharing across all words (T D 1) or across pos tags.
Semantic similarity of word networks. In standard word embeddings, the default choice to compute
semantic similarities between words is by cosine distances between the word vectors. Since word2net
replaces the word vectors with word networks, we can no longer apply this default choice. We next
describe the procedure that we use to compute semantic similarities between word networks.
After fitting word2net, each word is represented by a neural network. Given that these networks
parameterize functions, we design a metric that accounts for the fact that two functions are similar
if they map similar inputs to similar outputs. So the intuition behind our procedure is as follows:
we consider a set of K-dimensional inputs, we evaluate the output of each neural network on this
set of inputs, and then we compare the outputs across networks. For the inputs, we choose the V
context vectors, which we stack together into a matrix ˛ 2 RV�K . We evaluate each network f .�/
row-wise on ˛ (i.e., feeding each ˛v as a K-dimensional input to obtain a scalar output), obtaining
a V -dimensional summary of where the network f .�/ maps the inputs. Finally, we use the cosine
distance of the outputs to compare the outputs across networks. In summary, we obtain the similarity
of two words w and v as

dist .w; v/ D
f .˛I ˇw/

>f .˛I ˇv/

jjf .˛I ˇw/jj2 jjf .˛I ˇv/jj2
: (7)

If we are using parameter sharing, we can also compare pos-tagged words; e.g., we may ask how
similar is fish/noun to fish/verb. The two combinations will have different representations under
the word2net method trained with pos-tag sharing. Assuming that layer ` is the shared layer, we
compute the semantic similarity between the word/tag pair Œw; t � and the pair Œv; s� as

dist.Œw; t �; Œv; s�/ D
f .˛I ˇ

.:`/
w ; ˇ

.`/
t />f .˛I ˇ

.:`/
v ; ˇ

.`/
s /

jjf .˛I ˇ
.:`/
w ; ˇ

.`/
t /jj2 jjf .˛I ˇ

.:`/
v ; ˇ

.`/
s /jj2

: (8)

3 Empirical results

In this section we study the performance of word2net on two datasets, Wikipedia articles and Senate
speeches. We show that word2net fits held-out data better than existing models and that the learned
network representations capture semantic similarities. Our results also show that word2net is superior
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Table 1: Summary of the two corpora analyzed in Section 3.

corpus size vocabulary tagger tags tagged vocabulary
Wikipedia 17M words 15K terms NLTK 11 tags 49K tagged terms
Senate speeches 24M words 15K terms CoreNLP 11 tags 38K tagged terms

at incorporating syntactic information into the model, which improves both the predictions and the
quality of the word representations.

Data. We use word2net to study two data sets, both with and without pos tags:

Wikipedia: The text8 corpus is a collection of Wikipedia articles, containing 17M words. We form
a vocabulary with the 15K most common terms, replacing less frequent terms with the unknown
token. We annotate text8 using the nltk pos tagger and the universal tagset.4 Table 7 in Appendix C
shows a description of the tagset. We also form a tagged dataset in which each term/tag combination
has a unique token, resulting in a vocabulary of 49K tagged terms.

Senate speeches: These are the speeches given in the U.S. Senate in the years 1916-2009. The data is
a transcript of spoken language and contains 24M words. Similarly as above, we form a vocabulary
of 15K terms. We annotate the text using the Stanford CoreNLP pos tagger (Manning et al., 2014),
and we map the tags to the universal tagset. We form a tagged dataset with 38K tagged terms.

Table 1 summarizes the information about both corpora. We split each dataset into a training, a
validation, and a test set, which respectively contain 90%, 5%, and 5% of the words. Additional
details on preprocessing are in Appendix C.

Methods. We compare word2net to its shallow counterpart, the cbow model (Mikolov et al., 2013b),
which is equivalent to Bernoulli embeddings (b-emb)5 (Rudolph et al., 2016). We also compare with
the skip-gram model.6 (Mikolov et al., 2013b) We run b-emb/cbow and skip-gram on the data and
also on the augmented data of pos-tagged terms. In detail, the methods we compare are:

� b-emb/cbow: Learns vector representations for each word (or tagged word) by optimizing Eq. 2.
� Skip-gram: Learns vector representations for each word (or tagged word) by optimizing Eq. 12.
� Word2net: Learns a neural network representation for each word by optimizing Eq. 4. We study
the following parameter sharing schemes:
1.

pos

pos

pos

all

all

all

all

all

all

: no parameter sharing.
2.

pos

pos

pos

all

all

all

all

all

all

: layer ` shared between all networks.
3.

pos

pos

pos

all

all

all

all

all

all

: layer ` shared between terms with the same part-of-speech (pos) tag.
For word2net, we experiment with the context dimensions K 2 f20; 100g. The context dimension is
also the dimension of the input layer. For K D 20, we useH1 D 10 hidden units in the first hidden
layer of each word network and H2 D 10 hidden units in the second layer. For K D 100, we use
H1 D H2 D 20 hidden units. Without parameter sharing, the number of parameters per word is
K C KH1 CH1H2 CH2. The shallow models have 2K parameters per term (the entries of the
context and word vectors). Since we want to compare models both in terms of context dimension K
and in terms of total parameters, we fit the methods with K 2 f20; 165; 100; 1260g.

We experiment with context sizes jcnj 2 f2; 4; 8g and we train all methods using stochastic gradient
descent (sgd) (Robbins & Monro, 1951) with jSnj D 10 negative samples on the Wikipedia data and
with jSnj D 20 negative samples on the Senate speeches. We use l2 regularization with standard
deviation 10 for the word and context vectors, as well as weight decay for the neural networks. We
use Adam (Kingma & Ba, 2015) with Tensorflow’s default settings (Abadi et al., 2016) to train all
methods for up to 30000 iterations, using a minibatch size of 4069 or 1024. We assess convergence
by monitoring the loss on a held-out validation set every 50 iterations, and we stop training when the
average validation loss starts increasing. We initialize and freeze the context vectors of the word2net
methods with the context vectors from a pretrained Bernoulli embedding with the same context
dimension K. Network parameters are initialized according to standard initialization schemes of

4See http://nltk.org.
5See Appendix B for the detailed relationship between b-emb and cbow with negative sampling.
6The skip-gram objective is related to cbow/b-emb through Jensen’s inequality (see Appendix B).
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Table 2: Word2net outperforms existing word embedding models (skip-gram and b-emb/cbow)
in terms of test log-likelihood on the Wikipedia data, both with and without pos tags. We compare
models with the same context dimensionK and the same total number of parameters p=V for different
context sizes (cs). (Results on more configurations are in Appendix A.) For word2net, we study
different parameter sharing schemes, and the color coding indicates which layer is shared and how, as
in Figure 1. Parameter sharing improves the performance of word2net, especially with pos tags.

vocabulary K p=V cs 2 cs 4 cs 8
Mikolov et al. (2013b):

skip-gram words 20 40 �1:061 �1:062 �1:071
skip-gram tagged words 20 240 �2:994 �3:042 �3:042

Mikolov et al. (2013b); Rudolph et al. (2016):
b-emb/cbow words 20 40 �1:023 �0:976 �0:941
b-emb/cbow words 165 330 �1:432 �1:388 �1:381
b-emb/cbow tagged words 20 240 �1:411 �1:437 �1:461

this work: sharing
word2net

pos

pos

pos

all

all

all

all

all

all

20 330 �0:940 �0:912 �0:937
word2net

pos

pos

pos

all

all

all

all

all

all

20 � 120 �1:040 �1:003 �0:964
word2net

pos

pos

pos

all

all

all

all

all

all

20 � 230 �1:191 �1:141 �1:111
word2net

pos

pos

pos

all

all

all

all

all

all

20 � 320 �0:863 �0:881 �0:890
word2net pos

pos

pos

all

all

all

all

all

all

20 � 120 �0:918 �0:914 �0:871
word2net

pos

pos

pos

all

all

all

all

all

all

20 � 230 �0:844 �0:801 �0:793
word2net

pos

pos

pos

all

all

all

all

all

all

20 � 320 �0:840 �0:822 �0:862

feed-forward neural networks (Glorot & Bengio, 2010), i.e., the weights are initialized from a uniform
distribution with bounds˙

p
6=
p
Hin CHout.

Quantitative results: Word2net has better predictive performance. We compute the predictive
log-likelihood of the words in the test set, logp.wnv j cn/. For skip-gram, which was trained to predict
the context words from the target, we average the context vectors ˛v for a fair comparison.7

Table 2 shows the results for the Wikipedia dataset. We explore different model sizes: with the same
number of parameters as word2net, and with the same dimensionality K of the context vectors. For
word2net, we explore different parameter sharing approaches. Table 5 in Appendix A shows the
results for other model sizes (includingK D 100). In both tables, word2net without parameter sharing
performs at least as good as the shallow models. Importantly, the performance of word2net improves
with parameters sharing, and it outperforms the other methods.

Tables 2 and 5 also show that b-emb/cbow and skip-gram perform poorly when we incorporate
pos information by considering an augmented vocabulary of tagged words. The reason is that
each term becomes less frequent, and these approaches would require more data to capture the co-
occurrence patterns of tagged words. In contrast, word2net with pos parameter sharing provides the
best predictions across all methods (including other versions of word2net).

Finally, Table 6 in Appendix A shows the predictive performance for the U.S. Senate speeches. On
this corpus, skip-gram performs better than b-emb/cbow and word2net without parameter sharing;
however, word2net with pos sharing also provides the best predictions across all methods.

Qualitative results: Word2net captures similarities and leverages syntactic information. Table 3
displays the similarity between word networks (trained on Wikipedia with parameter sharing at layer
` D 1), compared to the similarities captured by word embeddings (b-emb/cbow). For each query
word, we list the three most similar terms, according to the learned representations. The word vectors
are compared using cosine similarity, while the word networks are compared using Eq. 7. The table
shows that word2net can capture latent semantics, even for less frequent words such as parrot.
Table 4 shows similarities of models trained on the Senate speeches. In particular, the table compares:
b-emb/cbow without pos information, b-emb/cbow trained on the augmented vocabulary of tagged
words, and word2net with pos parameter sharing at the input layer (` D 1). We use Eq. 8 to compute
the similarity across word networks with pos sharing. We can see that word2net is superior at
incorporating syntactic information into the learned representations. For example, the most similar

7If we do not average, the held-out likelihood of skip-gram becomes worse.
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Table 3: The word networks fitted using word2net capture semantic similarities. We compare the top
3 similar words to several query words (shaded in gray) for cbow/b-emb and word2net, trained on
the Wikipedia dataset. The numbers in parenthesis indicate the frequency of the query words.

rate (3000)
cbow word2net

expectancy capacity
per amount

increase energy

vote (1000)
cbow word2net
votes elect
voting candidate
election candidates

coffee (500)
cbow word2net
bananas beans
potatoes juice
pepper poultry

parrot (70)
cbow word2net
turtle dolphin
beaver crow
pratchett dodo

Table 4: Word2net learns better semantic representations by exploiting syntactic information. The
top 3 similar words to several queries are listed for different models fitted to the Senate speeches.
We compare cbow trained without pos tags (left), cbow with pos tags (center), and word2net with
pos parameter sharing (right). The pos tags are noted in orange. Parameter sharing helps word2net
capture better semantic similarities, while adding the pos information to cbow hurts its performance.

me (pron)
cbow cbow pos word2net
like governor n myself pron

senator senator from alabama n my pron
just used adj himself pron

because (sc)
cbow cbow pos word2net
but unemployed n as sc

reason annuity n that sc
that shelled v through sc

causes (n)
cbow cbow pos word2net
fatal pro adj consequences n

consequences enough adv clash n
coupled positions n handicaps n

say (v)
cbow cbow pos word2net
think time v think v
what best adj know v
just favour n answer v

networks to the pronoun me are other pronouns such as myself, my, and himself. Word networks
are often similar to other word networks with the same pos tag, but we also see some variation. One
such example is in Figure 1c, which shows that the list of the 10 most similar words to the verb
increase contains the adjective half.

4 Discussion

We have presented word2net, a method for learning neural network representations of words. The
word networks are used to predict the occurrence of words in small context windows and improve
prediction accuracy over existing log-bilinear models. We combine the context vectors additively, but
this opens the door for future research directions in which we explore other ways of combining the
context information, such as accounting for the order of the context words and their pos tags.

We have also introduced parameter sharing as a way to share statistical strength across groups of words
and we have shown empirically that it improves the performance of word2net. Another opportunity
for future work is to explore other types of parameter sharing besides pos sharing, such as sharing
layers across documents or learning a latent group structure together with the word networks.
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Appendix

A Additional results

For completeness, we show here some additional results that we did not include in the main text for
space constraints.
In particular, Table 5 compares the test log-likelihood of word2net with the competing models—
namely, skip-gram and b-emb/cbow. All methods are trained with negative sampling, as described
in the main text. This table shows the results for the Wikipedia dataset, similarly to Table 2, but
it includes other model sizes (i.e., another value of K). In this table, word2net with no parameter
sharing performs similarly to b-emb/cbow with the same number of parameters, but its performance
can be further improved with part-of-speech (pos) parameter sharing.
Table 6 shows the test log-likelihood for the U.S. Senate speeches. Here, skip-gram is the best method
that does not use pos tags, but it is outperformed by word2net with pos parameter sharing.

Table 5: Comparison of the test log-likelihood across different models on the Wikipedia dataset. We
compare models with the same context dimension K and the same total number of parameters p=V
for different context sizes (“cs”). For word2net, we explore different parameter sharing schemes. The
color coding of the parameter sharing (same as Figure 1) indicates which layer is shared and how.

vocabulary K p=V cs 2 cs 4 cs 8
Mikolov et al. (2013b):

skip-gram words 100 200 �1:107 �1:053 �1:043
skip-gram tagged words 100 1200 �3:160 �3:151 �3:203

Mikolov et al. (2013b); Rudolph et al. (2016):
b-emb/cbow words 100 200 �1:212 �1:160 �1:127
b-emb/cbow tagged words 100 1200 �1:453 �3:387 �3:433
b-emb/cbow words 1260 2520 �3:772 �2:397 �2:506

this work: sharing
word2net

pos

pos

pos

all

all

all

all

all

all

100 2520 �1:088 �1:049 �1:012
word2net

pos

pos

pos

all

all

all

all

all

all

100 � 520 �1:041 �0:988 �1:001
word2net

pos

pos

pos

all

all

all

all

all

all

100 � 2120 �1:114 �1:059 �1:016
word2net pos

pos

pos

all

all

all

all

all

all

100 � 521 �0:828 �0:807 �0:770
word2net

pos

pos

pos

all

all

all

all

all

all

100 � 2120 �0:892 �0:850 �0:822

B Relation between Bernoulli embeddings and word2vec

Word2vec (Mikolov et al., 2013b) is one of the most widely used method for learning vector rep-
resentations of words. There are multiple ways to implement word2vec. First, there is a choice of
the objective. Second, there are several ways of how to approximate the objective to get a scalable
algorithm. In this section, we describe the two objectives, continuous bag-of-words (cbow) and
skip-gram, and we focus on negative sampling as the method of choice to achieve scalability. We
describe the similarities and differences between Bernoulli embeddings (Rudolph et al., 2016) and
these two objectives. In summary, under certain assumptions Bernoulli embeddings are equivalent to
cbow with negative sampling, and are related to skip-gram through Jensen’s inequality.

b-emb� cbow (negative sampling)

First we explain how Bernoulli embeddings and cbow with negative sampling are related. Consider
the Bernoulli embedding full objective,

L.�; ˛/ D
X

n

0@ X
vW wnvD1

log �.�>v ˙n/C
X

vW wnvD0

log �.��>v ˙n/

1A : (9)

In most cases, the summation over negative examples (wnv D 0) is computationally expensive to
compute. To address that, we form an unbiased estimate of that term by subsampling a random set Sn
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Table 6: Comparison of the test log-likelihood across different models on the Senate speeches. We
compare models with the same context dimension K and the same total number of parameters p=V
for different context sizes (“cs”). For word2net, we explore different parameter sharing schemes. The
color coding of the parameter sharing (same as Figure 1) indicates which layer is shared and how.

vocabulary K p=V cs 2 cs 4 cs 8
Mikolov et al. (2013b):

skip-gram words 20 40 �1:052 �1:080 �1:061
skip-gram tagged words 20 240 �1:175 �1:199 �1:227

Mikolov et al. (2013b); Rudolph et al. (2016):
b-emb/cbow words 20 40 �1:274 �1:246 �1:222
b-emb/cbow tagged words 20 240 �1:352 �1:340 �1:339
b-emb/cbow words 165 330 �1:735 �1:734 �1:744

this work: sharing
word2net

pos

pos

pos

all

all

all

all

all

all

20 330 �1:406 �1:555 �1:401
word2net

pos

pos

pos

all

all

all

all

all

all

20 � 120 �1:276 �1:256 �1:243
word2net

pos

pos

pos

all

all

all

all

all

all

20 � 230 �1:462 �1:435 �1:413
word2net pos

pos

pos

all

all

all

all

all

all

20 � 120 �0:873 �0:860 �0:850
word2net

pos

pos

pos

all

all

all

all

all

all

20 � 230 �1:057 �1:034 �1:015

of terms and rescaling by V�1
jSnj

,

bL.�; ˛/ DX
n

0@ X
vW wnvD1

log �.�>v ˙n/C 
V � 1

jSnj

X
v2Sn

log �.��>v ˙n/

1A : (10)

Here, we have introduced an auxiliary coefficient  . The estimate is unbiased only for  D 1;
however, Rudolph et al. (2016) showed that downweighting the contribution of the zeros works better
in practice.8 In particular, if we set the downweight factor as  D jSnj

V�1
, we recover the objective of

cbow with negative sampling,

bL.�; ˛/ DX
n

0@ X
vW wnvD1

log �.�>v ˙n/C
X

v2Sn

log �.��>v ˙n/

1A � LCBOW.�; ˛/ (11)

There are two more subtle theoretical differences between both. The first difference is that Bernoulli
embeddings include a regularization term for the embedding vectors, whereas cbow does not. The
second difference is that, in Bernoulli embeddings, we need to draw a new set of negative samples
Sn at each iteration of the gradient ascent algorithm (because we form a noisy estimator of the
downweighted objective). In contrast, in cbow with negative sampling, the samples Sn are drawn
once in advance and then hold fixed. In practice, for large datasets, we have not observed significant
differences in the performance of both approaches. For simplicity, we draw the negative samples Sn

only once.

cbow (negative sampling) � skip-gram (negative sampling)

Now we show how cbow and skip-gram are related (considering negative sampling for both). Recall
that the objective of cbow is to predict a target word from its context, while the skip-gram objective
is to predict the context from the target word. Negative sampling breaks the multi-class constraint
that the sum of the probability of each word must equal one, and instead models probabilities of the
individual entries of the one-hot vectors representing the words.
When we apply negative sampling, the cbow objective becomes Eq. 11. The skip-gram objective is
given by

Lskip-gram.�; ˛/ D
X

.n;v/W wnvD1

0@X
v02cn

log �
�
�>v ˛v0

�
C

X
v02Sn

log �
�
� �>v ˛v0

�1A ; (12)

8This is consistent with the approaches in recommender systems (Hu et al., 2008).
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Table 7: Universal pos tagset.

Tag Description

adj adjective
adp adposition
adv adverb
conj conjuction
det determiner, article
n noun

num numeral
prt particle
pron pronoun
sc preposition or subordinating conjuction
v verb
x other

That is, for each target term wnv , the cbow objective has one term while the skip-gram objective
has jcnj terms. Consider a term .n; v/ for which wnv D 1. We take the corresponding cbow term
from Eq. 11 and we apply Jensen’s inequality to obtain the corresponding skip-gram term in Eq. 12:

log �.�>v ˙n/ D log �

0@�>v X
v02cn

˛v0

1A � X
v02cn

log �
�
�>v ˛v0

�
: (13)

Here, we have made use of the concavity of the log �.�/ function. In general, this is a consequence of
the convexity of the log-normalizer of the (Bernoulli) exponential family distribution.
This holds for the “positive” examples wnv . As for the negative examples (wnv D 0), the comparison
is not as straightforward, because the choice of terms in Eqs. 11 and 12 is not exactly the same. In
particular, Eq. 11 holds v0 fixed and draws v from the noise distribution, while Eq. 12 holds v fixed
and draws v0 from the noise distribution.

C Data preprocessing

In this paper we study Wikipedia articles (text8) and a corpus of U.S. Senate speeches. On both
corpora, we restrict the vocabulary to the 15K most frequent words, replacing all the remaining words
with a designated token. We annotate the data using nltk tagger9 or the Stanford CoreNLP tagger
(Manning et al., 2014), using the universal tagset shown in Table 7.
The Senate speeches contain a lot of boilerplate repetitive language; for this reason, we tokenize
around 350 frequent phrases, such as senator from alabama or united states, considering the
entire phrase an individual vocabulary term. We apply the pos tagger before this tokenization step,
and then we assign the noun tag to all phrases.
We split the data into training (90%), testing (5%), and validation (5%) sets. We use the validation set
to assess convergence, as explained in the main text. We subsample the frequent words following
Mikolov et al. (2013b); i.e., each word wn in the training set is discarded with probability

Prob.wn is discarded/ D 1 �

s
t

frequency.wn/
; (14)

where frequency.wn/ denotes the frequency of word wn, and t D 10�5.
For each method, we use jSnj D 10 negative samples on the Wikipedia articles and jSnj D 20
negative samples on the Senate speeches. Following Mikolov et al. (2013b), we draw the negative
samples from the unigram distribution raised to the power of 0:75.

9See http://nltk.org

12

http://nltk.org

	Introduction
	Word2Net
	Background: Bernoulli embeddings
	Word2Net as a deep Bernoulli embedding model

	Empirical results
	Discussion
	Additional results
	Relation between Bernoulli embeddings and word2vec
	Data preprocessing

