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ABSTRACT

Deep learning techniques have emerged as the de facto method for solving many
classification-based computer vision tasks (He et al.| (2016); Ren et al.| (2015);
Krause et al.[(2015)). Each of these tasks require multiple (often hundreds of) ex-
amples of each category in order to learn accurate classifiers. More recently, com-
plex visual reasoning tasks have been proposed to challenge this classification-
based paradigm (Johnson et al| (2017)). Deep networks that succeed on the
CLEVR task learn to combine information from multiple sub-systems rather than
attempting to extract all necessary information in a single forward pass (Santoro
et al.| (2017)). We explore a similar setting which compares multi-class classifi-
cation networks against query-based networks across a wide variety of attributes
in a single image. We show that query-based networks outperform traditional
multi-class networks given a fixed network capacity due to their ability to focus
on information relevant to the current query. We also show that query networks
learn faster than multi-class networks because their focus-based representation on
specific attributes allows for more multi-modal flexibility per training iteration.

1 INTRODUCTION

Much of the power of deep learning stems from its ability to encode generic features which can be
combined hierarchically in order to form complex decision boundaries which generalize well to new
examples. CNNs are often described as extracting different granularities of image features (edges,
textures, parts) and combining them in order to perform classification (Zeiler & Fergus| (2014)).
However, this style of network cannot be easily extended to tasks with more complex output spaces
such as attribute prediction and visual question answering (VQA). A naive classification network
for attributes (e.g. one class for white dog, one for black dog etc.) would have exponentially more
output classes than a typical classification network . A multi-class prediction network (e.g. one
output for white or not, one for dog or not etc.) would force the network to encode many disparate
image features into an overlapping feature space. Similarly, a VQA network which feeds the ques-
tion in after extracting generic image features forces the network to encode enough information to
potentially answer any question that could be asked about the image. This fundamental problem
will appear in any network which requires a single representation to be reused for multiple unrelated
decisions. To mitigate this issue, we explore a simpler form of query networks, a model which is
inherently multi-modal and can represent different information based on the various decisions that
must be made.
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Figure 1: Comparison of query network structure to traditional multi-class classification networks.
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2 QUERY NETWORKS

Query networks (shown in Figure[I) take as input both an image and a query about certain proper-
ties of the image. This allows the network to switch its focus and disentangle multi-modal problems
much more directly. In this work, the queries take the form of an attribute one-hot encoding, but they
could be extended to more complex encodings such as question embeddings or texture patch encod-
ings. Others have suggested similar architectures, but normally query embeddings are connected
to fully-connected layers, meaning all visual processing has already occurred (Antol et al.| (2013);
Santoro et al|(2017)). Our structure allows the network to adjust visual feature extraction based on
the query itself. In our experiments, we explore the implications of this structure on a controlled task
in order to show its effectiveness; we show that query networks with limited capacity outperform
traditional multi-class networks.

3 EXPERIMENTAL FRAMEWORK

We design a testing framework which directly compares multi-class classification networks with
query networks. We generate data in a randomized fashion which simplifies the feature learning
problem and removes the possibility of unintentional image bias (i.e. no attribute will be easier or
harder by chance based on some unrelated image features). We also control for network capacity
by using the same underlying structure for multi-class and query networks and by testing across a
range of architectures.

3.1 DATA

In order to explore the differences between query-based and query-free learning we built a synthetic
dataset designed to produce simple images with many attributes. These images contain cartoons of
mushrooms with various sizes, shapes, colors and patterns. Examples of these images can be seen
in Figure 2] Each image is generated by randomly choosing several discrete parameters such as cap
style, color, and pattern, and real-valued parameters such as height, width, and bend angle. Once the
image is generated, these parameters are discretized into thirty-five binary values that serve as a label
vector for the image. This dataset has five thousand training images and five thousand test images,
each with a 35-bit label vector. Each image is 128 x 128. The goal of the learning system is to
predict yes or no for each of the 35 attributes. We consider each attribute’s accuracy independently
in order to avoid biasing our results on performance on more difficult attributes.

Figure 2: Forty-five example images from our dataset. The top left mushroom has attribute labels
“blue stalk, purple cap, thin stripes, left tilt” among others. Best viewed in color.

3.2 NETWORK STRUCTURES

We directly compare performance of query networks with multi-class networks by keeping their
overall structure and capacity similar for each experiment. We additionally train multiple indepen-
dent single-attribute networks to provide an upper bound on performance given a fixed structure.
We conducted several ablation tests to study the effect of different network parameters on perfor-
mance (such as number of convolutional layers), but due to space considerations we report only the
ablation on network capacity, which had the greatest effect on overall performance. Therefore all
networks in this paper consist of four convolutional layers followed by three fully-connected layers.
Query networks have an additional input of the query attribute index which is fed through an em-
bedding layer and tiled to 128 x 128. This tiling is stacked on top of the image and fed into the first
convolutional layer. All convolutional layers have kernels of size 3 x 3 and are followed by ReLU
nonlinearities, batch normalization [Ioffe & Szegedy|(2015) and 2 x 2 max-pooling with a stride of
2 for downsampling. All fully-connected layers have ReL.U nonlinearities and dropout of 0.5 during
training. In order to test performance on our dataset, we trained each network for forty epochs. We
use the Adam optimizer (Kingma & Bal (2014)) with a fixed learning rate of le-4 and a batch size of
64 for all experiments.
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4 RESULTS
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Figure 3: Bar charts showing the performance of various network architectures on the Mushroom
test set. We average accuracy across all attributes to avoid biasing results based on the hardest
classes. Network capacity increases to the right.
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Figure 4: Test set performance during training. The query networks learn much faster than the
equivalent multi-class networks. Here we show the networks with 64 convolution filters and 256
fully connected features.

We first evaluate the performance of various network architectures on the Mushroom dataset, report-
ing accuracies for multiple models of varying network capacity in figure [3] Traditional multi-class
classification networks struggle to learn feature extractors at limited capacity, as shown by the first
two plots in figure 3] With equivalent capacity, query networks are much more able to master the
Mushroom task. For single-class networks, we train individual networks on each feature, allowing
them to fully specialize on a specific attribute. These act as an upper bound on network performance
for a given capacity. The query networks match the single-class networks’ performance in nearly all
cases.

By increasing the overall capacity of the networks, multi-class networks can match the performance
of query networks. This indicates that query networks are effectively able to switch modes and reuse
existing capacity based on the input attribute, whereas multi-class networks are forced to represent
all features simultaneously.

Figure [ shows the performance of the query and multi-class networks during training. Query net-
works are able to learn much faster than multi-class networks, likely because the gradients of differ-
ent inputs will not directly compete to adjust the same network weights; because the query network
can extract different features based on the inputs, the outputs (and gradients) can be uncorrelated be-
tween two questions. This is not the case for multi-class networks which must use the same feature
representation to answer multiple unrelated questions.

5 CONCLUSION

In this paper, we evaluate the effectiveness of query networks compared to traditional multi-class
networks, showing an improvement in performance and training time for a fixed network capacity.
This suggests that the query networks can adjust their focus based on the inputs rather than being
forced to represent all aspects of the image in a single feature extraction step. We believe query
networks can increase performance in many tasks where the output depends on more than just the
image itself.
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