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Abstract

In this paper, we explore the psychological relevance, similarity to brain represen-
tations, and subject-invariance of latent space representations in generative models.
Using fMRI data from four subjects who viewed over 9,000 visual stimuli, we con-
ducted three experiments to investigate this alignment. First, we assessed whether
a linear mapping between the latent space of a generative mode, in this case a very
deep VAE (VDVAE), and fMRI brain responses could accurately capture cognitive
properties, specifically emotional valence, of the visual stimuli presented to both
humans and machines. Second, we examined whether perturbing psychologically
relevant dimensions in either the generative model or human brain data would
produce corresponding cognitive effects in both systems — across models and hu-
man subjects. Third, we investigated whether a nonlinear mapping, approximated
via a Taylor expansion up to the fifth degree, would outperform linear mapping
in aligning cognitive properties. Our findings revealed three key insights: (1)
the latent space of the generative model aligns with fMRI brain responses across
all subjects tested (r ≈ 0.4), (2) perturbations in the psychologically relevant
dimensions of both the fMRI data and the generative model resulted in highly
consistent effects across the aligned systems (both the model and human subjects),
and (3) a linear mapping, approximated using Ridge regression, performed as well
as or better than all Taylor expansions we tested. Together, these results suggest a
universal cognitive alignment between humans and between human-model systems.
This universality holds significant potential for advancing our understanding of
basic cognitive processes and offers promising new avenues for studying mental
disorders.
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1 Introduction

Understanding how neural responses in the brain lead to cognitive experiences and how these experi-
ences can be modulated is a central goal in neuro-engineering with promising clinical implications
Sani et al. [2021]. For example, individuals with major depressive disorder (MDD) often exhibit a
negative cognitive bias, perceiving the emotional valence of visual stimuli more negatively compared
to healthy individuals Hamilton and Gotlib [2008].

However, developing effective neuromodulation frameworks to address such biases presents several
challenges. First, our understanding of how the brain constructs cognitive experiences remains
limited, including the mechanisms by which visual stimuli evoke emotions like pleasantness or
arousal Herbet and Duffau [2020], Conwell et al. [2021, 2023]. Second, while neural modulation
techniques like transcranial electrical stimulation (tES) can alter brain activity, progress in linking
neural changes to specific cognitive outcomes via computational models has been slow Sellers
et al. [2024], Camacho-Conde et al. [2023], Hahn et al. [2023a], Teckentrup et al. [2021]. Third,
despite clear behavioral and cognitive symptoms in disorders like MDD, we lack a comprehensive
understanding of the altered neural patterns that underlie these disorders and the interventions that
could reverse their characteristic biases Winter et al. [2024], Hahn et al. [2023b], Oganesian and
Shanechi [2024].

A promising avenue to address these challenges involves leveraging the alignment between brain
representations and those in artificial intelligence (AI) models Goetschalckx et al. [2021]. If strong
alignment exists between the brain’s representational spaces and those of AI models, computational
systems could help explain how cognition arises from neurobiological components, advancing
cognitive computational neuroscience. While many studies have explored neural representational
alignment Sucholutsky et al. [2023], focusing mainly on how AI model activations relate to fMRI
brain responses, few have examined whether these models naturally represent deeper psychological
constructs Goetschalckx et al. [2021], such as emotional valence Conwell et al. [2021].

In this paper, we investigate the cognitive alignment between humans and AI by examining whether
the latent space representations of Very Deep Variational Autoencoders (VDVAE) are neurally and
psychologically aligned with human brain representations. Specifically, we focus on the following
questions: First, can a linear mapping between the latent space of a VDVAE and fMRI brain responses
accurately predict emotional valence, a key cognitive property, in response to visual stimuli in both
humans and machines? Second, do changes in the latent spaces of the generative model or the human
brain produce corresponding effects on cognitive responses in the aligned systems? Finally, we
explore whether a nonlinear mapping, approximated using a Taylor expansion up to the fifth degree,
can improve the alignment of cognitive properties compared to a linear mapping.

Using fMRI responses from four subjects exposed to over 9,000 visual stimuli Allen et al. [2022], we
explore these questions, particularly focusing on emotional valence, given its critical importance in
human behavior and mental health.

2 Methods and Materials

2.1 Dataset

We utilized the publicly available Natural Scenes Dataset (NSD), a comprehensive 7T fMRI dataset
Allen et al. [2022]. For our study, we used data from four subjects (sub1, sub2, sub5, sub7) who
completed all trials. Our training set comprised a total of 8,859 images and 24,980 fMRI trials (with
up to three repetitions for each image), while the test set included 982 images and 2,770 fMRI trials.
The test images were consistent across all subjects, whereas the training images varied. We focused
on data from the visual cortex, as provided by the NSD General Region-of-Interest (ROI) mask at
a 1.8 mm resolution. The ROI consisted of 15,724, 14,278, 13,039, and 12,682 voxels for the four
subjects, respectively, encompassing visual areas from the early visual cortex to higher visual areas,
including V1 and V2.

2.2 Cognitive and Neural Alignment

Generative Model: We employed a Very Deep Variational Auto-Encoder (VDVAE) Child [2020], a
hierarchical generative model with layers of conditionally dependent latent variables. Each layer of
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Figure 1: A Schematic Overview of Cognitive-Neural Alignment and Perturbation Analysis.
This diagram illustrates the key components of the study, which investigates cognitive alignment
between the VDVAE latent space and fMRI brain activity, and assesses the transferability of cognitive
perturbations across systems. Phase 1: The stimuli presentation phase involves exposing subjects to
a series of images while recording their brain activity using fMRI. The fMRI signals are collected
from individual subjects. Phase 2: The fMRI data and latent space representations from the VDVAE
encoder are used to train encoding models through ridge regression. These models map neural
activity onto latent space representations. In addition to the linear mapping operationalized using
ridge regression, we also employ Taylor expansion to implement nonlinear mapping, testing whether
nonlinear approaches more effectively preserve cognitive properties between humans and machines.
Phase 3: Cognitive perturbations are introduced to the original cognitive scores (Zoriginal) by adjusting
the latent space representations, either increasing or decreasing the cognitive scores. Phase 4: The
perturbed cognitive states (Zupdated) are then decoded back into the original space using the VDVAE
decoder to assess the effect of these perturbations. The cognitive decoding accuracy is evaluated
across three conditions: using the VDVAE, individual fMRI data, and aligned fMRI data across
subjects. The goal is to determine how well cognitive and neural alignment holds under perturbation,
and whether changes in one system (VDVAE or fMRI) lead to corresponding changes in the other.
The study focuses on understanding the relationship between cognitive perturbation and neural
dynamics.

the decoder progressively adds details from coarse to fine, moving from the top to the bottom of the
hierarchy. The top layers capture broad, low-resolution details, while the bottom layers capture finer,
high-resolution features. After training, the VDVAE is capable of generating samples resembling
natural scene images. The original model was trained on a 64×64 resolution ImageNet dataset using
75 layers, resulting in a 91,168-dimensional latent space. However, for our experiments, we utilized
only 31 layers, as no performance changes were observed when including more layers, consistent
with findings from previous studies reconstructing fMRI visual stimuli Ozcelik and VanRullen [2023].

Neural Alignment: To align the VDVAE representation with the fMRI data Ozcelik and VanRullen
[2023] and to ensure cross-subject alignment of fMRI data, we used a linear mapping trained via
ridge regression Wehbe et al. [2015], Hoerl and Kennard [1970]. The ridge regression model was
trained exclusively on the training dataset and subsequently tested on a separate, previously unseen
test dataset. This allowed us to map the latent space representations of the VDVAE to the neural
representations observed in the fMRI data and evaluate the alignment across subjects and with the
VDVAE.

Cognitive Alignment: To assess the cognitive content, we implemented a two-step procedure. First,
for each visual stimulus, we reconstructed the latent space or fMRI data using the decoder of the
VDVAE. For fMRI data, we first applied ridge regression to map fMRI training patterns to the latent
space of the VDVAE (this is very similar to the first step of the reconstruction technique introduced
by Ozcelik and VanRullen [2023]). The decoder of the VDVAE was then used to generate visual
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stimuli from the fMRI brain responses (see Figure 1). Second, we used a pre-trained EmoNet model
Goetschalckx et al. [2019] to assess the emotional valence of the reconstructed images, which we
assumed served as a proxy for the cognitive information encoded in both the VDVAE latent space
and the fMRI data.

2.3 Nonlinear Alignment via Taylor Expansion

In addition to testing the linear alignment between the latent space Z of the VDVAE and the fMRI
data X using ridge regression, we also explored whether introducing nonlinearities could improve
the alignment. Typically, the linear ridge regression model is expressed as Z = R · X , where Z
represents the latent space of the VDVAE, X represents the fMRI data, and R is the linear ridge
regression model that maps X to Z.

To account for potential nonlinear relationships between the fMRI data and the VDVAE latent space,
we extended the linear model using a Taylor expansion Canuto et al. [2015]. In this case, the latent
space Z is expressed as a function of higher-order terms of X . Specifically, we expanded the model
to include powers of X up to the n-th degree, resulting in Z = [R1, R2, . . . , Rn] · [X,X2, . . . , Xn],
where R1, R2, . . . , Rn represent the regression coefficients for each power of X , and X2, . . . , Xn

are the higher-order terms up to the n-th degree. This allows us to capture more complex, nonlinear
relationships between the fMRI data and the VDVAE latent space.

For our experiments, we used a Taylor expansion up to the fifth degree (i.e., n = 5) to test whether
this nonlinear mapping could outperform the linear ridge regression model. We trained this nonlinear
model on the training set and evaluated its performance on the test set, comparing the results to the
linear model to assess the impact of introducing nonlinearities.

2.4 Cognitive Properties as Gradients and Neural-Cognitive Perturbation

Recent work by Goetschalckx et al. [2019] and subsequent studies Younesi and Mohsenzadeh [2022],
Goetschalckx et al. [2021] have demonstrated that cognitive properties of images can be linearly
modulated along a defined direction within the latent space of generative models. This approach
enables the generation of visually similar images that differ in specific cognitive properties. For
example, it allows for creating multiple versions of an image (e.g., of a dog) that appear nearly
identical but vary in emotional valence. Critically, this cognitively relevant direction is stimulus-
independent and can be determined by subtracting the centroids of the latent space representations of
images with high versus low scores on the target cognitive property (see Figure 1):

θZ,property = Zhigh, property − Z low, property (1)

ZUpdated, Property = Zorg + αθZ,property (2)

where θZ,property represents the direction in the latent space that modifies the cognitive property,
and Zhigh, property and Z low, property are the mean latent representations of images with high and low
cognitive scores, respectively. Applying this direction allows any image to be updated in the latent
space to reflect a change in the cognitive property: Zorg represents the original latent representation,
ZUpdated, Property represents the modified latent representation, and α is a scaling parameter that can
either increase or decrease the property depending on its positive or negative value. Importantly, when
a linear relationship exists between the latent spaces of the generative model and fMRI responses,
the neural-cognitive gradients (θZ,property) in the VDVAE latent space correspond directly to those in
the fMRI response space (θX,property). This alignment enables the study and comparison of cognitive
property effects following perturbations in both humans and machines.

3 Results

We first examined whether the cognitive properties, specifically emotional valence, of observed
stimuli could be inferred from both the latent space representations of the VDVAE (see Section 2.2)
and fMRI brain activity. To quantify this, we compared the emotional valence scores of the original
images to those of the reconstructed images across three conditions: (1) using the VDVAE directly,
(2) using fMRI data from individual subjects, and (3) using fMRI data from aligned subjects. In
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all comparisons, we used the pre-trained assessor, EmoNet Goetschalckx et al. [2019], to infer the
emotional valence scores of both the original and reconstructed images.

First, we found that the cognitive properties were most accurately preserved in the VDVAE latent
space. The Pearson correlation between the emotional valence scores of the original and reconstructed
images in the VDVAE was r ≈ 0.7 (Figure 2). The less-than-perfect correlation is due to the slightly
blurred reconstructions produced by the VDVAE model, as noted also in previous studies Ozcelik
and VanRullen [2023]. Next, we decoded the emotional valence scores from the fMRI data of
individual subjects. Although the cognitive scores could still be inferred with significant accuracy,
there was a notable drop in the Pearson correlation (r ≈ 0.3), suggesting that cognitive properties
were less reliably recovered when using fMRI data from a single subject. This drop points to an
imperfect neural-cognitive alignment between the VDVAE latent space and the individual fMRI data.
Interestingly, when we aligned the fMRI data across different subjects and then decoded the emotional
valence scores from the reconstructed images, the correlation between the decoded cognitive scores
across subjects matches the accuracy observed with the VDVAE latent space r ≈ 0.7. This suggests
that the cognitive alignment between subjects becomes nearly perfect once the neural representations
are aligned.

Having demonstrated that subjective cognitive experiences can be inferred from both the VDVAE
latent space and fMRI brain activity, we next investigated whether this alignment persists under
cognitive perturbations (see section 2.4). To test this, we introduced controlled perturbations to the
cognitive information in the latent spaces of the VDVAE, the fMRI data of individual subjects, and
the aligned fMRI data of all subjects. We then tested whether the changes in cognitive scores were
mirrored across the aligned systems. Perturbations were applied in both directions: increasing and
decreasing cognitive scores.

Our findings revealed that, across all three conditions — VDVAE, individual fMRI data, and aligned
fMRI data — a positive perturbation in the original system produced a positive cognitive change in
the aligned systems, while a negative perturbation resulted in a corresponding negative change (see
Figure 3). Notably, although the cognitive score changes were directionally consistent across the
individual and aligned fMRI data, the magnitude of change was significantly larger in the VDVAE.
This difference in effect size suggests two possibilities: either the decoding accuracy of the fMRI
data is limited, as we observed previously (see Figure 2), or, more likely, there exists a partial
but incomplete alignment between neural and cognitive representations. Specifically, the gradient
represented in the fMRI data may differ slightly from that in the VDVAE latent space, indicating that
the neural-cognitive mapping captured by fMRI is not fully equivalent to that in the VDVAE model.

4 Discussion

In this paper, we investigate the psychological relevance, similarity to brain representations, and
subject-invariance of latent space representations in generative models. Our findings offer compelling
evidence that this alignment not only exists but also remains stable under cognitive perturbations.
However, we observed that while cognitive scores consistently change in the same direction regard-
less of whether the perturbation is introduced in human or machine data, the effect size of these
perturbations depends on both the source (human or machine) and the direction. Specifically, positive
changes are more prominent than negative ones, suggesting a nonlinear, potentially compensatory
effect in brain dynamics that may contribute to resilience against negative biases Roeckner et al.
[2021]. This indicates that although human cognitive representations are aligned with those of the AI
model, key differences exist in how information is encoded, particularly at the extremes of cognitive
states.

Crucially, we found that aligning neural representations across individuals results in near-perfect
cognitive alignment. This finding supports previous studies indicating that neural activations can
explain most cognitive variance Conwell et al. [2021], suggesting a robust neural-cognitive alignment
in both humans and machines. In other words, aligning fMRI voxel activations across subjects appears
to fully align the tested cognitive dimensions, implying that individual differences in cognitive
processing may arise directly from variations in neural activation patterns. If this result can be
replicated across other cognitive domains, such as control and arousal Horikawa et al. [2020], it could
significantly enhance our understanding of human cognition and open new possibilities for AI-driven
models to predict and potentially modulate cognitive states.
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Figure 2: Cognitive Alignment Between Machine and Humans. (Left) Scatter plots illustrate the
Pearson correlations between the emotional valence scores of original images and the corresponding
decoded scores across three conditions: (1) decoding from the latent space of the VDVAE model
(blue), (2) decoding from fMRI data of individual subjects (green), and (3) decoding from aligned
fMRI data across subjects (orange). The VDVAE achieves the highest accuracy with a Pearson
correlation of r ≈ 0.7, indicating robust preservation of cognitive properties. In contrast, decoding
from individual fMRI data shows a notable drop in accuracy, with r ≈ 0.3, reflecting a weaker
alignment between cognitive scores and individual neural data. However, aligning the fMRI data
across subjects restores the correlation to r ≈ 0.7, matching the VDVAE’s performance. (Right) The
bar plot compares the decoding accuracy (ϕ) across the three conditions. The VDVAE and aligned
fMRI data yield similar high decoding accuracies, significantly outperforming individual fMRI
decoding (*** p < 0.001, ** p < 0.01). These results suggest that cognitive alignment between
individuals can be achieved by aligning neural representations, matching the performance of the
VDVAE latent space. Nonlinear mappings were also tested but did not show significant improvement
over the linear mapping, indicating that linear relationships sufficiently capture cognitive properties
in this setup.

Furthermore, our results contribute to the ongoing debate on the manifestation of mental disorders in
neural activations. Current machine learning approaches have struggled to decode significant cognitive
differences in neural data Winter et al. [2024], prompting some researchers to question whether this
goal is even achievable Chekroud et al. [2024]. Our findings suggest a possible explanation: if neural
and cognitive data from different subjects are misaligned at the voxel level, accurately decoding
cognitive information becomes challenging unless functional alignment is achieved, a step often
missing in conventional preprocessing of machine learning studies on mental disorders Walter et al.
[2019]. Although not detailed in this paper, our analysis reveals that when neural activity is not
aligned across subjects, cognitive score decoding accuracy drops to near zero, consistent with findings
in mental health research. These findings underscore voxel-level alignment as potentially essential
for reliable decoding of cognitive states across individuals Anderson et al. [2024].

Additionally, these findings highlight the value of linear mappings between brain activity and
generative models for understanding cognition. Despite testing nonlinear approaches, linear mappings
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Figure 3: The Transferability of Cognitive Perturbation Between VDVAE and fMRI Data. Violin
plots show the distribution of perturbation effects on cognitive scores across three conditions: (1)
cognitive perturbations applied to the VDVAE latent space, (2) perturbations applied to fMRI data
from individual subjects, and (3) perturbations applied to aligned fMRI data across subjects. The
perturbation effect represents the percentage change in cognitive scores resulting from both positive
and negative perturbations.

consistently outperformed them in accuracy, suggesting that for the cognitive properties we examined,
a straightforward linear relationship suffices. This raises intriguing questions about the brain’s
representational space: is cognition more linear than previously assumed, or might nonlinear dynamics
play a greater role in other cognitive domains? Recent theoretical work supports the notion that
macroscale brain dynamics Nozari et al. [2024], Ivanova et al. [2022] within high-dimensional
representational spaces may indeed be more linear than nonlinear, strongly corroborating our results.

Finally, we acknowledge limitations in the current study that should be addressed in future research.
First, our assessment of cognitive properties, specifically emotional valence, relied on a pre-trained
model. It would be valuable to consider how human ratings of the reconstructed images might
influence these results. Second, our perturbation strategy was implemented solely on VDVAE and
based on methodology from previous studies Goetschalckx et al. [2019]. While similar cognitive
perturbation techniques have been applied to various other architectures, such as GANs and diffusion
models Goetschalckx et al. [2021], it is important to test this approach within the context of human-
machine alignment as discussed in this paper to establish the generalizability of our findings. Lastly,
while we observed a preference for linear mappings in our analysis, our choice of nonlinear integration
may have been limiting. Exploring higher-order mappings, such as those based on Taylor expansions,
or implementing nonlinear mappings through neural networks could yield further insights into the
nature of cognitive alignment explored in this study.
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