
Published as a conference paper at ICLR 2019

FEED-FORWARD PROPAGATION IN PROBABILISTIC
NEURAL NETWORKS WITH CATEGORICAL AND MAX
LAYERS

Alexander Shekhovtsov & Boris Flach
Department of Cybernectics, Czech Technical University in Prague
Zikova 4, 166 36 Prague
{shekhole,flachbor}@fel.cvut.cz

ABSTRACT

Probabilistic Neural Networks deal with various sources of stochasticity: input
noise, dropout, stochastic neurons, parameter uncertainties modeled as random
variables, etc. In this paper we revisit a feed-forward propagation approach that
allows one to estimate for each neuron its mean and variance w.r.t. all mentioned
sources of stochasticity. In contrast, standard NNs propagate only point estimates,
discarding the uncertainty. Methods propagating also the variance have been pro-
posed by several authors in different context. The view presented here attempts
to clarify the assumptions and derivation behind such methods, relate them to
classical NNs and broaden their scope of applicability. The main technical contri-
butions are new approximations for the distributions of argmax and max-related
transforms, which allow for fully analytic uncertainty propagation in networks
with softmax and max-pooling layers as well as leaky ReLU activations. We eval-
uate the accuracy of the approximation and suggest a simple calibration. Applying
the method to networks with dropout allows for faster training and gives improved
test likelihoods without the need of sampling.

1 INTRODUCTION

Despite the massive success of Neural Networks (NNs) considered as deterministic predictors, there
are many scenarios where a probabilistic treatment is highly desirable. One of the best known tech-
niques to improve the network generalization is dropout (Srivastava et al., 2014), which introduces
multiplicative Bernoulli noise in the network. At test time, however, it is commonly approximated
by substituting the mean value of the noise variables. Computing the expectation more accurately
by Monte Carlo (MC) sampling has been shown to improve test likelihood and accuracy (Srivastava
et al., 2014; Gal & Ghahramani, 2015) but is computationally expensive.

Another challenging problem in NNs is the sensitivity of the output to perturbations of the input, in
particular random and adversarial perturbations (Moosavi-Dezfooli et al., 2017; Fawzi et al., 2016;
Rodner et al., 2016). In Fig. 1 we illustrate the point that the average of the network output under
noisy input differs from propagating the clean input. It is therefore desirable to estimate the out-
put uncertainty resulting from the uncertainty of the input. In classification networks, propagating
the uncertainty of the input can impact the confidence of the classifier and its robustness (Astudillo
& da Silva Neto, 2011). We would like that a classifier is not overconfident when making errors.
However such high confidences of wrong predictions are typically observed in NNs. Similarly,
when predicting real values (e.g. in optical flow estimation), it is desirable to estimate also their
confidences. Taking into account uncertainties from input or dropout allows to predict output uncer-
tainties better correlated with the test error (Kendall & Gal, 2017; Gast & Roth, 2018; Schoenholz
et al., 2016). Another important problem is overfitting, which may be addressed in a sound way with
Bayesian learning. The parameters are considered as random variables and are determined up to an
uncertainty implied by the training data. This uncertainty needs then to be propagated to predictions
at the test-time.

The above scenarios motivate considering NNs with different sources of stochasticity not as de-
terministic feed-forward networks but as directed probabilistic graphical models. We focus on the

1

Published as a conference paper at ICLR 2019

SoftmaxNN
Input: image 
with noise

class
probabilities

Figure 1: Propagating an input perturbed with Gaussian noise N (0, 0.1) through a fully trained
LeNet. When the same image is perturbed with different noise samples, we observe in the hidden
units and on the output an empirical distributions shown as Monte Carlo (MC) histograms. Propa-
gating the clean image results in the estimate denoted AP1 which may be away from the MC mean.
Propagating means and variances results in a posterior Gaussian distribution denoted AP2. For the
output class probabilities we need to approximate the expected value of the softmax. The methods
AP1 and AP2 are formally defined in § 3 and a quantitative evaluation will be given in § 5.

inference problem that consists in estimating the probability of hidden units and the outputs given the
network input, referred to as posterior distributions. While there exist elaborate inference methods
such as variational, belief propagation, Gibbs sampling, etc., they are computationally demanding
and can hardly be applied at the same scale as state-of-the-art NNs.

Contribution and Related Work We revisit feed-forward propagation methods that perform an
approximate inference analytically by propagating means and variances of neurons through all lay-
ers of a NN, ensuring computational efficiency and differentiability. This type of propagation has
been proposed by several authors under different names: uncertainty propagation (Astudillo &
da Silva Neto, 2011; Astudillo et al., 2014), fast dropout training (Wang & Manning, 2013), prob-
abilistic backpropagation (Hernández-Lobato & Adams, 2015) in the context of Bayesian learning,
assumed density filtering (Gast & Roth, 2018). Perhaps the most general form is considered by Wang
et al. (2016) and termed natural parameter networks. The local reparametrization trick (Kingma
et al., 2015) can be viewed as an application of the variance propagation method through one layer
only and then sampling from the approximate distribution.

These preceding works were using sampling or point estimates for propagation through softmax
and avoided max-pooling. Ghosh et al. (2016) proposed an analytic approximation for softmax but
resorted to sampling, noting that the approximation was not accurate. Gast & Roth (2018) introduced
Dirichlet posterior to overcome the difficulty with softmax, however, the softmax is still used in
the model internally. Astudillo et al. (2014) achieved improvements in speech recognition with
the uncertainty propagation but explicitly mentions the approximation for softmax as an unsolved
problem and a significant limitation. Lastly, the expressions for ReLU activations that are typically
used involve differences of error functions and may be unstable.

We propose a latent variable view of probabilistic NNs, which shows the connection to standard NNs
and allows us to develop better approximations. We develop numerically suitable approximations
for propagating means and variances through multivariate functions such as softmax, argmax and
log-sum-exp to handle categorical distributions as well as max-related non-linearities: max-pooling
and leaky ReLU. This makes the propagation approach applicable to a wider class of problems.

Experimentally, we verify the accuracy of the proposed approximations as well as of the whole prop-
agation method and compare it to the standard NN. This verification shows that our approximations
are accurate in comparison with sampling and that the variance propagation method estimates the
output distribution of the network significantly better than the standard NN. We further demonstrate
its potential utility in the end-to-end learning with dropout.

2

Published as a conference paper at ICLR 2019

2 PROBABILISTIC NNS AND FEED-FORWARD EXPECTATION PROPAGATION

In probabilistic NNs, all units are considered random. In a typical network, units are organized by
layers. There are l layers of hidden random vectors Xk, k = 1, . . . l and X0 is the input layer. Each
vector Xk has nk components (layer units) denoted Xk

i . The network is modeled as a conditional
Bayesian network (a.k.a. belief network, Neal (1992)) defined by the pdf

p(X1,...l |X0) =
∏l
k=1 p(X

k |Xk−1). (1)

We further assume that the conditional distribution p(Xk |Xk−1) factorizes as p(Xk |Xk−1) =∏nk
i=1 p(X

k
i |Aki), where Aki =

∑
j w

k
ijX

k−1
j are activations. In this work we do not consider

Bayesian learning and the weights w are assumed to be non-random, for clarity. We will denote
values of r.v. Xk by xk, so that the event Xk =xk can be unambiguously denoted just by xk.
Notice also that we consider biases of the units implicitly via an additional input fixed to value one.
The posterior distribution of each layer k > 0, given the observations x0, recurrently expresses as

p(Xk |x0) = EXk−1| x0

[
p(Xk |Xk−1)

]
=

∫
p(Xk |xk−1)p(xk−1 |x0) dxk−1. (2)

The posterior distribution of the last layer, p(X l |x0) is the model’s predictive distribution.

Standard NNs with injected noises give rise to Bayesian networks of the form (1) as follows. Con-
sider a deterministic nonlinear mapping applied component-wise to noised activations:

Xk
i = f(Aki − Zki), (3)

where f : R → R and Zki are independent real-valued random variables with a known distribution
(such as the standard normal distribution). From representation (3) we can recover the conditional
cdf FXki |Xk−1(u) = E[[f(wki

T
Xk−1
i − Zk) ≤ u |Xk−1]] and the respective conditional density of

the belief network.

Example 1. Stochastic binary unit (Williams, 1992). Let Y be a binary valued r.v. given by Y =
Θ(A−Z), where Θ is the Heaviside step function and Z is noise with cdf FZ . Then P(Y=1 |A) =
FZ(A). This is easily seen from

P(Y=1 |A) = P(Θ(A− Z) = 1
∣∣ A) = P(Z ≤ A|A

)
= FZ(A). (4)

If, for instance, Z has standard logistic distribution, then P(Y=1 |A) = S(A), where S is the
logistic sigmoid function S(a) = (1 + e−a)−1.

In general, the expectation (2) is intractable to compute and the resulting posterior can have a com-
binatorial number of modes. However, in many cases of interest it is suitable to approximate the
posterior p(Xk |x0) for a given x0 with a factorized distribution q(Xk) =

∏
i q(X

k
i). We expect

that in many recognition problems, given the input image, all hidden states and the final prediction
are concentrated around some specific values (unlike in generative problems, where the posterior
distributions are typically multi-modal). A similar factorized approximation is made for the activa-
tions. The exact shape of distributions q(Xk

i) and q(Aki) can be chosen appropriately depending on
the unit type: e.g., a Bernoulli distribution for binaryXk

i a Gaussian or Logistic distribution for real-
valued activations Aki . We will rely on the fact that the mean and variance are sufficient statistics for
such approximating distributions. Then, as long as we can calculate these sufficient statistics for the
layer of interest, the exact shape of distributions for the intermediate outputs need not be assumed.

The information-theoretic optimal factorized approximation to the posterior p(Xk |x0) minimizes
the forward KL divergence KL(p(Xk |x0)‖q(Xk)) and is given by the marginals

∏
i p(X

k
i |x0).

Furthermore, in the case when q(Xk
i) is from an exponential family, the optimal approximation is

given by matching the moments of q(Xk
i) to p(Xk

i |x0). The factorized approximation then can be
computed layer-by-layer, assuming that the preceding layer was already approximated. Substituting
q(Xk−1) for p(Xk−1 |x0) in (2) results in the procedure

q(Xk
i) = Eq(Xk−1)

[
p(Xk

i |Xk−1)
]

=

∫
p(Xk

i |xk−1)
∏
i

q(xk−1i) dxk−1. (5)

3

Published as a conference paper at ICLR 2019

Thus we need to propagate the factorized approximation layer-by-layer with the marginalization
update (5) until we get the approximate posterior output q(X l). This method is closely related to
the assumed density filtering (see Minka, 2001), in which, in the context of learning, one chooses
a family of distributions that is easy to work with and “projects” the true posterior onto the family
after each measurement update. Here, the projection takes place after propagating each layer, for
the purpose of the inference.

3 PROPAGATION IN BASIC LAYERS

We now detail how (5) is computed (approximately) for a single layer consisting of a linear mapping
A = wTX (scalar output, for clarity) and a non-linear noisy activation Y = f(A− Z).

Linear Mapping An activation A in a typical deep network is a linear combination of many
inputs X from the previous layer. This justifies the assumption that A − Z (where Z is a smoothly
distributed injected noise) can be approximated by a uni-modal distribution fully specified by its
mean and variance such as normal or logistic distribution1. Knowing the statistics of Z, we can
estimate the mean and the variance of the activation A as

µ′ = E[A] = wTE[X] = wTµ, (6a)

σ′2 =
∑
ij wiwj Cov[X]ij ≈

∑
i w

2
i σ

2
i , (6b)

where µ is the mean and Cov[X] is the covariance matrix ofX . The approximation of the covariance
matrix by its diagonal is implied by the factorization assumption for the activations A.

Nonlinear Coordinate-wise Mappings Let A be a scalar r.v. with statistics (µ, σ2) and let Y =

f(A−Z) with independent noiseZ. Assuming that Ã = A−Z is distributed normally or logistically
with statistics µ̃, σ̃2, we can approximate the expectation and the variance of Y = f(Ã),

µ′i = Eq(Ã)[f(Ã)], σ′2i = Eq(Ã)[f
2(Ã)]− µ′2i , (7)

by analytic expressions for most of the commonly used non-linearities. For binary variables, oc-
curring in networks with Heaviside nonlinearities, the distribution q(Y) is fully described by one
parameter µi = E[Y], and the propagation rule (5) becomes

µ′i = Eq(A)

[
p(Y=1 |Ak)

]
, σ′2i = µ′i(1− µ′i), (8)

where the variance is dependent but will be needed in propagation through further layers.

Example 2. Heaviside Nonlinearity with Noise. Consider the model Y = Θ(A − Z), where Z is
logistic noise. The statistics of Ã = A−Z are given by µ̃ = µ and σ̃2 = σ2+σ2

S , where σ2
S = π2/3

is the variance of Z. Assuming noisy activations Ã to have logistic distribution, we obtain the mean
of Y as:

µ′ = E[Θ(Ã)] = P(Ã ≥ 0) = P
(Ã− µ̃
σ̃/σS

≥ −µ̃
σ̃/σS

)
.
= S

(µ̃

σ̃/σS

)
= S

(µ√
σ2/σ2

S + 1

)
, (9)

where the dotted equality holds because −(Ã− µ̃)σSσ̃ has standard logistic distribution whose cdf is
the sigmoid function S. The variance of Y is expressed as in (8).

Fig. 2 shows approximations for propagation through Heaviside function and through (leaky) ReLU
detailed in § 4.3. Note that all expectations over a smoothly distributed A result in smooth propaga-
tion functions regardless the smoothness (or lack thereof) of the original function.

Summarizing, we can represent the approximate inference in networks with binary and continuous
variables as a feed-forward moment propagation: given the approximate moments of Xk−1 |x0, the
moments of Xk

i |x0 are estimated via (7)-(8) ignoring dependencies between Xk−1
j |x0 on each

step (as implied by the factorized approximation).
1Note, the prior work assumes that A alone approaches Gaussian, which is a stronger assumption, consid-

ering for example binary input X .

4

Published as a conference paper at ICLR 2019

10 5 0 5 10
1.0

0.5

0.0

0.5

1.0

1.5

2.0
Heaviside

′

′ ± 3 ′

6 4 2 0 2 4 6
2

0

2

4

6

8

ReLu
′

′ ± 3 ′

6 4 2 0 2 4 6
2

0

2

4

6

8

LReLU(0.1)
′

′ ± 3 ′

Figure 2: Propagation for the Heaviside function: Y = [[A≥0]], ReLU: Y = max(0, A) and leaky
ReLU: Y = max(αA,A). Red: activation function. Black: an exemplary input distribution with
mean µ = 3, variance σ2 = 1 shown on the support µ ± 3σ. Dashed blue: the approximate mean
µ′ of the output versus the input mean µ. The variance of the output is shown as blue shaded area
µ′ ± 3σ′.

AP1 and AP2 The standard NN can be viewed as a further simplification of the proposed method:
it makes the same factorization assumption but does not compute variances of the activations (6b)
and propagates only the means. Consequently, a zero variance is assumed in propagation through
non-linearities. In this case the expected values of mappings such as Θ(A) and ReLU(A) are just
these functions evaluated at the input mean. For injected noise models we obtain smoothed ver-
sions: e.g., substituting σ = 0 in the noisy Heaviside function (9) recovers the standard sigmoid
function. We thus can view standard NNs as making a simpler form of factorized inference in the
same Bayesian NN model. We designate this simplification (in figures and experiments) by AP1
and the method using variances by AP2 (“AP” stands for approximation).

4 PROPAGATION IN CATEGORICAL AND MAX LAYERS

In this section we present our main technical contribution: propagation rules for argmax, softmax
and max mappings, which are non-linear and multivariate. Similar to how a sigmoid function is
obtained as the expectation of the Heaviside function with injected noise in Example 2, we observe
that softmax is the expectation of argmax with injected noise. It follows that the standard NN with
softmax layer can be viewed as AP1 approximation of argmax layer with injected noise. We pro-
pose a new approximation for the argmax posterior probability that takes into account uncertainty
(variances) of the activations and enables propagation through argmax and softmax layers. Next,
we observe that the maximum of several variables (used in max-pooling) can be expressed through
argmax. This gives a new one-shot approximation of the expected maximum using argmax prob-
abilities. The logarithm of softmax, important in variational Bayesian methods can be also handled
as shown in § A.2. Finally, we consider the case of leaky ReLU, which is a maximum of two cor-
related variables. The proposed approximations are relatively easy to compute and are continuously
differentiable, which facilitates their usage in NNs.

4.1 ARGMAX AND SOFTMAX

The softmax function, most commonly used to model a categorical distribution, thus ubiquitous
in classification, is defined as p(Y=y|x) = exy/

∑
k e

xk , where y is the class index. We explore
the following latent variable representation known in the theory of discrete choice: p(Y=y|x) =
E[Y y|X=x], where Y ∈ {0, 1}n is the indicator of the noisy argmax: Y y = [[argmaxk(Xk +
Γk) = y]] and Γk follow the standard Gumbel distribution. Standard NNs implement the AP1
approximation of this latent model: conditioned on X = x, the expectation over latent noises Γ is
the softmax(x).

For the AP2 approximation we need to compute the expectation w.r.t. both: X and Γ, or, what is the
same, to compute the expectation of softmax(X) over X . This task is difficult, particularly because
variances ofXi may differ across components. First, we derive an approximation for the expectation
of argmax indicator without injected noise:

Y y = [[argmax
k

Xk = y]]. (10)

5

Published as a conference paper at ICLR 2019

The injected noise case can be treated by simply increasing the variance of each Xi by the variance
of standard Gumbel distribution.

Let Xk , k = 1, . . . , n be independent, with mean µk and variance σ2
k. We need to estimate

E[Y y] = EX [[Xy −Xk ≥ 0 ∀k 6= y]]. (11)

The vector U with components Uk = Xy − Xk for k 6= y is from Rn−1 with component means
µ̃k = µy − µk and component variances σ̃2

k = σ2
y + σ2

k. Notice that the components of U are not
independent. More precisely, the covariance matrix has σ̃2

k on diagonal and all off-diagonal elements
equal σ2

k.

We approximate the distribution of U by the (n−1)-variate logistic distribution defined by Malik &
Abraham (1973). This choice is motivated by the following facts: its cdf Sn−1(u) = 1

1+
∑
k e
−uk is

tractable and is seen to be equivalent to the softmax function; its covariance matrix is (I + 1)σ2
S/2,

where I is the identity matrix, i.e. it has similar structure to that of U . The approximation is made by
shifting and rescaling the distribution of U in order to match the means and marginal variances, i.e.
(Uk − µ̃k)σS/σ̃k is approximated with standard (n−1)-variate logistic distribution. This approxi-
mation allows to evaluate the necessary probability as

q(y) = E[Y y] = P(U ≥ 0) = P
(Uk − µ̃k
σ̃k/σS

≥ −µ̃k
σ̃k/σS

∀k 6= y
)

= Sn−1
(−µ̃k
σ̃k/σS

)
. (12)

Expanding µ̃, σ̃2 and noting that µk − µy = 0 for y = k, we obtain the approximation

q(y) =
(∑

k

exp
{ µk − µy√

(σ2
k + σ2

y)/σ2
S

})−1
. (13)

Computing this approximation has linear memory complexity but requires quadratic time in the
number of inputs, which may be prohibitive for some applications.

Linear Time Approximation We now derive a simpler linear-time approximation used in all
our experiments. The variable Xy is decomposed as Xy = X ′y + Z such that X ′y ∼ N (µk, σ

2
a),

Z ∼ N (0, σ2
y − σ2

a), where σa is chosen as σa = mink σk so that the decomposition is valid for
all k. The variables Uk are introduced as Uk = X ′y − Xk. The estimation of E[Y y] expresses as
P(U + Z ≥ 0) = EZ [P(U ≥ −Z|Z)]. The probability P(U ≥ −Z|Z) is approximated, the same
way as above, by fitting U with (n− 1)-variate logistic distribution,

P(U ≥ −Z|Z) = Sn−1
(−Z − µ̃k
σ̃k/σS

)
. (14)

To achieve linear complexity, this is simplified now with approximating σ̃2
k = σ2

k + σ2
a ≈ 2σ2

a for
all k. It remains to integrate over Z. Denoting s =

√
2σa/σS , we have

E
[
Sn−1

(−Z − µ̃k
s

)]
= E

[1

1 +
∑
k 6=y exp

(−Z−µ̃k
s

)] = E
[1

1 + e−Z′

]
, (15)

where we denoted Z ′ = Z/s+ logS and S =
∑
k 6=y exp(−µ̃k/s). The latter expectation in (15) is

that of a regular sigmoid function, which we approximate similar to (9) as

E
[1

1 + e−Z′

]
= S

(
E[Z ′]/

√
Var[Z ′]/σ2

S + 1
)

=
1

1 + Ss/sy
, (16)

where sy =
√

(σ2
y + σ2

a)/σS and we used that E[Z ′] = − logS and Var[Z ′]/σ2
S + 1 = (σ2

y −
σ2
a)/s2/σ2

S + 1 = ((σ2
y − σ2

a)/σ2
S + s2)/s2 = ((σ2

y + σ2
a)/σ2

S)/s2 = s2y/s
2. Expanding S in (16),

as it depends on the label y, and rearranging we obtain the approximation:

q(y) =
1

1 + Ssy/s
=

1

1 +
(∑

k 6=y e
µk/se−µy/s

)s/r =
eµy/sy

eµy/sy +
(∑

k 6=y e
µk/s

)s/sy . (17)

This approximation is similar to softmax but reweighs the summands differently if σy differs from
σa. Clearly, it can be computed in linear time. In case when all input variances are equal, the
approximation is equivalent to (13). In case when input variances are that of standard Gumbel
distribution, the approximation recovers back the standard softmax of µk.

6

Published as a conference paper at ICLR 2019

4.2 MAXIMUM OF SEVERAL VARIABLES

Let Xk , k = 1, . . . , n be independent, with mean µk and variance σ2
k. The moments of the max-

imum Y = maxkXk, assuming the distributions of Xk are known, can be computed from the cdf
of Y given by FY (y) = P(Xk ≤ y ∀k) =

∏
k FXk(y), by numerical integration of this cdf (Ross,

2010, sec. 3.2).

We seek a simpler approximation. One option is to compose the maximum of n > 2 variables
hierarchically using maximum of two variables (discussed below) assuming normality and indepen-
dence of intermediate results. We propose a new non-trivial one-shot approximations for the mean
and variance provided that the argmax probabilities qk = P(Xk ≥ Xj ∀j) are already estimated.
The derivation of these approximations and proofs of their accuracy are given in § A.1.

Proposition 1. Assuming Xk are logistic with statistics (µk, σ
2
k), the mean of Y = maxkXk is

upper bounded by

µ′ ≈
∑
k qkµ̂k, where µ̂k = µk + σk

qkσS
H(qk), (18)

where H(qk) is the entropy of the Bernoulli distribution with probability qk. Notice that the entropy
is non-negative, and thus µ′ increases when the argmax is ambiguous, as expected in the extreme
value theory. The variance of Y can be approximated as

σ′2 ≈
∑
k σ

2
kS(a+ bS−1(qk)) +

∑
k qk(µ̂k − µ′)2, (19)

where a = −1.33751 and b = 0.886763 are coefficients originating from a Taylor expansion.

4.3 MAXIMUM OF TWO VARIABLES AND LEAKY RELU

The function max(X1, X2) allows to model popular leaky ReLU and maxOut layers. Although
the expressions for the moments are known and have been used in the literature, e.g., (Hernández-
Lobato & Adams, 2015; Gast & Roth, 2018), we propose approximations that are more practical for
end-to-end learning: cheap to compute and having asymptotically correct output to input variance
ratio for small noises.

The exact expressions for the moments for the maximum of two Gaussian random variables X1, X2

are as follows (Nadarajah & Kotz, 2008). Denoting s = (σ2
1 + σ2

2 − 2 Cov[X1, X2])
1
2 and a =

(µ1−µ2)/s, the mean and variance of max(X1, X2) can be expressed as:

µ′ = µ1Φ(a) + µ2Φ(−a) + sφ(a), (20a)

σ′2 = (σ2
1 + µ2

1)Φ(a) + (σ2
2 + µ2

2)Φ(−a) + (µ1 + µ2)sφ(a)− µ′2, (20b)

where φ and Φ are the pdf and the cdf of the standard normal distribution, resp. As Φ has to be
numerically approximated with other functions, this has high computational cost and poor relative
accuracy for large |a|. The difference of such functions occurring in (20b) may result in a negative
output variance, the approximation becomes inaccurate for small noises. For the mean, we can
substitute Φ(a) with an approximation such as logistic cdf S(a/σS). To approximate the variance,
we express it as

σ′2 = σ2
1Φ(a) + σ2

2Φ(−a) + s2(a2Φ(a) + aφ(a)− (aΦ(a) + φ(a))2). (21)

We observe that the function of one variable a2Φ(a) +aφ(a)− (aΦ(a) +φ(a))2 is always negative,
quickly vanishes with increasing |a| and is above −0.16. By neglecting it, we obtain a rather tight
upper bound σ′2 ≤ σ2

1Φ(a) + σ2
2(1− Φ(a)), i.e., in the form of two non-negative summands.

In case of LReLU defined as Y = max(αX,X), the variance can be approximated more accurately.
Assume that α < 1, let X2 = αX1 and denote µ = µ1 and σ2 = σ2

1 . Substituting, we obtain
µ2 = αµ, σ2

2 = α2σ2; Cov[X1, X2] = Cov[X1, αX1] = ασ2; s = σ(1−α) and a = (µ1−µ2)/s =
µ(1− α)/s = µ/σ. The mean µ′ expresses as

µ′ = µ(α+ (1− α)Φ(a)) + σ(1− α)φ(a). (22)

The variance σ′2 expresses as

σ2
(

Φ(a) + α2(1− Φ(a)) + (1− α)2
(
a2Φ(a) + aφ(a)− (aΦ(a) + φ(a))2

))
(23)

= σ2(α2 + 2α(1− α)Φ(a) + (1− α)2R(a)), (24)

7

Published as a conference paper at ICLR 2019

where R(a) = aφ(a) + (a2 + 1)Φ(a) − (aΦ(a) + φ(a))2 is a sigmoid-shaped function of one
variable. In practice we approximate σ′2 with the simpler function

σ′2 ≈ σ2(α2 + (1− α2)S(a/t)), (25)

where t = 0.3758 is set by fitting the approximation. The approximation is shown in Fig. 2 with
more detailed evaluation given in § B.1.

5 EXPERIMENTS

In the experiments we evaluate the accuracy of the proposed approximation and compare it to the
standard propagation. We also test the method in the end-to-end learning and show that with a
simple calibration it achieves better test likelihoods than the state-of-the-art. Full details of the
implementation, training protocols, used datasets and networks are given in § C. The running time
of AP2 is 2×more for a forward pass and 2-3×more for a forward-backward pass than that of AP1.

5.1 APPROXIMATION ACCURACY

The accuracy of approximations of the individual layers is evaluated in § B and is deemed sufficient
for approximately propagating uncertainty and computing derivatives. We now consider multiple
layers.

We conduct two experiments: how well the proposed method approximates the real posterior of
neurons, w.r.t. noise in the network input and w.r.t. dropout. The first case (illustrated in Fig. 1) is
studied on the LeNet5 model of LeCun et al. (2001), a 5-layer net with max pooling detailed in § C.4,
trained on MNIST dataset using standard methods. We set LReLU activations with α = 0.01 to test
the proposed approximations. We estimate the ground truth statistics µ∗, σ∗ of all neurons by the
Monte Carlo (MC) method: drawing 1000 samples of noise per input image and collecting sample-
based statistics for each neuron. Then we apply AP1 to compute µ1 and AP2 to compute µ2 and σ2
for each unit from the clean input and known noise variance σ2

0 . The error measure of the means
εµ is the average |µ − µ∗| relative to the average σ∗. The averages are taken over all units in the
layer and over input images. The error of the standard deviation εσ is the geometric mean of σ/σ∗,
representing the error as a factor from the true value (e.g., 1.0 is exact, 0.9 is under-estimating and
1.1 is over-estimating). Table 1 shows average errors per layer. Our main observation is that AP2
is more accurate than AP1 but both methods suffer from the factorization assumption. The variance
computed by AP2 provides a good estimate and the estimated categorical distribution obtained by
propagating the variance through softmax is much closer to the MC estimate.

Next, we study a widely used ALL-CNN network by Springenberg et al. (2015) trained with standard
dropout on CIFAR-10. Bernoulli dropout noise with dropout rate 0.2 is applied after each activation.
The accuracies of estimated statistics w.r.t. dropout noises are shown in Table 2. Here, each layer
receives uncertainty propagated from preceding layers, but also new noises are mixed-in in each
layer, which works in favor of the factorization assumption. The results are shown in Table 2.
Observe that GT noise std σ∗ changes significantly across layers, up to 1-2 orders and AP2 gives a
useful estimate. Furthermore, having estimated the average factors suggests a simple calibration.

Calibration We divide the std in the last layer by the average factor σ/σ∗ estimated on the training
set. With this method, denoted AP2 calibrated, we get significantly better test likelihoods in the end-
to-end learning experiment.

5.2 ANALYTIC NORMALIZATION

The AP2 method can be used to approximate neuron statistics w.r.t. the input chosen at random from
the training dataset as was proposed by Shekhovtsov & Flach (2018). Instead of propagating sample
instances, the method takes the dataset statistics (µ0, (σ0)2) and propagates them once through all
network layers, averaging over spatial dimensions. The obtained neuron mean and variance are then
used to normalize the output the same way as in batch normalization (Ioffe & Szegedy, 2015). This
normalization leads to a better conditioned initialization and training and is batch-independent. We
verify the efficiency of this method for a network that includes the proposed approximations for
LReLU and max pooling layers in § C.5 and use it in the end-to-end learning experiment below.

8

Published as a conference paper at ICLR 2019

Con
v

LReL
U

M
ax

Poo
l

Con
v

LReL
U

M
ax

Poo
l

FC LReL
U

FC LReL
U

FC Soft
max

Noisy input with noise std σ0 = 10−2

σ∗ 0.03 0.02 0.02 0.06 0.03 0.03 0.09 0.05 0.10 0.05 0.11
εµ1

0.02 0.19 0.37 0.84 0.43 0.52 1.20 0.66 1.16 0.62 1.25 KL 3.5e-4
εµ2

0.02 0.02 0.13 0.29 0.13 0.17 0.37 0.21 0.36 0.20 0.39 KL 3.3e-5
εσ2 1.00 1.05 1.25 1.06 1.06 1.12 1.09 1.10 1.03 1.04 0.96

Noisy input with noise std σ0 = 10−1

σ∗ 0.3 0.16 0.20 0.58 0.24 0.27 0.79 0.47 0.86 0.42 0.92
εµ1

0.02 0.24 0.53 1.46 0.58 0.70 1.44 0.85 1.40 0.79 1.57 KL 0.36
εµ2

0.02 0.02 0.21 0.65 0.21 0.31 0.61 0.37 0.67 0.34 0.72 KL 0.05
εσ2

1.00 1.10 1.15 1.17 1.22 1.42 1.37 1.59 1.31 1.47 1.23

Table 1: Accuracy of approximation of mean and variance statistics for each layer in a fully trained
LeNet5 (MNIST) tested with noisy input. Observe the following: MC std σ∗ is growing significantly
from the input to the output; both AP1 and AP2 have a significant drop of accuracy at linear (FC
and Conv) layers, due to factorized approximation assumption; AP2 approximation of the standard
deviation is within a factor close to one, and makes a meaningful estimate, although degrading with
depth; AP2 approximation of the mean is more accurate than AP1; the KL divergence from the MC
class posterior is improved with AP2.

C A C A C A C A C A C A C A C A C P Softmax
σ∗ 0 0.26 0.31 0.46 0.86 0.77 1.1 0.78 1.7 0.97 2.2 1.3 1.5 0.89 2 0.74 16 2.8
εµ1

- 0.01 0.02 0.03 0.07 0.06 0.17 0.09 0.19 0.10 0.25 0.11 0.22 0.11 0.21 0.12 0.17 0.38 KL 0.11
εµ2

- 0.01 0.02 0.01 0.02 0.02 0.05 0.02 0.06 0.03 0.07 0.04 0.08 0.04 0.09 0.04 0.05 0.14 KL 0.04
εσ2 - 1.00 1.00 1.02 0.88 0.89 0.90 0.95 0.84 0.87 0.77 0.77 0.82 0.85 0.88 0.92 0.69 0.45

Table 2: Accuracy of approximation of mean and variance statistics for each layer in All-CNN
(CIFAR-10) trained and tested with dropout. The table shows accuracies after all layers (C-
convolution, A-activation, P-average pooling) and the final KL divergence. A similar effect to prop-
agating input noise is observed: the MC std σ∗ grows with depth; a significant drop of accuracy is
observed in convolutional and pooling layers, which rely on the independence assumption.

5.3 END-TO-END LEARNING WITH ANALYTIC DROPOUT

In this experiment we approximate the dropout analytically at training time similar to Wang & Man-
ning (2013) but including the new approximations for LReLU and softmax layers. We compare
training All-CNN network on CIFAR-10 without dropout, with standard dropout (Srivastava et al.,
2014) and analytic (AP2) dropout. All three cases use exactly the same initialization, the AP2 nor-
malization as discussed above and the same learning setup. Only the learning rate is optimized
individually per method § C.3. Dropout layers with dropout rate 0.2 are applied after every activa-
tion. Fig. 3 shows the progress of the three methods. The analytic dropout is efficient as a regularizer
(reduces overfitting in the validation likelihood), is non-stochastic and allows for faster learning than
standard dropout. While the latter slows the training down due to increased stochasticity of the gra-
dient, the analytic dropout smoothes the loss function and speeds the training up. This is especially
visible on the training loss plot in Fig. C.3. Furthermore, analytic dropout can be applied as the test-
time inference method in a network trained with any variant of dropout. Table 3 shows that AP2,
calibrated as proposed above, achieves the best test likelihood, significantly improving SOA results
for this network. Differently from Wang & Manning (2013), we find that when trained with standard
dropout, all test methods achieve approximately the same accuracy and only differ in likelihoods.

We also attempted comparison with other approaches. Gaussian dropout (Srivastava et al., 2014) per-
formed similarly or slightly worse than Bernoulli dropout. Variational dropout (Kingma et al., 2015)
in our implementation for convolutional networks has diverged or has not improved over the no-
dropout baseline (we tried correlated and uncorrelated versions with or without local reparametriza-
tion trick and with different KL divergence factors 1, 0.1, 0.01, 0.001).

6 CONCLUSION

We have described uncertainty propagation method for approximate inference in probabilistic neural
networks that takes into account all noises analytically. Latent variable models allow a transparent
interpretation of standard propagation in NNs as the simplest approximation and facilitate the devel-

9

Published as a conference paper at ICLR 2019

Validation Accuracy Validation Loss

0 200 400 600 800 1000 1200
0.88

0.89

0.90

0.91

0.92

0.93

0.94

0.95

AP2 dropout=0.2, lr=0.016
Dropout=0.2, lr=0.013
No dropout, lr=0.011

0 200 400 600 800 1000 1200

100

3 × 10 1

4 × 10 1

6 × 10 1

AP2 dropout=0.2, lr=0.016
Dropout=0.2, lr=0.013
No dropout, lr=0.011

Figure 3: Comparison of analytic AP2 dropout with baselines. All methods use AP2 normalization
during training. Analytic dropout converges to similar values of stochastic dropout and is faster in
iterations. Both methods are efficient in preventing overfitting as seen in the right plot.

SOTA results (Gast & Roth, 2018)
Method NLL Acc.
Dropout MC-30 0.327 90.88
ProbOut 0.37 91.9

Standard dropout
Test method NLL Acc.
AP1 0.434 0.938
AP2 0.311 0.936
AP2 calibrated 0.214 0.937
MC-10 0.264 0.935
MC-100 0.217 0.937
MC-1000 0.210 0.937

Analytic dropout
Test method NLL Acc.
AP1 1.86 0.940
AP2 0.363 0.940
AP2 calibrated 0.194 0.940
MC-10 0.546 0.919
MC-100 0.281 0.925
MC-1000 0.243 0.926

Table 3: Results for All-CNN on CIFAR-10 test set: negative log likelihood (NLL) and accuracy.
Left: state of the art results for this network (Gast & Roth, 2018, table 3). Middle: All-CNN
trained with standard dropout (our learning schedule and analytic normalization) evaluated using
different test-time methods. Observe that “AP2 calibrated” well approximates dropout: the test
likelihood is better than MC-100. Right: All-CNN trained with analytic dropout (same schedule
and normalization). Observe that “AP2 calibrated” achieves the best likelihood and accuracy.

opment of variance propagating approximations. We proposed new such approximations allowing
to handle max, argmax, softmax and log-softmax layers using latent variable models (§ 4 and § A.2).

We measured the quality of the approximation of posterior in isolated layers and complete networks.
The accuracy is improved compared to standard propagation and is sufficient for several use cases
such as estimating statistics over the dataset (normalization) and dropout training, where we report
improved test likelihoods. We identified the factorization assumption as the weakest point of the
approximation. While modeling of correlations is possible (e.g. Rezende & Mohamed, 2015), it
is also more expensive. We showed that a calibration of a cheap method can give a significant
improvement and thus is a promising direction for further research. Argmax and softmax may occur
not only as the final layer but also inside the network, in models such as capsules (Sabour et al.,
2017) or multiple hypothesis (Ilg et al., 2018), etc. Further applications of the developed technique
may include generative and semi-supervised learning and Bayesian model estimation.

ACKNOWLEDGMENTS

A.S. was supported by the project “International Mobility of Researchers MSCA-IF II at CTU in
Prague” (CZ.02.2.69/0.0/0.0/18 070/0010457). B.F. gratefully acknowledges support by the Czech
OP VVV project ”Research Center for Informatics” (CZ.02.1.01/0.0/0.0/16 019/0000765).

10

Published as a conference paper at ICLR 2019

REFERENCES

R. F. Astudillo, A. Abad, and I. Trancoso. Accounting for the residual uncertainty of multi-layer
perceptron based features. In ICASSP, pp. 6859–6863, May 2014.

Ramn Fernndez Astudillo and Joo Paulo da Silva Neto. Propagation of uncertainty through multi-
layer perceptrons for robust automatic speech recognition. In INTERSPEECH, 2011.

Anirban DasGupta, S.N. Lahiri, and Jordan Stoyanov. Sharp fixed n bounds and asymptotic ex-
pansions for the mean and the median of a Gaussian sample maximum, and applications to the
Donoho-Jin model. Statistical Methodology, 20:40–62, 2014.

Alhussein Fawzi, Seyed-Mohsen Moosavi-Dezfooli, and Pascal Frossard. Robustness of classifiers:
from adversarial to random noise. In NIPS, pp. 1632–1640. 2016.

Michael C. Fu. Chapter 19 gradient estimation. In Shane G. Henderson and Barry L. Nelson (eds.),
Simulation, volume 13 of Handbooks in Operations Research and Management Science, pp. 575
– 616. 2006.

Yarin Gal and Zoubin Ghahramani. Bayesian convolutional neural networks with Bernoulli approx-
imate variational inference. arXiv:1506.02158, 2015.

Jochen Gast and Stefan Roth. Lightweight probabilistic deep networks. In CVPR, June 2018.

Soumya Ghosh, Francesco Maria Delle Fave, and Jonathan S. Yedidia. Assumed density filtering
methods for learning Bayesian neural networks. In AAAI, pp. 1589–1595, 2016.

Paul Glasserman. Monte Carlo methods in financial engineering. Springer, New York, 2004.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In AISTATS, 2010.

José Miguel Hernández-Lobato and Ryan P. Adams. Probabilistic backpropagation for scalable
learning of Bayesian neural networks. In ICML, pp. 1861–1869, 2015.

Eddy Ilg, Ozgun Cicek, Silvio Galesso, Aaron Klein, Osama Makansi, Frank Hutter, and Thomas
Brox. Uncertainty estimates and multi-hypotheses networks for optical flow. In ECCV, 2018.

Sergey Ioffe. Batch renormalization: Towards reducing minibatch dependence in batch-normalized
models. CoRR, abs/1702.03275, 2017.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In ICML, volume 37, pp. 448–456, 2015.

Alex Kendall and Yarin Gal. What uncertainties do we need in Bayesian deep learning for computer
vision? In NIPS, 2017.

Diederik P Kingma, Tim Salimans, and Max Welling. Variational dropout and the local reparame-
terization trick. In NIPS, pp. 2575–2583. 2015.

Yann LeCun, Leon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. In Intelligent signal processing, pp. 306–351, 2001.

Henrick J. Malik and Bovas Abraham. Multivariate logistic distributions. The Annals of Statistics,
1(3):588–590, 1973.

Thomas P. Minka. Expectation propagation for approximate Bayesian inference. In Uncertainty in
Artificial Intelligence, pp. 362–369, 2001.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal Frossard. Universal
adversarial perturbations. In CVPR, July 2017.

Saralees Nadarajah and Samuel Kotz. Exact distribution of the max/min of two Gaussian random
variables. IEEE Trans. VLSI Syst., 16(2):210–212, 2008.

Radford M. Neal. Connectionist learning of belief networks. Artif. Intell., 56(1):71–113, July 1992.

11

Published as a conference paper at ICLR 2019

Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with normalizing flows. In
ICML, pp. 1530–1538, 2015.

Erik Rodner, Marcel Simon, Bob Fisher, and Joachim Denzler. Fine-grained recognition in the noisy
wild: Sensitivity analysis of convolutional neural networks approaches. In BMVC, 2016.

Andrew M. Ross. Computing bounds on the expected maximum of correlated normal variables.
Methodology and Computing in Applied Probability, 12(1):111–138, Mar 2010.

Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. Dynamic routing between capsules. In NIPS,
pp. 3856–3866. 2017.

Samuel S. Schoenholz, Justin Gilmer, Surya Ganguli, and Jascha Sohl-Dickstein. Deep information
propagation. CoRR, abs/1611.01232, 2016.

Alexander Shekhovtsov and Boris Flach. Normalization of neural networks using analytic variance
propagation. In Computer Vision Winter Workshop, pp. 45–53, 2018.

J.T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller. Striving for simplicity: The all
convolutional net. In ICLR (workshop track), 2015.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. JMLR, 15:1929–1958, 2014.

Hao Wang, Xingjian SHI, and Dit-Yan Yeung. Natural-parameter networks: A class of probabilistic
neural networks. In NIPS, pp. 118–126, 2016.

Sida Wang and Christopher Manning. Fast dropout training. In ICML, pp. 118–126, 2013.

Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine Learning, 8(3):229–256, May 1992.

12

Appendix

A MAXIMUM AND SMOOTH MAXIMUM

A.1 MAXIMUM OF SEVERAL VARIABLES

Approximation of the Mean For each k let Ak ⊂ Ω denote the event that Xk > Xj ∀j, i.e. that
Xk is the maximum of all variables. Let qk = P(Ak) be given. Note that events {Ak}k partition
the probability space. The expected value of the maximum Y = maxkXk can be written as the
following total expectation:

µ′ = E
[
Y
]

=
∑
k

P(Ak)E[Y |Ak] =
∑
k

qkE[Xk |Ak]. (26)

In order to compute each conditional expectation, we approximate the conditional density p(Xk =
xk |Ak), which is the marginal of the joint conditional density p(X = x |Ak), i.e. the distribution
of X restricted to the part of the probability space Ak as illustrated in Fig. A.1. The approximation
is a simpler conditional density p(Xk = xk | Âk) where Âk is chosen in the form Âk = [[Xk ≥ mk]]
and the threshold mk is chosen to satisfy the proportionality:

P(Âk) = P(Ak) = qk, (27)

which implies mk = F−1Xk
(qk). This can be also seen as the approximation of the conditional

probability P(Ak |Xk = r) =
∏
j 6=k FXj (r), as a function of r, with the indicator [[mk ≤ r]], i.e.

the smooth step function given by the product of sigmoid-like functions FXk(r) with a sharp step
function.

Assuming Xk is logistic, we find mk = µk + σk/σS log(1−qk
qk

). Then the conditional expectation

µ̂k = E[Xk | Âk] is computed as

µ̂k =
1

qk

∫ ∞
mk

xp(Xk=x)dx =
1

qk

∫ ∞
log(

1−qk
qk

)

(µk + a
σk
σS

)pS(a)da = µk +
1

qk

σk
σS
H(qk), (28)

where pS is the density of the standard Logistic distribution, a = x−µk
σk/σS

is the changed variable
under the integral and H(qk) = −qk log(qk) − (1 − qk) log(1 − qk) is the entropy of a Bernoulli
variable with probability qk. This results in the following interesting formula for the mean:

µ′ ≈
∑
k

qkµk +
∑
k

σk
σS
H(qk). (29)

Assuming Xk is normal, we obtain the approximation

µ′ ≈
∑
k

qkµk +
∑
k

σkφ(Φ−1(qk)). (30)

x2 > x1

x1

x2

Figure A.1: The joint conditional density p(X1 = x1, X2 = x2 |X2 > X1), its marginal den-
sity p(X2 = x2 |X2 > X1) and the approximation p(X2 = x2 |X2 > m2), all up to the same
normalization factor P(X2 > X1).

13

0 100 200 300 400 500

n

1

1.5

2

2.5

3

3.5

4

E
xp

ec
te

d
m

ax

X
k
 Logistic with std 1

Our Logistic UB
X

k
 Normal

Best known Normal UB
Our Normal UB

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure A.2: Left: expectation of Y = maxkXk for Xk iid logistic or normal, our estimates
(dashed) versus sampling-based ground truth (solid) and the best known closed form upper bound
for the normal iid case (DasGupta et al., 2014, Theorem 4.1) (dotted). Right: the variance scaling
function f(q) (35) (solid) and its approximation (36) (dashed).

Lemma A.1. The approximation µ̂k is an upper bound on E[Xk|Ak].

Proof. We need to show that E[Xk|Ak] ≤ E[Xk|Âk]. Since P(Ak) = P(Âk), it is sufficient to
prove that ∫

Ak

Xk(ω)dP(ω) ≤
∫
Âk

Xk(ω)dP(ω). (31)

Let us subtract the integral over the common part Ak ∩ Âk. It remains to show∫
Ak\Âk

Xk(ω)dP(ω) ≤
∫
Âk\Ak

Xk(ω)dP(ω). (32)

In the RHS integral we haveXk(ω) ≥ mk since ω ∈ Âk = {ω |Xk(ω) ≥ mk}. In the LHS integral
we haveXk(ω) < mk since ω 6∈ Âk. Notice also that P(Ak\Âk) = P(Âk\Ak). The inequality (32)
follows.

Corollary A.1. The approximations of the expected maximum (29), (30) are upper bounds in the
respective cases when Xk are logistic, resp., normal.

Consider the case that Xk are i.i.d., all logistic or normal with µk = 0 and σk = 1. We then have
qk = 1

n . For the logistic case µ′ ≈ nH(1
n), which is asymptotically log(n) + 1 − 1

2n + O(1/n2).
For the normal case µ′ ≈ nφ(Φ−1(1

n)). Fig. A.2 shows comparisons of these estimates with the
sampling-based ground truth.

Approximation of the Variance For the variance we write

σ′2 = E(Y − µ′)2 =
∑
k

qkE((Xk − µ′)2 |Ak) ≈
∑
k

qkE((Xk − µ′)2 | Âk), (33)

where the approximation is due to Âk, and further rewrite the expression as

=
∑
k

qkE(X2
k − 2Xkµ

′ + µ′2 | Âk) (34a)

=
∑
k

qk

(
E(X2

k − µ̂2
k | Âk) + (µ̂k − µ′)2

)
(34b)

=
∑
k

qk(σ̂2
k + (µ̂k − µ′)2) (34c)

14

where σ̂2
k = Var[Xk | Âk]. For Xk with logistic density p(x) the variance integral σ̂2

k =
∫∞
mk

(x −
µ̂′)2p(x)dx expresses as2:

σ̂2
k =

1

qk

σ2
k

σ2
S

(
− log2(1− qk)

qk
− 2 Li2(

qk
qk − 1

)
)

=:
1

qk
σ2
kf(qk), (35)

where Li2 is dilogarithm. The function f can be well approximated on [0, 1] with

f̃(q) = S(a+ bS−1(q)), (36)

where a = −1.33751 and b = 0.886763 are obtained from the first order Tailor expansion of
S−1(f(S(t))) at t = 0. This approximation is shown in Fig. A.2 and is in fact an upper bound on
f . We thus obtained a rather simple approximation for the variance3

σ′2 ≈
∑
k

σ2
kS(a+ bS−1(qk)) +

∑
k

qk(µ̂k − µ′)2. (37)

A.2 SMOOTH MAXIMUM – LOGSUMEXP

In variational Bayesian learning it is necessary to compute the expectation of log p(y|x, θ) w.r.t.
to random parameters θ. The expectation of the logarithm rather that the logarithm of expectation
originates from the variational lower bound on the marginal likelihood obtained with Jensen’s in-
equality. In this section we extend our approximations to also handle log p(y|x, θ) for classification
problems. The same propagation rules apply up to the difference that the last layer is log of softmax
rather than softmax, i.e.

E[log softmax(X)] = E[X − log
∑
k

expXk] = E[X]− E[log
∑
k

expXk]. (38)

It remains therefore to handle the log-sum-exp operation, also known as the smooth maximum.

Proposition A.1. The LogSumExp operation has the following latent variable representation:

log
∑
k

exp(xk) = E
[

max
k

(xk + Γk)
]
, (39)

where Γk are independent Gumbel random variables such that E[Γk] = 0, i.e., Γk ∼
Gumbel(−γ, 1), where γ is the Euler-Mascheroni constant.

Proof. Let Y = maxk(xk + Γk). Recall that the cdf of Γk is FGumbel(−γ,1)(x) = e−e
−(x+γ)

. We can
write the cdf of Y as

FY (y) = P(xk + Γk ≤ y) =
∏
k

P(Γk ≤ y − xk) =
∏
k

e−e
−(y−xk+γ)

(40a)

= exp
(
−
∑
k

exke−(y+γ)
)

= exp
(
− eSe−(y+γ)

)
= e−e

−(y+γ−S)

= FGumbel(S−γ,1)(y),

(40b)

where S = log
∑
k e

xk . It follows that the mean value of Y is S − γ + γ = S.

We therefore propose to approximate the expectation of log softmax(X) by increasing the variances
of all inputs Xk by σ2

S/2 and applying the approximation for the maximum (A.1). Summarizing,
we obtain the following.

Proposition A.2. Let Xi have statistics (µi, σ
2
i). Then using expressions (39) and (29),

E[log softmax(X)]j ≈ µj −
∑
k

qkµk +
∑
k

H(qk)

√
σ2
k/σ

2
S +

1

2
, (41)

where qk are the expected softmax values § 4.1.

2Computed with the help of Mathematica.
3Not an upper bound due to (33).

15

Two classes For p(y = 1|x) = 1/(1 + e−x), we have log p(y = 1|x) = − log(1 + e−x). The
analogue of Proposition A.1 is the latent variable expression

log(1 + ex) = E[max(0, x+ Z)], (42)

where Z is a standard Logistic r.v. Therefore, to approximate E[log(1 + eX)], we can increase the
variance of X by the variance of standard logistic distribution σ2

S and apply the existing approxima-
tion for ReLU § 4.3.

B ACCURACY OF INDIVIDUAL BLOCKS

B.1 LEAKY RELU

We evaluate the simplified approximation of Leaky ReLU (25), which does not use the normal cdf
function. Since LReLU is 1-homogenous, it is clear that scaling the input will scale the output
proportionally. We therefore fix the input variance to 1 and plot the results as the function of the
input mean µ. Fig. B.1 shows that the approximation of the mean and variance as well as the
approximation of the output distribution defined by these values are all reasonable. Fig. B.2 shows
the implied approximation of derivatives. The baseline for the derivatives is the MC estimate with
pathwise derivative method (PD) (Glasserman, 2004), also known as the reparametrization trick.
This is also the method for the ground truth (with 105 samples). Despite the approximation of
the variance and its gradients are somewhat deviating from the GT model that assumes the perfect
normal distribution on the input, the overall behavior of the function is similar to the desired one
and it makes a cheap computational element for NNs.

B.2 SOFTMAX

To evaluate the proposed approximation for softmax we perform the following experiment. We
consider n = 10 inputs X1, . . . , Xn to be independent with Xk ∼ N (µk, σ

2
k). The means µi are

generated uniformly in the interval [0, U]. Then we sample σk such that log σk is uniform in the
interval [−5, 0]. We then estimate the ground truth output class distribution q(y) = (softmax(X))y
by MC sampling using 105 samples of X and evaluate the KL divergence from this GT estimate
to the approximations. We test both: quadratic time approximation (13) as well as linear time
approximation (17). The evaluation is repeated with scaled variances, σ such that maxk(σk) ranges
from 10−3U toU , i.e., covers the practically relevant interval. The experiment is repeated 1000 trials
in which different samples of µ and σ are evaluated. As a baseline we take the AP1 approximation
and MC sampling using fewer samples (10 and 100). This evaluation is shown in Fig. B.3 (a,d).

We further check how well the Jacobian is approximated. The Jacobian has two parts: Jµy,k =

∂q(y)/∂µk and Jσy,k = ∂q(y)/∂σk. For each part we compute the average cosine similarity of the

10 5 0 5 10

0

2

4

6

8

10 GT
MC-100(PD)
MC-10(PD)
AP1
AP2

(a)

10 5 0 5 10
0.0

0.5

1.0

1.5 GT
MC-100(PD)
MC-10(PD)
AP1
AP2

(b)

10 5 0 5 1010 10

10 8

10 6

10 4

10 2

100

102

KL
 d

iv
er

ge
nc

e

Output Distribution

GT
MC-100
MC-10
AP1
AP2

(c)

Figure B.1: Evaluation of accuracy of propagating uncertainty through Leaky ReLU(0.1). (a), (b)
Approximation of the output mean and standard deviation, respectively. (c) KL divergence from
the normal distribution with the ground truth mean and variance estimates. The shaded area shows
where 50% of the trials fall. A trial computes the MC ground truth (105 samples) and MC baseline
estimates.

16

10 5 0 5 10

0.2

0.4

0.6

0.8

1.0
′/

GT
MC-100(PD)
MC-10(PD)
AP1
AP2

(a)

10 5 0 5 10

0.5

0.0

0.5

1.0
′/

GT
MC-100(PD)
MC-10(PD)
AP1
AP2

(b)

10 5 0 5 10
0.0

0.1

0.2

0.3

0.4

0.5
′/

GT
MC-100(PD)
MC-10(PD)
AP1
AP2

(c)

10 5 0 5 10
0.0

0.5

1.0

1.5

′/
GT
MC-100(PD)
MC-10(PD)
AP1
AP2

(d)

Figure B.2: Approximation of Jacobian components for LReLU(0.1). The baseline MC method
uses pathwise derivatives (PD) and has a significant variance even with 100 samples. The shaded
area shows the interval of 50% of the trials.

10 2 10 1 100 101

max k

10 10

10 8

10 6

10 4

10 2

100

KL
 d

iv
er

ge
nc

e

Output Value, U=10
MC-100
MC-10
AP1
AP2 linear time
AP2 quadratic time

(a)

10 2 10 1 100 101

max k

0.980

0.985

0.990

0.995

1.000

Co
sin

e
sim

ila
rit

y

Gradient in , U=10

MC-100(PD)
MC-10(PD)
AP1
AP2 linear time
AP2 quadratic time

(b)

10 2 10 1 100 101

max k

0.0

0.2

0.4

0.6

0.8

Co
sin

e
sim

ila
rit

y

Gradient in , U=10

MC-100(PD)
MC-10(PD)
AP1
AP2 linear time
AP2 quadratic time

(c)

10 1 100 101 102

max k

10 10

10 8

10 6

10 4

10 2

100

KL
 d

iv
er

ge
nc

e

Output Value, U=100
MC-100
MC-10
AP1
AP2 linear time
AP2 quadratic time

(d)

10 1 100 101 102

max k

0.875

0.900

0.925

0.950

0.975

1.000

Co
sin

e
sim

ila
rit

y

Gradient in , U=100

MC-100(PD)
MC-10(PD)
AP1
AP2 linear time
AP2 quadratic time

(e)

10 1 100 101 102

max k

0.2

0.4

0.6

0.8

1.0

Co
sin

e
sim

ila
rit

y

Gradient in , U=100

MC-100(PD)
MC-10(PD)
AP1
AP2 linear time
AP2 quadratic time

(f)

Figure B.3: Evaluation of accuracy of propagating uncertainty through softmax. Top and bottom
display the cases when µ are chosen at random in intervals [0, 10] and [0, 100], respectively. (a,d)
Approximation quality of the expected value, measured by KL divergence from GT MC estimate.
Each line shows the median of the respective method over 100 trials. Analytic approximations are on
par with Monte Carlo estimates and more accurate for small input noise. (b,c,e,f) Cosine similarity
of gradients to the GT estimate. Each line shows the median over 1000 trials. MC estimates use
pathwise derivative (PD) method. While the cosine similarity is high for all methods in gradient
w.r.t. µ (notice the axis limits), analytic approximations are more accurate than MC estimates in the
gradient w.r.t. σ.

gradients:

1

n

∑
y

〈JGTy , Jy〉
‖JGTy ‖‖Jy‖

, (43)

where Jy denotes the gradient of output y in the part of the inputs (µ or σ). The baseline AP1
obviously cannot estimate the gradient in σ. This evaluation is shown in Fig. B.3 (middle, right).

17

10 2 10 1 100 101

max k

10 10

10 8

10 6

10 4

10 2

100

102

KL
 d

iv
er

ge
nc

e

Output Value, U=1

MC-100
MC-10
AP1
AP2 linear time
AP2 quadratic time

(a)

10 2 10 1 100 101

max k

0.5

0.0

0.5

1.0

Co
sin

e
sim

ila
rit

y

Gradient in , U=1

MC-100000(SF)
MC-1000(SF)
AP1
AP2 linear time
AP2 quadratic time

(b)

10 2 10 1 100 101

max k

1.0

0.5

0.0

0.5

1.0

Co
sin

e
sim

ila
rit

y

Gradient in , U=1

MC-100000(SF)
MC-1000(SF)
AP1
AP2 linear time
AP2 quadratic time

(c)

Figure B.4: Evaluation of accuracy of propagating uncertainty through Argmax. (a) Approximation
quality of the expected value, measured by KL divergence from GT MC estimate. Each line shows
the median of the respective method over 100 trials. (b,c) Cosine similarity of gradient orientations
to the GT estimate. Each line shows the median over 1000 trials of estimation and the shaded
area shows intervals where 50% of the trials fall. Each trial consists of estimating the GT using 107

samples and repeating each of the MC estimates. The MC methods use score function (SF) estimator.
The intervals around analytic estimates are due to the variance of the ground truth. Towards smaller
input variance the ground truth estimate of the gradient degrades to completely random and the
scalar product with it approaches zero on average. It does not imply that our analytic estimates are
poor for small input variance.

B.3 ARGMAX

This experiment is similar to Softmax but with several differences. Unlike in softmax, the range
of µ is not important (as there is no latent logistic noise with fixed variance added to the inputs).
We therefore can fix U = 1 because scaling both µ and σ is guaranteed to give the same output
distribution. Approximating the value of expected argmax indicator is shown in Fig. B.4(a). In
the baseline methods we include AP1, which computes y∗ = argmaxk µk and assigns the output
probability q(y∗) = 1 and q(y) = 10−20 for y 6= y∗. It is seen that the proposed approximations
accurately model the expected value. Computing the gradient with MC methods is more difficult in
this case, since the pathwise derivative cannot be applied (because argmax indicator is not differen-
tiable). We therefore used the score function (SF) estimator (Fu, 2006), also known as REINFORCE
method. This method requires much more samples. In fact we had problems to get a reliable ground
truth even with as many as 107 samples. In Fig. B.4(b,c) we illustrate the gradient estimation for a
single random instance of µ, σ. These plots show that baseline MC estimates have very high vari-
ance with 103 and 105 samples used. The accuracy of the gradients with analytic method for small
variances remains largely unmeasured because the GT estimate also degrades quickly and becomes
close to random for small input noises. A more accurate GT could be possibly computed by variance
reduction techniques, in particular using our analytic estimates as (biased) baselines.

C MULTILAYER EXPERIMENTS DETAILS

In this section we give all details necessary to ensure reproducibility of results.

C.1 IMPLEMENTATION DETAILS

We implemented our inference and learning in the pytorch4 framework. The source code will be
publicly available. The implementation is modular: with each of the standard layers we can do 3
kinds of propagation: AP1: standard propagation in deterministic layers and taking the mean in
stochastic layers (e.g., in dropout we need to multiply by the Bernoulli probability), AP2: proposed
propagation rules with variances and sample: by drawing samples of any encountered stochasticity
(such as sampling from Bernoulli distribution in dropout). The last method is also essential for
computing Monte Carlo (MC) estimates of the statistics we want to approximate. When the training
method is sample, the test method is assumed to be AP1, which matches the standard practice of
dropout training.

4http://pytorch.org

18

http://pytorch.org

In the implementation of AP2 propagation the input and the output of each layer is a pair of mean
and variance. At present we use only higher-level pytorch functions to implement AP2 propagation.
For example, AP2 propagation for convolutional layer is implemented simply as

y . mean = F . conv2d (x . mean , w) + b
y . v a r = F . conv2d (x . var , w∗w)

For numerical stability, it was essential that logsumexp is implemented by subtracting the maximum
value before exponentiation

m, = x . max ()
m = m. d e t a c h () # does n o t i n f l u e n c e g r a d i e n t
y = m + t o r c h . l o g (t o r c h . sum (t o r c h . exp (x − m)))

The feed-forward propagation with AP2 is about 3 times slower than AP1 or sample. The relative
times of a forward-backward computation in our higher-level implementation are as follows:

s t a n d a r d t r a i n i n g 1
BN 1 . 5
i n f e r e n c e =AP2 3
i n f e r e n c e =AP2−norm=AP2 6

Please note that these times hold for unoptimized implementations. In particular, the computational
cost of the AP2 normalization, which propagates single pixel statistics, should be more efficient in
comparison to propagating a batch of input images.

C.2 DATASETS

We used MNIST5 and CIFAR106 datasets. Both datasets provide a split into training and test sets.
From the training set we split 10 percent (at random) to create a validation set. The validation set is
meant for model selection and monitoring the validation loss and accuracy during learning. The test
sets were currently used only in the stability tests.

C.3 TRAINING

For the optimization we used batch size 32, SGD optimizer with Nesterov Momentum 0.9 (pytorch
default) and the learning rate lr · γk, where k is the epoch number, lr is the initial learning rate, γ
is the decrease factor. In all reported results for CIFAR we used γ such that γ600 = 0.1 and 1200
epochs. This is done in order to make sure we are not so much constrained by the performance
of the optimization and all methods are given sufficient iterations to converge. The initial learning
rate was selected by an automatic numerical search optimizing the training loss in 5 epochs. This
is performed individually per training case to take care for the differences introduced by different
initializations and training methods.

When not said otherwise, parameters of linear and convolutional layers were initialized using py-
torch defaults, i.e., uniformly distributed in [−1/

√
c, 1/

√
c], where c is the number of inputs per

one output.

Standard minor data augmentation was applied to the training and validation sets in CIFAR-10,
consisting in random translations ±2 pixels (with zero padding) and horizontal flipping.

When we train with normalization, it is introduced after each convolutional and fully connected
layer.

C.4 NETWORK SPECIFICATIONS

The LeNet5 architecture LeCun et al. (2001) is:

Conv2d (1 , 6 , ks =5 , s t =2) , A c t i v a t i o n
MaxPooling

5http://yann.lecun.com/exdb/mnist/
6https://www.cs.toronto.edu/˜kriz/cifar.html

19

http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/~kriz/cifar.html

Con
v3

-9
6

LR
eL

U

Con
v3

-9
6

LR
eL

U

Con
v3

-9
6

LR
eL

U

M
ax

Poo
l

Con
v3

-1
92

LR
eL

U

Con
v3

-1
92

LR
eL

U

Con
v3

-1
92

LR
eL

U

M
ax

Poo
l

Con
v3

-1
92

LR
eL

U

Con
v1

-1
92

LR
eL

U

Con
v1

-1
0

Ave
ra

ge
Poo

l
10-5

10-4

10-3

10-2

10-1

100

standard init
Xavier init
AP2 init
BN init

Figure C.1: Standard deviation of neurons in network layers after different initializations. The
shown values are averages over all units in each layer (spatial and channel dimensions). With stan-
dard random initialization the variances quickly decrease and the network output for the whole
dataset collapses nearly to a single point, complicating the training. Xavier init does not fully re-
solve the problem. Analytic normalization provides standard deviation within a small factor of 1
in all layers, comparable to BN. The zig-zagging effect is observed because the normalization is
performed after linear layers only.

Conv2d (6 , 16 , ks =5 , s t =2) , A c t i v a t i o n
MaxPooling
FC(4∗4∗16 , 1 2 0) , A c t i v a t i o n
FC(1 2 0 , 8 4) , A c t i v a t i o n
FC (8 4 , 1 0) , A c t i v a t i o n
LogSoftmax

Convolutional layer parameters list input channels, output channels, kernel size and stride.

The All-CNN network Springenberg et al. (2015) has the following structure of convolutional layers:

k s i z e = [3 , 3 , 3 , 3 , 3 , 3 , 3 , 1 , 1]
s t r i d e = [1 , 1 , 2 , 1 , 1 , 2 , 1 , 1 , 1]
d e p t h = [9 6 , 96 , 96 , 192 , 192 , 192 , 192 , 192 , 10]

each but the last one ending with activation (we used LReLU). The final layers of the network are

Adapt iveAvgPool2d , LogSoftmax

ConvPool-CNN-C model replaces stride-2 convolutions by stride-1 convolutions of the same shape
followed by 2x2 max pooling with stride 2.

C.5 AUXILIARY RESULTS ON NORMALIZATION

We test the analytic normalization method (Shekhovtsov & Flach, 2018) in a network with max
pooling and Leaky ReLU layers. We consider the “ConvPool-CNN-C” model of Springenberg et al.
(2015) on CIFAR-10 dataset. It’s structure is shown on the x-axis of Fig. C.1. We first apply different
initialization methods and compute variances in each layer over the training dataset. Fig. C.1 shows
that standard initialization with weights distributed uniformly in [−1/

√
nin, 1/

√
nin], where nin is

the number of inputs per single output of a linear mapping results in the whole dataset concentrated
around one output point with standard deviation 10−5. Initialization of Glorot & Bengio (2010),
using statistical arguments, improves this behavior. For the analytic approximation, we take statistics
of the dataset itself (µ0, σ0) and propagate them through the network, ignoring spatial dimensions
of the layers. When normalized by this estimates, the real dataset statistics have variances close
to one and means close to zero, i.e. the normalization is efficient. For comparison, we also show
normalization by the batch statistics with a batch of size 32. Fig. C.2 further demonstrates that
the initialization is crucial for efficient learning, and that keeping track of the normalization during
training and back propagating through it (denoted norm=AP2 in the figure) performs even better and
may be preferable to batch normalization in many scenarios such as recurrent NNs.

20

Training loss Validation Accuracy

0 150 300 450 600 750 900 10501200

10 5

10 4

10 3

10 2

10 1

100

0 200 400 600 800 1000 1200
0.88

0.89

0.90

0.91

0.92

0.93

0.94

0.95

init=AP2, lr=0.0098
init=BN, lr=0.011
init=standard, lr=0.038
init=xavier, lr=0.016
norm=AP2, lr=0.0051
norm=BN, lr=0.011

Figure C.2: The effect of initialization/normalization on the progress of training. Observe that the
initialization alone significantly influences the automatically chosen initial learning rate (lr) and the
”trainability” of the network. Using the normalization during the training further improves perfor-
mance for both batch and analytic normalization. BN has an additional regularization effect Ioffe
(2017), the square markers in the left plot show BN training loss using averaged statistics.

Training Loss

0 150 300 450 600 750 900 1050 1200

10 5

10 4

10 3

10 2

10 1

100 AP2 dropout=0.2, lr=0.016
Dropout=0.2, lr=0.013
No dropout, lr=0.011

Figure C.3: Training loss corresponding to Fig. 3. While stochastic dropout slows the training
down due to increased stochasticity of the gradient, the analytic dropout smoothes the loss function
and speeds the training up.

C A C A C A M C A C A C A M C A C A C P Softmax
σ∗ 0 0.17 0.56 0.40 1.5 0.85 0.95 3.9 2.4 10 5.3 25 7.0 8.9 39 21 43 11 26 4.3
εµ1

- 0.00 0.00 0.03 0.21 0.05 0.21 0.96 0.11 0.43 0.11 0.71 0.09 0.18 0.79 0.14 0.37 0.10 0.26 0.97 KL 0.06
εµ2

- 0.00 0.00 0.01 0.01 0.01 0.09 0.42 0.05 0.22 0.04 0.19 0.03 0.11 0.59 0.07 0.18 0.08 0.19 0.73 KL 0.03
εσ2

- 1.00 1.00 1.02 0.93 0.98 1.08 1.21 1.24 1.00 1.09 0.88 0.99 1.15 1.02 0.97 0.97 1.26 1.00 0.73

Table C.1: Accuracy of approximation of mean and variance statistics for each layer in a fully
trained ConvPool-CNN-C network with dropout. A significant drop of accuracy is observed as well
after max pooling, we believe due to the violation of the independence assumption.

C.6 ACCURACY WITH MAX POOLING

Table C.1 shows accuracy of posterior approximation results for ConvPool-CNN-C, discussed above
which includes max pooling layers. The network is trained and evaluated on CIFAR-10 with dropout
the same way as in § 5.1.

21

	Introduction
	Probabilistic NNs and Feed-forward Expectation Propagation
	Propagation in Basic Layers
	Propagation in Categorical and Max Layers
	Argmax and Softmax
	Maximum of Several Variables
	Maximum of Two variables and Leaky ReLU

	Experiments
	Approximation Accuracy
	Analytic Normalization
	End-to-end learning with Analytic Dropout

	Conclusion
	Maximum and Smooth Maximum
	Maximum of Several Variables
	Smooth maximum – LogSumExp

	Accuracy of Individual Blocks
	Leaky ReLU
	Softmax
	Argmax

	Multilayer Experiments Details
	Implementation Details
	Datasets
	Training
	Network specifications
	Auxiliary Results on Normalization
	Accuracy with Max pooling

