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ABSTRACT

To optimize a neural network one often thinks of optimizing its parameters, but
it is ultimately a matter of optimizing the function that maps inputs to outputs.
Since a change in the parameters might serve as a poor proxy for the change in
the function, it is of some concern that primacy is given to parameters but that
the correspondence has not been tested. Here, we show that it is simple and
computationally feasible to calculate distances between functions in a L? Hilbert
space. We examine how typical networks behave in this space, and compare
how parameter ¢? distances compare to function L? distances between various
points of an optimization trajectory. We find that the two distances are nontrivially
related. In particular, the L2 /¢? ratio decreases throughout optimization, reaching
a steady value around when test error plateaus. We then investigate how the L?
distance could be applied directly to optimization. We first propose that in multitask
learning, one can avoid catastrophic forgetting by directly limiting how much the
input/output function changes between tasks. Secondly, we propose a new learning
rule that constrains the distance a network can travel through L2-space in any
one update. This allows new examples to be learned in a way that minimally
interferes with what has previously been learned. These applications demonstrate
how one can measure and regularize function distances directly, without relying on
parameters or local approximations like loss curvature.

1 INTRODUCTION

A neural network’s parameters collectively encode a function that maps inputs to outputs. The goal
of learning is to converge upon a good input/output function. In analysis, then, a researcher should
ideally consider how a network’s input/output function changes relative to the space of possible
functions. However, since this space is not often considered tractable, most techniques and analyses
consider the parameters of neural networks. Most regularization techniques, for example, act directly
on the parameters (e.g. weight decay, or the implicit constraints stochastic gradient descent (SGD)
places upon movement). These techniques are valuable to the extent that parameter space can be
taken as a proxy for function space. Since the two might not always be easily related, and since
we ultimately care most about the input/output function, it is important to develop metrics that are
directly applicable in function space.

In this work we show that it is relatively straightforward to measure the distance between two
networks in function space, at least if one chooses the right space. Here we examine L2-space, which
is a Hilbert space. Distance in L? space is simply the expected /5 distance between the outputs of
two functions when given the same inputs. This computation relies only on function inference.

Using this idea of function space, we first focus on characterizing how networks move in function
space during optimization with SGD. Do random initializations track similar trajectories? What hap-
pens in the overfitting regime? We are particularly interested in the relationship between trajectories
in function space and parameter space. If the two are tightly coupled, then parameter change can be
taken as a proxy for function change. This common assumption (e.g. Lipschitz bounds) might not
always be the case.
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Next, we demonstrate two possibilities as to how a function space metric could assist optimization.
In the first setting we consider multitask learning, and the phenomenon of catastrophic forgetting
that makes it difficult. Many well-known methods prevent forgetting by regularizing how much the
parameters are allowed to shift due to retraining (usually scaled by a precision matrix calculated on
previous tasks). We show that one can instead directly regularize changes in the input/output function
of early tasks. Though this requires a ”"working memory” of earlier examples, this scheme turns out
to be quite data-efficient (and more so than actually retraining on examples from old tasks).

In the second setting we propose a learning rule for supervised learning that constrains how much
a network’s function can change any one update. This rule, which we call Hilbert-constrained
gradient descent (HCGD), penalizes each step of SGD to reduce the magnitude of the resulting step
in L2-space. This learning rule thus changes the course of learning to track a shorter path in function
space. If SGD generalizes in part because large changes to the function are prohibited, then this rule
will have advantages over SGD. Interestingly, HCGD is conceptually related to the natural gradient.
As we derive in §3.2.1, the natural gradient can be viewed as resulting from constrains changes in a
function space measured by the Kullbeck-Leibler divergence.

2 EXAMINING NETWORKS IN FUNCTION SPACE

We propose to examine the trajectories of networks in the space of functions defined by the inner
product (f,g) = [; f(x)g(x)du(z), which yields the following norm:

172 = / P

Here p is a measure and corresponds to the probability density of the input distribution X. Note that
this norm is over an empirical distribution of data and not over the uniform distribution of all possible
inputs. The | - |? operator refers to the 2-norm and can apply to vector-valued functions. While we
refer to this space as a Hilbert space, we make no use of an inner product and can also speak of this
as any normed vector space, e.g. a Banach space. This norm leads to a notion of distance between
two functions f and g given by

If —gll? = /X|f—g\2du.

Since p is a density, fx dp =1, and we can write

If = gl = Ex[|f(z) — g(2)].

The expectation can be approximated as an empirical expectation over a batch of examples drawn
from the input distribution:

N
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The quality of the empirical distance, of course, will depend on the shape and variance of the
distribution of data as well as the form of f and g. In section 2.3, we empirically investigate the
quality of this estimator for reasonably sample sizes V.

2.1 DIVERGENCE OF NETWORKS IN L?-SPACE DURING TRAINING

We wish to compare at high level how networks move through parameter and function space. Our
first approach is to compare a low-dimensional embedding of the trajectories through these spaces.
In Figure 1, we take a convolutional neural network and train three random initializations on a
5000-image subset of CIFAR-10. By saving the parameters of the network at each epoch as well as
the output on a single large validation batch, we can later compute the £2 parameter distance and the
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Function space Parameter space

Figure 1:
l Visualization of the trajectories of three ran-
’ dom initializations of a network through
function space, left, and parameter space,
right. The network is a convolutional net-
N work trained on a 5,000 image subset of
/ \ CIFAR-10. At each epoch, we compute
Funcionspace P— the L? and ¢? distances between all pre-
vious epochs, forming two distance matri-
ces, and then recompute the 2D embed-
ding from these matrices using multidimen-

Epoch 50

NN

Epoch 200 —_—

\ —— | sional scaling. Each point on the plots rep-

resents the network at a new epoch of train-
ing.The black arrows represent the direction
of movement.

L? function distance between the snapshots of network at each epoch. The resulting distance matrix
is then visualized as a two-dimensional embedding.

In parameter space, the networks are initialized at very different points and proceed to diverge yet
further from these points. Despite this divergence, each trajectory yields a network that has learned
the training data perfectly and generalizes with ~ 50% accuracy to a test set. This illustrates the wide
range of parameter settings that can be used to represent a given neural network function. The behavior
of the same initializations in function space is quite different. First, note that all three initializations
begin at approximately the same point in function space. This is an intriguing property of random
initializations that, rather than encoding entirely random functions, random sets of parameters lead
on average to the same function (for related work, see e.g. Giryes et al. (2016)). The initializations
then largely follow an identical path for the initial stage of learning. Different initializations thus
learn in similar manners, even if the distance between their parameters diverges. During late-stage
optimization, random initializations turn from a shared trajectory and begin to diverge in L? space.
These differences underlie the general principle that L? distances behave differently than ¢2 distances,
and that functional regularization could assist training and reduce overfitting.

2.2 COMPARING L? FUNCTION DISTANCE WITH /2> PARAMETER DISTANCE

How well do parameter distances reflect function distances? The answer to this question is relevant
for any method that directly considers the behavior of parameters. Certain theoretical analyses,
furthermore, desire bounds on function distances but instead find bounds on parameter distances
and relate the two with a Lipschitz constant (e.g. Hardt et al. (2015)). Thus, for theoretical analyses
and optimization methods alike, it is important to empirically evaluate how well parameter distances
correspond to function distances in typical situations.

We can compare these two situations by plotting a change in parameters ||A6|| against the corre-
sponding change in the function ||fy — fo1ae||. In Figure 2 we display this relation for several
relevant distance during the optimization of a CNN on CIFAR-10. There are three scales: the distance
between individual updates, the distance between epochs, and the distance from initialization.

Note, first, that networks continue to move in function space as well as in parameter space after test
error converges, which is around epoch 60. (The test error can be seen in Appendix A, along with
identical plots colored by test error instead of epoch.) Their movement relative to initialization slows,
but there is still large movement relative to previous iterations and previous epochs.

What changes strikingly throughout optimization is the relationship between parameter and function
space. There is a qualitative difference in the ratio of parameter distances to function distances that
visible at all three distance scales. Early epochs generally see larger changes in L? space for a given
change in parameters. Intriguingly, the ratio of the two distances appears to converge to a single
value at late optimization, after test error saturates. This is not because the network ceases to move,
as noted above. Rather, the loss landscape shifts such that this ratio become constant.
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It is also clear from these plots that there is not a consistent positive correlation between the parameter
and function distances between any two points on the optimization trajectory. For example, the
parameter distance between successive epochs is negatively correlated with the L? distance for most
of optimization (Fig. 2b). The distance from initialization shows a clean and positive relationship,
but the relationship changes during optimization. Between successive batches, L? distance correlates
with parameter distance at late epochs, but less so early in optimization when learning is quickest.
Thus, at different stages of optimization, the L2 /¢? ratio is often quite different.

The usage of Batch Normalization (BN) and weight decay in this analysis somewhat affects the
trends in the L2 /¢ ratio. In Appendix A we reproduce these plots for networks trained without BN
and without weight decay. The overall message that the L2 /¢ ratio changes during optimization is
unchanged. However, these methods both change the scale of updates, and appear to do so differently
throughout optimization, and thus some trends are different. In Appendix B, we also isolate the
effect of training data, by reproducing these plots for a CNN trained on MNIST and find similar
trends. Overall, the correspondence between parameter and function distances depends strongly on
the context.
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Figure 2: Parameter distances is sometimes, but not always, representative of function distances.
Here we compare the two at three scales during the optimization of a CNN on CIFAR-10. Left:
Distances between the individual SGD updates. Middle: Distances between each epoch. Right:
Distances from initialization. On all three plots, note the changing relationship between function and
parameter distances throughout optimization. The network is the same as in Figure 1: a CNN with
four convolutional layers with batch normalization, followed by two fully-connected layers, trained
with SGD with learning rate = 0.1, momentum = 0.9, and weight decay = le-4. Note that the >
distance is computed from the output after the softmax layer, meaning possible values range from 0
to 1.

2.3 CONVERGENCE OF THE EMPIRICAL ESTIMATOR

It might be worried that since function space is of infinite dimension, one would require prohibitively
many examples to estimate a function distance. However, we find that one can compute a distance
between two functions with a relatively small amount of examples. Figure 3 shows how the estimated
L? distance converges with an increasing number examples. In general, we find that only a few
hundred examples are necessary to converge to an estimation within a few percent.

3 APPLICATIONS

3.1 COMBATTING CATASTROPHIC FORGETTING IN AN ONLINE LEARNING TASK (WITH
WORKING MEMORY)

If, after having been trained on a task, a neural network is retrained on a new task, it often forgets
the first task. This phenomenon is termed ’catastrophic forgetting’. It is the central difficulty of
multitask training as well as applications requiring that learning be done online (especially in non-IID
situations). Essentially, new information must be encoded in the network, but the the information
pertinent to the previous task must not be overwritten.

Most efforts to combat catastrophic forgetting rely on restricting how much parameters can change
between tasks. Elastic Weight Consolidation (EWC; Kirkpatrick et al. (2017)), for example, adds a
penalty to the loss on a new task B that is the distance from the weights after learning on an earlier
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Figure 3: The variance of the the L? estimator is small enough that it can be reasonably estimated
from a few hundred examples. In panels A and D, we reproduced L? distances seen in the panels
of Fig. 2. As we increase the number of validation examples these distances are computed over,
the estimations become more accurate. Panels B and E show the 95% confidence bounds for the
estimation; on 95% of batches, the value will lie bewteen these bounds. These bounds can be obtained
from the standard deviation of the L? distance on single examples. In panel C we show that the
standard deviation scales linearly with the L? distance when measured between updates, meaning
that a fixed batch size will often give similar percentage errors. This is not true for the distance from
initialization, in panel F; early optimization has higher variance relative to magnitude, meaning that
more examples are needed for the same uncertainty. In the Appendix, we also display the convergence
of the L? distance estimator between epochs.

task A, multiplied by the diagonal of the Fisher information matrix F' (calculated on task A):
A 2
Lpwc(9) = Lp(0) + 5 Z Fi(6; — 0.4)

This idea is closely related to well-studied approaches to Bayesian online learning, if F' is interpreted
as a precision matrix (Honkela & Valpola (2003), Opper & Winther (1998)). Other similar approaches
include that of Ritter et al. (2018), who use a more accurate approximation of the Fisher, and Synaptic
Intelligence (SI; Zenke et al. (2017)), which discounts parameter change via a diagonal matrix in
which each entry reflects the sum contribution of that parameter to the loss. Each of these method
discourages catastrophic forgetting by restricting movement in parameter space between tasks, scaled
by a (perhaps diagonal) precision matrix calculated on previous tasks.

Using a function space metric, it is not hard to ensure that the network’s output function on previous
tasks does not change during learning. In this case, the loss for a new task B is modified to be:

L(O) = Ln(0) + 11 fon — o

The regularization term is the L? distance between the current function fy,, and the function after
training on task A, fy,. Since our function space metric is defined over a domain of examples, we
will store a small set of previously seen examples in a working memory, as well as the output on those
examples. This memory set will be used to calculate the L? distance between the current iteration
and the snapshot after training. This is a simple scheme, but novel, and we are not aware of direct
precedence in the literature.

A working memory approach is employed in related work (Lopez-Paz et al. (2017); Rebuffi et al.
(2017)). Note, however, that storing old examples violates the rules of strict online learning. Never-
theless, for large networks it will be more memory-efficient. EWC, for example, requires storing a
snapshot of each parameter at the end of the previous task, as well as a diagonal precision matrix with
as many entries as parameters. For the 2 hidden layer network with 400 nodes each that was used in
the MNIST task in Kirkpatrick et al. (2017), this is 1,148,820 new parameters, or as many pixels as
1,465 MNIST images. When each layer has as many as 2,000 nodes, as in Fig. 3B of Kirkpatrick
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et al. (2017), the extra stored parameters are comparable to 15,489 MNIST images. The working
memory approach that is required to regularize function change from old tasks is thus comparable or
cheaper in memory.

3.1.1 EMPIRICAL RESULTS

We compared the performance of our approach at the benchmark task of permuted MNIST. This
task requires a single MLP to learn to classify a sequence of MNIST tasks in which the pixels have
been randomly permuted differently on each task. We trained an MLP with 2 hidden layers, 400
nodes each, for 10 epochs on each of 8 such permuted datasets. In Figure 4, we display how the test
accuracy on the first of 8 tasks degrades with subsequent learning.

To build the working memory, we keep 1024 examples from previous tasks, making sure that the
number of examples from each task is equal. We also remember the predictions on those examples at
the end of training on their originating tasks. To calculate the L? distance, we simply re-infer on the
examples in working memory, and regularize the distance from the current outputs to the remembered
outputs. We chose A = 1.3 as the regularizing hyperparameter from a logarithmic grid search.

In Figure 4, we compare this method to four comparison methods. The ”ADAM” method is ADAM
with a learning rate of 0.001, which nearly forgets the first task completely at the end of the 8 tasks.
The ”ADAM-+retrain” method is augmented with a working memory of 1024 examples that are stored
from previous tasks. Every n iterations (we found n = 10 to be best), a step is taken to decrease
the loss on the memory cache. This method serves as a control for the working memory concept.
We also include EWC and SI as comparisons, using the hyperparameters used in their publications
(A =500, ¢ = ¢ = 0.1). Overall, we found that regularizing the L? distance on a working memory
cache was more successful than simply retraining on the same cache. It also outperformed EWC,
but not SI. Note that these methods store diagonal matrices and the old parameters, and in this
circumstance these were larger in memory than the memory cache.

Figure 4: Regularizing the L? distance from
old tasks (calculated over a working mem-
ory cache of size 1024) can successfully pre-
vent catastrophic forgetting. Here we dis-

Test accuracy (%)
on task #1

06 - play the test performance on the first task as

05 4 —— pomvis L2 1es 7 subsequent tasks are lea.rned. Our method

o | = BC outperforms simply retraining on the same

J e cache (ADAM-+retrain), which potentially

' ADAM overfits to the cache. Also displayed are

O ADAM without modifications, EWC, and
Task # SI.

3.2 CONSTRAINING CHANGES IN L? DURING LEARNING

In this section we propose that the L? distance can be used for regularization in a single supervised
task. In the space of parameters, SGD is a strongly local update rule and large jumps are generally
prohibited. SGD is thus more likely to find solutions that are close to the initialization, and furthermore
to trace a path of limited length. This discourages the sampling a large volume of parameter space
during optimization. If the mapping between parameter and function space is not already very tight,
and locality is important for generalization, then additionally constricting changes in function space
should help.

On the basis of this logic, we propose a learning rule that directly constrains the path length of the
optimization trajectory L? space. If a network would have been trained to adjust the parameters 6 to
minimize some cost Cp, we will instead minimize at each step ¢ a new cost given by:

C = Co+ Al fo, = fo.+a0ll (D

Like all regularization terms, this can also be viewed as a Langrangian that satisfies a constraint.
Here, this constraint ensures that the change in L?-space does not exceed some constant value. To
evaluate Equation 1, we can approximate the norm with an empirical expectation over X:
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This cost function imposes a penalty upon the difference between the output of the current network at
time ¢ and the proposed network at ¢ 4+ 1. The data z; may derive from some validation batch but
must pull from the same distribution X. It would also be possible to use unlabeled data.

We can write an update rule to minimize Equation 1 that is a modification of gradient descent. We
call the rule Hilbert-constrained gradient descent (HCGD). It minimizes C in Equation 1 via an inner
loop of gradient descent. To optimize C via gradient descent, we first replace Cy with its first order
approximation J7 A#, where .J is the Jacobian. Thus we seek to converge to a Af’ at each update
step, where

X
A" = argmin (JTAH + N Z | fo, (x;) — f0t+A9(a?i)|2) )

A0 i=0

Minimization of the proper A# can be performed in an inner loop by a first order method. We first
propose some Afy = —eJ = —eVyCy (for learning rate ¢) and then iteratively correct this proposal
by gradient descent towards Af'. If only one correction is performed, we simply add the derivative
of the Hilbert-constraining term after A6y has been proposed. We found empirically that a single
correction was often sufficient. In Appendix C, we demonstrate that this algorithm does actually
decrease the distance traveled in function space, as expected. This algorithm is shown in Algorithm 1.

Algorithm 1: Hilbert-constrained gradient descent. Implements Equation 2.

Require: ¢ > Overall learning rate

Require: 7 > Learning rate for corrective step
1: procedure
2: 0 < 6y > Initialize parameters
3 while 6; not converged do
4: draw X ~ P, > Draw training batch
5: J  VCo(X) > Calculate gradients
6 Afy — —eJ > Proposed update
7: draw Xy ~ P, > Draw validation batch

2 N
8: gr2 < Vag <)\N Z | fo, (xi) — f9t+A9(:ci)\2)1/2 > Calculate correction
z, €EXv

9: A0« Aby — n(grz2)

10: Ht — et—l + AY’

11: return 0,

Note that the proposed update” is presented as an SGD step, but could be a step of another optimizer
(e.g. ADAM). In the Appendix, we display an extended version of this algorithm. This version allows
for multiple corrective iterations in each step. It also allows for a form of momentum. In standard
momentum for SGD, one follows a “velocity” term v which is adjusted at each step with the rule
v < Bv + €J (e.g. see Sutskever et al. (2013)). For HCGD, we also keep a velocity term but update
it with the final Hilbert-constrained update A# rather than e¢.J. The velocity is used to propose the
initial Afy in the next update step. We found that this modification of momentum both quickened
optimization and lowered generalization error.

3.2.1 RELATION TO THE NATURAL GRADIENT

The natural gradient turns out to carry a similar interpretation as HCGD, in that the natural gradient
also regularizes the change in functions’ output distributions. Specifically, the natural gradient can
be derived from a penalty upon the change in a network’s output distribution as measured by the
Kullbeck-Leibler divergence (rather than the L? distance).
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To show this, we start with a similar goal of function regularization and will come upon the natural
gradient. Let us seek to regularize the change in a network’s output distribution Py throughout
optimization of the parameters 6, choosing the Kullbeck-Leibler (KL) divergence as a measure of
similarity between any two distributions. To ensure the output distribution changes little throughout
optimization, we define a new cost function

C = CO + )\DKL(]P)Gt-H ||]P9t) @)

where Cj is the original cost function and A is a hyperparameter that controls the importance of this
regularization term. Optimization would be performed with respect to the proposed update ;1.

Evaluating the KL divergence directly is problematic because it is infeasible to define the output
density Py everywhere. One can obtain a more calculable form by expanding Dy, (Py, ., , ||Po,)
around 6; to second order with respect to . The Hessian of the KL divergence is the Fisher
information metric F. With Af = (0;41 — 6;), we can rewrite our regularized cost function as

A
C=~Cy+ §A6TFA9 4
To optimize C via gradient descent we first replace Cyy with its first order approximation.

C~ JVAD + %A@TFAQ (5)

At each evaluation, J is evaluated before any step is made, and we seek the value of A6 that minimizes
Equation 5. By setting the derivative with respect to A6 to be zero, we can see that this value is

AO = %F‘IJ (6)

When A = 1 this update is equal to the natural gradient. Thus, the natural gradient emerges as the
optimal update when one regularizes the change in the output distribution during learning.

In Appendix E, we show how one can approximate the natural gradient with an inner first-order
optimization loop, like in HCGD. We note that HCGD is computationally cheaper than the exact
natural gradient. It does not require any matrix inversions, nor the calculation of separate per-example
gradients. When the validation batch Xy is drawn anew for each of n corrective iterations (step 8 in
Algorithm 1), HCGD requires an additional two forward passes and one backwards pass for each
correction, for a total of 2 + 3n passes each outer step.

3.2.2 THE NATURAL GRADIENT IN THE LITERATURE

In addition to being seen as a regularizer of functional change, it in an interesting aside to note that
variants of the natural gradient have appeared with many justifications. These include data efficiency,
minimizing a regret bound during learning, speeding optimization, and the benefits of whitened
gradients.

Amari originally developed the natural gradient in the light of information geometry and efficiency
(Amari et al. (1996); Amari (1998)). If some directions in parameter space are more informative of
the network’s outputs than others, then updates should be scaled by each dimension’s informativeness.
Equivalently, if not all examples carry equal information about a distribution, then the update step
should be modified to make use of highly informative examples. That is, we wish to find a Fisher-
efficient algorithm (see Amari et al. (2000)). The natural gradient uses the Fisher information matrix
to scale the update by parameters’ informativeness.

There is also a connection between the natural gradient (and thus HCGD) and techniques that
normalize and whiten gradients. The term F'~1.J, after all, simply ensures that steps are made in a
parameter space that is whitened by the covariance of the gradients. Whitening the gradients thus has
the effect that SGD becomes more similar to the natural gradient. It appears that many approaches
to normalize and whiten activations or gradients have been forwarded in the literature (Raiko et al.
(2012);Simard et al. (1998); Schraudolph & Sejnowski (1996); Crammer et al. (2009); Wang et al.
(2013); LeCun et al. (1991); Schraudolph (1998); Salimans & Kingma (2016)). A similar effect is
able to be learned with Batch Normalization, as well (Ioffe & Szegedy (2015)). By normalizing and
whitening the gradients, or by proxy, the activations, these various methods ensure that parameter
space is a better proxy for function space.
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3.3 EMPIRICAL COMPARISON OF HCGD

We compared HCGD and SGD on feedforward and recurrent architectures. If it is important that
SGD limits changes in function space, and parameter and function space are loosely coupled, then
HCGD should improve upon SGD. In all tests, we used a tuned learning rate € for SGD, and then
used the same learning rate for HCGD. We use values of A = 0.5 and n = 0.02, generally about 10
times less than the principal learning rate €. (For the n = 1 version, A can be folded into the inner
learning rate 7). Values were chosen so that Ay = 0.01.) We chose the batch size for the “validation”
batch to be 256. While the examples in each “validation” batch were different than the training batch,
they were also drawn from the train set. All models were implemented in PyTorch (Paszke et al.
(2017)).

We tested HCGD as applied to the CIFAR-10 image classification problem. For reproducibility, we
trained a Squeezenet v1.1, a convolutional neural network model with batch normalization optimized
for parameter efficiency (Iandola et al. (2016)). Overall HCGD does not outperform SGD in the
final learning stage when trained with the same learning rate as SGD (initial € = 0.1), though it does
perform better in the early stage while the learning rate is high (Figure 5). When we increase the
initial learning rate to e = 0.3 (red trace), the training accuracy decreases but the test accuracy is still
marginally higher than SGD. Given the difference in relative performance between the high and low
learning rate stages, it is possible that HCGD requires a different learning rate schedule to achieve the
same level of gradient noise. HCGD thus decreases the test error at a given learning rate, but needs to
be trained at a higher learning rate to achieve the same level of gradient noise.
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We next tested the performance of HCGD on a recurrent task. We trained an LSTM on the sequential
MNIST task, in which pixels are input one at a time. The order of the pixels was permuted to further
complicate the task. We found that HCGD outperformed SGD (Figure 6. We used 1 correction step,
as before, but found that using more correction steps yielded even better performance. However,
HCGD underperformed ADAM. While not the ideal optimizer for this task, the fact that SGD can
be improved indicates that SGD does not move as locally in function space as it should. Parameter
space thus a poor proxy for function space in recurrent networks.

HCGD first proposes an update by SGD, and then corrects it, but the first update step can also be
other optimizers. Since Adam worked well for the sequential MNIST task, we tested if Adam could
also be improved by taking a step to penalize the change in function space. We found that this is
indeed the case, and show the results as well in Figure 6. To differentiate the SGD- and Adam-based
methods, we refer to in the figure as SGD+HC and Adam+HC. This combination of Adam and L?
functional regularization could help to achieve state-of-the-art performance on recurrent tasks.

4 DISCUSSION

Neural networks encode functions, and it is important that analyses discuss the empirical relationship
between function space and the more direct parameter space. Here, we argued that the L? Hilbert
space defined over an input distribution is a tractable and useful space for analysis. We found
that networks traverse this function space qualitatively differently than they do parameter space.
Depending on the situation, a distance of parameters cannot be taken to represent a proportional
distance between functions.

We proposed two possibilities for how the L? distance could be used directly in applications. The first
addresses multitask learning. By remembering enough examples in a working memory to accurately



Published as a conference paper at ICLR 2019

Figure 6: Results of a single-
layer LSTM with 128 hid-

) den units trained on the se-
Train Test

0 0 quential MNIST task with
1 1 permuted pixels. Shown are
“ “ the traces for SGD and Adam
> =" (both with leaming rate 0.01).
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we also show the effect of in-
troducing more iterations n
in the SGD+HC step.

estimate an L? distance, we can ensure that the function (as defined on old tasks) does not change as
a new task is learned. This regularization term is agnostic to the architecture or parameterization of
the network. We found that this scheme outperforms simply retraining on the same number of stored
examples. For large networks with millions of parameters, this approach may be more appealing than
comparable methods like EWC and SI, which require storing large diagonal matrices.

We also proposed a learning rule that reduces movement in function space during single-task opti-
mization. Hilbert-constrained gradient descent (HCGD) constrains the change in L? space between
successive updates. This approach limits the movement of the encoded function in a similar way as
gradient descent limits movement of the parameters. It also carries a similar intuition as the forgetting
application: to learn from current examples only in ways that will not affect what has already been
learned from other examples. HCGD can increase test performance at image classification in recurrent
situations, indicating both that the locality of function movement is important to SGD and that it
can be improved upon. However, HCGD did not always improve results, indicating either that SGD
is stable in those regimes or that other principles are more important to generalization. This is by
no means the only possibility for using an L? norm to improve optimization. It may be possible,
for example, to use the norm to regularize the confidence of the output function (e.g. Pereyra et al.
(2017)). We are particularly interested in exploring if more implicit, architectural methods, like
normalization layers, could be designed with the L? norm in mind.

It interesting to ask if there is support in neuroscience for learning rules that diminish the size of
changes when that change would have a large effect on other tasks. One otherwise perplexing
finding is that behavioral learning rates in motor tasks are dependent on the direction of an error but
independent of the magnitude of that error (Fine & Thoroughman, 2006). This result is not expected
by most models of gradient descent, but would be expected if the size of the change in the output
distribution (i.e. behavior) were regulated to be constant. Regularization upon behavioral change
(rather than synaptic change) would predict that neurons central to many actions, like neurons in
motor pools of the spinal cord, would learn very slowly after early development, despite the fact that
their gradient to the error on any one task (if indeed it is calculated) is likely to be quite large. Given
our general resistance to overfitting during learning, and the great variety of roles of neurons, it is
likely that some type of regularization of behavioral and perceptual change is at play.

CODE AVAILABILITY

A Pytorch implementation of the HCGD optimizer can be found at
https://github.com/KordingLab/hilbert-constrained-gradient-descent.
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A CIFAR-10 L? AND /2 COMPARISON

45 -

40

35

30

Test error

25

20 -

0.200

0.175

0.150

0.125

0.100

0.075

L2 distance

0.050

0.025

0.000

20 40 60 80 100
Epoch
L]
L]
° * L
T T T T T
0.16 0.18 0.20 0.22 0.24

Parameter £2 distance
per update

L2 distance

L2 distance

0.9

0.7 4

0.6

05

0.4 -

0.3

0.2

T T T T T
10 20 30 40 50

Parameter £2 distance
from init.

T
60

0.6

05

0.3

0.2

0.1

1.8 2.0 2.2 2.4 26 2.8
Parameter £2 distance
from last epoch

3.0

Figure A.1: This figure reproduces Figure 2, but includes the test error. The color scale is now also
the test accuracy, rather than epoch number. Note that those epochs with qualitatively different L2 /¢?

ratios than the late optimization correspond to the epochs where test error is changing fastest.
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Figure A.2: This figure completes Figure 3 to include the standard deviation of the estimator for the
distance between epochs. The scale of the standard deviation is similar to that of the L? estimator
between batches, requiring near 1,000 examples for accuracies within a few percent.
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Figure A.3: Same as Figure 2 (L?/¢? ratio for three distance scales) but with all points within an
epoch averaged. This makes the overall trends more apparent.
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Figure A.4: Same as above, but for a network trained without Batch Normalization (BN). The change
is most apparent in the x-axis scale of the left and middle plots. Without BN, larger parameter changes
yield the same magnitude of L? changes, both between updates and between epochs. Furthermore,
the L?/¢? ratio for the distance between updates (leftmost plot) changes less between epochs when
BN is used. This appears largely a consequence of BN keeping the typical update size fixed at a more
standard magnitude (and yet achieving a similar functional change.
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Figure A.5: Same as above, but for a network trained without Batch Normalization and also without
weight decay. Weight decay has a strong effect. The main effect is that decreases the ¢ distance
traveled at all three scales (from last update, last epoch, and initialization), especially at late opti-
mization. This explains the left column, and some of the middle and right columns. (It is helpful
to look at the ”white point” on the color scale, which indicates the point halfway through training.
Note that parameter distances continue to change after the white point when WD is not used). An
additional and counterintuitive property is that the L? distance from the last epoch increases in scale
during optimization when WD is not used, but decreases if it is. These comparisons show that WD
has a strong effect on the L2 /¢? ratio, but that this ratio still changes considerable throughout training.
This is in line with this paper’s motivation to consider L? distances directly.
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B COMPARING FUNCTION AND PARAMETER SPACES DURING MNIST
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Figure B.6: Here we reproduce the results of Figure 2 and Figure 3 for the MNIST task, again using
a CNN with batch normalization trained with SGD with momentum. It can be seen first that the
majority of function space movement occurs very early in optimization, mostly within the first epoch.
The standard deviation of the L? estimator, which sets the number of examples needed to accurately
estimate a consistent value, is somewhat higher than for CIFAR-10. Finally, at right, it can be seen
that the relationship between parameter distance traveled and function distance is similar to that of a
CNN on CIFAR-10, include the qualitative change after test error converges (which here is around
epoch 1).
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C HCGD DECREASES THE DISTANCE TRAVELED IN L? SPACE
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Figure C.7: The HCGD algorithm is designed to reduce motion through L2-space. To confirm
this, here we plot the cumulative squared distance traveled during optimization for a simple MLP
trained on MNIST. This is calculated by the simple cumulative sum of the squared distances between
consecutive updates. (The squared distance is nice because Brownian motion will present as a linear
increase in its cumulative sum). It can be seen that SGD continues to drift in L2-space during the
overfitting regime (around epoch 15, which is when test error saturates), while HCGD plateaus. This
indicates that the function has converged to a single location; it ceases to change. With SGD, on the
other hand, the network continues to cahnge even long after test error saturates. It is interesting to
note that HCGD allows the parameters to continue to drift even though the function has generally
converged.
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D DETAILED HCGD ALGORITHM

This version of the algorithm includes momentum. It also allows for multiple corrections.

Algorithm 2: Hilbert-constrained gradient descent. Implements Equation 7.

Require: n > 1 > Number of corrective steps. May be 1.
Require: ¢ > Overall learning rate
Require: 7 > Learning rate for corrective step
Require: 3 > Momentum

1: procedure

2: 0 < 6y > Initialize parameters

3: v+ 0 > Initialize momentum buffer

4: while 6, not converged do

5: reset dropout mask, if using

6: draw X ~ P, > Draw training batch

7 J + VCo(X) > Calculate gradients

8: v Pv+e

9: Aby +— —v > Proposed update
10: draw Xy ~ P, > Draw validation batch

el 1/2
11: grz < VAG(N zg | fo. () — fo+n0(zi)[?)
1=

12: Ay — AbBy — n(gr2) > First correction

13: v+ v+n(gr2) > Update buffer
14: forl1 <j<ndo > Optional additional correc-

tions
N
2
15: gr2 < ‘]"’_VA@()\WZlf%(Ii)_
i=0
1/2

16: foo+n0,_, (x:)]?)

17: Al — AO;_1 —n(gr2)

18: v v+n(gre)

19: 0 01+ A0
20: return 0;

E NATURAL GRADIENT BY GRADIENT DESCENT

In order to better compare the natural gradient to the Hilbert-constrained gradient, we propose a
natural gradient algorithm of a similar style.

Previous work on the natural gradient has aimed to approximate F—! as best and as cheaply as
possible. This is equivalent to minimizing Equation 2 (i.e. JA# + %AGTF A#) with a single iteration
of a second-order optimizer. For very large neural networks, however, it is much cheaper to calculate
matrix-vector products than to approximately invert a large matrix. It is possible that the natural
gradient may be more accessible via an inner gradient descent, which would be performed during
each update step as an inner loop.

We describe this idea at high level in Algorithm 2. After an update step is proposed by a standard
optimizer, the algorithm iteratively corrects this update step towards the natural gradient. To start
with a good initial proposed update, it is better to use a fast diagonal approximation of the natural
gradient (such as Adagrad or RMSprop) as the main optimizer. Each additional correction requires
just one matrix-vector product after the gradients are calculated. Depending on the quality of the
proposed update, the number of iterations required is likely to be small, and even a small number of
iterations will improve the update.
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Algorithm 3: Natural gradient by gradient descent. This algorithm can be paired with any optimizer
to increase its similarity to the natural gradient.

Require: n > Number of corrective steps. May be 1.
Require: 7 > Learning rate for corrective step
1: procedure
2: 0 < 6y > Initialize parameters
3 while 6; not converged do
4: Aby + RMSprop(6;) > Use any optimizer to get proposed update
5: for i < ndo > Corrective loop
6 Abiy = AB; — n(J + A\FAG;) > Step towards ¥ F'~1.J
7 0+ 60+ A0
8 return 6;

Since the Fisher matrix F’ can be calculated from the covariance of gradients, it never needs to be
fully stored. Instead, for an array of gradients G of size (# parameters, # examples), we can write

FAO = (GGT)A8 = G(GT AD) (7)

The choice of GG is an important one. It cannot be a vector of aggregated gradients (i.e. J), as
that would destroy covariance structure and would result in a rank-1 Fisher matrix. Thus, we must
calculate the gradients on a per-example basis. To compute G efficiently it is required that a deep
learning framework implement forward-mode differentiation, which is currently not supported in
popular frameworks.

If we choose G to be the array of per-example gradients on the minibatch, F' is known as the
’empirical Fisher’. As explained in Martens (2014) and in Pascanu & Bengio (2013), the proper
method is to calculate G from the predictive (output) distribution of the network, Py(y|x). This
can be done as in Martens & Grosse (2015) by sampling randomly from the output distribution
and re-running backpropagation on these fictitious targets, using (by necessity) the activations from
the minibatch. Alternatively, as done in Pascanu & Bengio (2013), one may also use unlabeled or
validation data to calculate G on each batch.
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