
Workshop track - ICLR 2018

A FLEXIBLE APPROACH TO
AUTOMATED RNN ARCHITECTURE GENERATION

Martin Schrimpf∗, Stephen Merity*, James Bradbury, & Richard Socher
Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology
msch@mit.edu
Salesforce Research
{smerity,james.bradbury,rsocher}@salesforce.com

ABSTRACT

The process of designing neural architectures requires expert knowledge and
extensive trial and error. While automated architecture search may simplify these
requirements, the recurrent neural network (RNN) architectures generated by
existing methods are limited in both flexibility and components. We propose a
domain-specific language (DSL) for use in automated architecture search which
can produce novel RNNs of arbitrary depth and width. The DSL is flexible
enough to define standard architectures such as the Gated Recurrent Unit and
Long Short Term Memory and allows the introduction of non-standard RNN
components such as trigonometric curves and layer normalization. Using two
different candidate generation techniques, random search with a ranking function
and reinforcement learning, we explore the novel architectures produced by the
RNN DSL for language modeling and machine translation domains. The resulting
architectures do not follow human intuition yet perform well on their targeted tasks,
suggesting the space of usable RNN architectures is far larger than previously
assumed.

1 INTRODUCTION

Developing novel neural network architectures is at the core of many recent AI advances (Szegedy
et al., 2015; He et al., 2016; Zilly et al., 2016). The process of architecture search and engineering
is slow, costly, and laborious. Human experts, guided by intuition, explore an extensive space of
potential architectures where even minor modifications can produce unexpected results. Ideally, an
automated architecture search algorithm would find the optimal model architecture for a given task.

Many explorations into the automation of machine learning have been made, including the opti-
mization of hyperparameters (Bergstra et al., 2011; Snoek et al., 2012) and various methods of
producing novel model architectures (Stanley et al., 2009; Baker et al., 2016; Zoph and Le, 2017). For
architecture search, ensuring these automated methods are able to produce results similar to humans
usually requires traversing an impractically large search space, assuming high quality architectures
exist in the search space at all. The choice of underlying operators composing an architecture is
further typically constrained to a standard set across architectures even though recent work has found
promising results in the use of non-standard operators (Vaswani et al., 2017).

We propose a meta-learning strategy for flexible automated architecture search of recurrent neural
networks (RNNs) which explicitly includes novel operators in the search. It consists of three stages,
outlined in Figure 1, for which we instantiate two versions.

1. A candidate architecture generation function produces potential RNN architectures using a highly
flexible DSL. The DSL enforces no constraints on the size or complexity of the generated tree and
can be incrementally constructed using either a random policy or with an RL agent.

2. A ranking function processes each candidate architecture’s DSL via a recursive neural network,
predicting the architecture’s performance. By unrolling the RNN representation, the ranking
function can also model the interactions of a candidate architecture’s hidden state over time.
∗Equal contribution. This work was completed while the first author was interning at Salesforce Research.

1

Workshop track - ICLR 2018

. . .

Random Architecture Generator

Incremental RL Generator

Full Training Evaluation

107.3

116.4

128.7

Full Training Evaluation

107.3

116.4

128.7

Ranking
FunctionCandidate Architecture Generation Evaluator

Architecture Results

Figure 1: A generator produces candidate architectures by iteratively sampling the next node (either
randomly or using an RL agent trained with REINFORCE). Full architectures are processed by a
ranking function and the most promising candidates are evaluated. The results from running the
model against a baseline experiment are then used to improve the generator and the ranking function.

3. An evaluator, which takes the most promising candidate architectures, compiles their DSLs to
executable code and trains each model on a specified task. The results of these evaluations form
architecture-performance pairs that are then used to train the ranking function and RL generator.

2 A DOMAIN SPECIFIC LANGUAGE FOR DEFINING RNNS

In this section, we describe a domain specific language (DSL) used to define recurrent neural network
architectures. This DSL sets out the search space that our candidate generator can traverse during
architecture search. In comparison to Zoph and Le (2017), which only produced a binary tree with
matrix multiplications at the leaves, our DSL allows a broader modeling search space to be explored.

When defining the search space, we want to allow for standard RNN architectures such as the Gated
Recurrent Unit (GRU) (Cho et al., 2014) or Long Short Term Memory (LSTM) (Hochreiter and
Schmidhuber, 1997) to be defined in both a human and machine readable manner.

The core operators for the DSL are 4 unary operators, 2 binary operators, and a single ternary operator:

[MM ,Sigmoid ,Tanh,ReLU] [Add ,Mult] [Gate3].

MM represents a single linear layer with bias, i.e. MM (x) := Wx + b. Similarly, we define:
Sigmoid(x) = σ(x). The operator Mult represents element-wise multiplication: Mult(x, y) =
x ◦ y. The Gate3 operator performs a weighted summation between two inputs, defined by
Gate3 (x, y, f) = σ(f)◦x+(1−σ(f))◦y. These operators are applied to source nodes from the set
[xt, xt−1, ht−1, ct−1], where xt and xt−1 are the input vectors for the current and previous timestep,
ht−1 is the output of the RNN for the previous timestep, and ct−1 is optional long term memory.

The Gate3 operator is required as some architectures, such as the GRU, re-use the output of a single
Sigmoid for the purposes of gating. While allowing all possible node re-use is out of scope for this
DSL, the Gate3 ternary operator allows for this frequent use case.

Using this DSL, standard RNN cell architectures such as the tanh RNN can be defined:
tanh(Add(MM (xt),MM (ht−1))). To illustrate a more complex example that includes Gate3 ,
the GRU is defined in full in Appendix A.

2.1 ADDING SUPPORT FOR ARCHITECTURES WITH LONG TERM MEMORY

With the operators defined above it is not possible to refer to and re-use an arbitrary node. The best
performing RNN architectures however generally use not only a hidden state ht but also an additional

2

Workshop track - ICLR 2018

hidden state ct for long term memory. The value of ct is extracted from an internal node computed
while producing ht.

The DSL above can be extended to support the use of ct by numbering the nodes and then specifying
which node to extract ct from (i.e. ct = Node5). We append the node number to the end of the DSL
definition after a delimiter.

As an example, the nodes in bold are used to produce ct, with the number appended at the end
indicating the node’s number. Nodes are numbered top to bottom (ht will be largest), left to right.

Mult(Sigmoid(MM (xt)),Tanh(Add(MM (ht−1),Mult(MM (ct−1),MM (xt)))))|5
Mult(Sigmoid(MM (xt)),Tanh(Add(MM (ht−1),Mult(MM (ct−1),MM (xt)))))|6
Mult(Sigmoid(MM (xt)),Tanh(Add(MM (ht−1),Mult(MM (ct−1),MM (xt)))))|7

2.2 EXPRESSIBILITY OF THE DOMAIN SPECIFIC LANGUAGE

While the domain specific language is not entirely generic, it is flexible enough to capture most
standard RNN architectures. This includes but is not limited to the GRU, LSTM, Minimal Gate
Unit (MGU) (Zhou et al., 2016), Quasi-Recurrent Neural Network (QRNN) (Bradbury et al., 2017),
Neural Architecture Search Cell (NASCell) (Zoph and Le, 2017), and simple RNNs.

2.3 EXTENDING THE DOMAIN SPECIFIC LANGUAGE

While many standard and non-standard RNN architectures can be defined using the core DSL,
the promise of automated architecture search is in designing radically novel architectures. Such
architectures should be formed not just by removing human bias from the search process but by
including operators that have not been sufficiently explored. For our expanded DSL, we include:

[Sub,Div] [Sin,Cos] [PosEnc] [LayerNorm,SeLU].

These extensions add inverses of currently used operators (Sub(a, b) = a − b instead of addition,
Div(a, b) = a

b instead of multiplication), trigonometric curves (Sin and Cos are sine and cosine
activations respectively, PosEnc introduces a variable that is the result of applying positional
encoding (Vaswani et al., 2017) according to the current timestep), and optimizations (LayerNorm
applies layer normalization (Ba et al., 2016) to the input while SeLU is the activation function
defined in Klambauer et al. (2017)).

2.4 COMPILING A DSL DEFINITION TO EXECUTABLE CODE

For a given architecture definition, we can compile the DSL to code by traversing the tree from the
source nodes towards the final node ht. We produce two sets of source code – one for initialization
required by a node, such as defining a set of weights for matrix multiplication, and one for the forward
call during runtime. For details regarding speed optimizations, refer to Appendix A2.

3 CANDIDATE ARCHITECTURE GENERATION

The candidate architecture generator is responsible for producing candidate architectures that are
then later filtered and evaluated. Architectures are grown beginning at the output ht and ordered to
prevent multiple representations for equivalent architectures:

Growing architectures from ht up Beginning from the output node ht, operators are selected to
be added to the computation graph, depicted in Figure 2. Whenever an operator has one or more
children to be filled, the children are filled in order from left to right. If we wish to place a limit on
the height (distance from ht) of the tree, we can force the next child to be one of the source nodes
when it would otherwise exceed the maximum height.

Preventing duplicates through canonical architecture ordering Due to the flexibility allowed
by the DSL, there exist many DSL specifications that result in the same RNN cell. To solve the

3

Workshop track - ICLR 2018

htht

Tanh

Add

;;;;

htht

Tanh

Add

;;MM

;;

htht

Tanh

Add

;;MM

xtxt

htht

Tanh

Add

MMMM

xtxt ;;

htht

Tanh

;;

htht

;;

htht

Tanh

Add

MMMM

xtxt ht�1ht�1

Figure 2: An example of generating an architecture from ht up. Nodes which have an empty child (∅)
are filled left to right. A source node such as xt can be selected at any time if max depth is exceeded.

issue of commutative operators (i.e. Add(a, b) = Add(b, a)), we define a canonical ordering of an
architecture by sorting the arguments of any commutative nodes. Special consideration is required
for non-commutative operators such as Gate3 , Sub, or Div. For full details, refer to Appendix A3.

3.1 INCREMENTAL ARCHITECTURE CONSTRUCTION USING REINFORCEMENT LEARNING

Architectures in the DSL are constructed incrementally a node at a time starting from the output ht.
The simplest agent is a random one which selects the next node from the set of operators without
internalizing any knowledge about the architecture or optima in the search space. Allowing an
intelligent agent to construct architectures would be preferable as the agent can learn to focus on
promising directions in the space of possible architectures.

For an agent to make intelligent decisions regarding which node to select next, it must have a
representation of the current state of the architecture and a working memory to direct its actions. We
propose achieving this with two components:

1. a tree encoder that represents the current state of the (partial) architecture.
2. an RNN which is fed the current tree state and samples the next node.

The tree encoder is an LSTM applied recursively to a node token and all its children with weights
shared, but the state reset between nodes. The RNN is applied on top of the encoded partial
architecture and predicts action scores for each operation. We sample with a multinomial and
encourage exploration with an epsilon-greedy strategy. Both components of the model are trained
jointly using the REINFORCE algorithm (Williams, 1992).

As a partial architecture may contain two or more empty nodes, such as ht = Gate3(∅, ∅, σ(∅)),
we introduce a target token, T , which indicates which node is to next be selected. Thus, in ht =
Gate(T, ∅, σ(∅)), the tree encoder understands that the first argument is the slot to be filled.

3.2 FILTERING CANDIDATE ARCHITECTURES USING A RANKING FUNCTION

Even with an intelligent generator, understanding the likely performance of an architecture is difficult,
especially the interaction of hidden states such as ht−1 and ct−1 between timesteps. We propose
to approximate the full training of a candidate architecture by training a ranking network through
regression on architecture-performance pairs. This ranking function can be specifically constructed
to allow a richer representation of the transitions between ct−1 and ct.

As the ranking function uses architecture-performance samples as training data, human experts
can also inject previous best known architectures into the training dataset. This is not possible for
on-policy reinforcement learning and when done using off-policy reinforcement learning additional
care and complexity are required for it to be effective (Harutyunyan et al., 2016; Munos et al., 2016).

Given an architecture-performance pair, the ranking function constructs a recursive neural network
that reflects the nodes in a candidate RNN architecture one-to-one. Sources nodes are represented by
a learned vector and operators are represented by a learned function. The final vector output then
passes through a linear activation and attempts to minimize the difference between the predicted
and real performance. The source nodes (xt, xt−1, ht−1, and ct−1) are represented by learned
vector representations. For the operators in the tree, we use TreeLSTM nodes (Tai et al., 2015). All

4

Workshop track - ICLR 2018

0 200 400 600 800 1000
Architecture number (oldest = left, newest = right)

4.6

4.8

5.0

5.2

5.4

5.6

5.8

Lo
g

pe
rp

le
xi

ty
 o

n
W

ik
iT

ex
t-2

Figure 3: Visualization of the language modeling architecture search over time. Lower log perplexity
(y-axis) is better.

operators other than [Gate3 ,Sub,Div] are commutative and hence can be represented by Child-Sum
TreeLSTM nodes. The [Gate3 ,Sub,Div] operators are represented using an N -ary TreeLSTM
which allows for ordered children.

Unrolling the graph for accurately representing ht−1 and ct−1: A strong assumption made
above is that the vector representation of the source nodes can accurately represent the contents of the
source nodes across a variety of architectures. This may hold true for xt and xt−1 but is not true for
ht−1 or ct−1. The value of ht and ct are defined by the operations within the given architecture itself.

To remedy this assumption, we can unroll the architecture for a single timestep, replacing ht−1

and ct−1 with their relevant graph and subgraph. This would allow the representation of ht−1 to
understand which source nodes it had access to and which operations were applied to produce ht−1.

While unrolling is useful for improving the representation of ht−1, it is essential for allowing
an accurate representation of ct−1. This is as many small variations of ct−1 are possible – such
as selecting a subgraph before or after an activation – that may result in substantially different
architecture performance.

4 EXPERIMENTS

We evaluated our architecture generation on two experiments: language modeling (LM) and machine
translation (MT). Due to the computational requirements of the experiments, we limited each
experiment to one combination of generator components. For language modeling, we explore the
core DSL using randomly constructed architectures (random search) directed by a learned ranking
function. For machine translation, we use the extended DSL and construct candidate architectures
incrementally using the RL generator without a ranking function.

4.1 LANGUAGE MODELING USING RANDOM SEARCH WITH A RANKING FUNCTION

For evaluating architectures found during architecture search, we use the WikiText-2 dataset (Merity
et al., 2017b). When evaluating a proposed novel RNN cell c, we construct a two layer c-RNN with
a 200 unit hidden size. Aggressive gradient clipping is performed to ensure that architectures such
as the ReLU RNN would be able to train without exploding gradients. The weights of the ranking
network were trained by regression on architecture-perplexity pairs using the Adam optimizer and
mean squared error (MSE). Further hyperparameters and training details are listed in Appendix B1.

Explicit restrictions on generated architectures During the candidate generation phase, we filter
the generated architectures based upon specific restrictions. These include structural restrictions and
restrictions aimed at effectively reducing the search space by removing likely invalid architectures.
For Gate3 operations, we force the input to the forget gate to be the result of a sigmoid activation.
We also require the cell to use the current timestep xt and the previous timestep’s output ht−1 to
satisfy the requirements of an RNN. Candidate architectures were limited to 21 nodes, the same
number of nodes as used in a GRU, and the maximum allowed distance (height) from ht was 8 steps.

5

Workshop track - ICLR 2018

We also prevent the stacking of two identical operations. While this may be an aggressive filter it
successfully removes many problematic architectures. These problematic architectures include when
two sigmoid activations, two ReLU activations, or two matrix multiplications are used in succession
– the first of which is unlikely to be useful, the second of which is a null operator on the second
activation, and the third of which can be mathematically rewritten as a single matrix multiplication.

If a given candidate architecture definition contained ct−1, the architecture was queried for valid
subgraphs from which ct could be generated. The subgraphs must contain ct−1 such that ct is
recurrent and must contain three or more nodes to prevent trivial recurrent connections. A new
candidate architecture is then generated for each valid ct subgraph.

Random architecture search directed by a learned ranking function Up to 50,000 candidate
architecture DSL definitions are produced by a random architecture generator at the beginning of
each search step. This full set of candidate architectures are then simulated by the ranking network
and an estimated perplexity assigned to each. Given the relative simplicity and small training dataset,
the ranking function was retrained on the previous full training results before being used to estimate
the next batch of candidate architectures. Up to 32 architectures were then selected for full training.
28 of these were selected from the candidate architectures with the best perplexity while the last
4 were selected via weighted sampling without replacement, prioritizing architectures with better
estimated perplexities.

ct architectures were introduced part way through the architecture search after 750 valid ht archi-
tectures had been evaluated with ht architectures being used to bootstrap the ct architecture vector
representations. Figure 3 provides a visualization of the architecture search over time, showing valid
ht and ct architectures.

Analyzing the BC3 cell After evaluating the top 10 cells using a larger model on WikiText-2,
the top performing cell BC3 (named after the identifying hash, bc3dc7a. . .) was an unexpected
layering of two Gate3 operators,

f = σ(W fxt + Ufht−1) (1)
z = V z(Xyct−1 ◦ Uzxt) ◦W zxt (2)
ct = tanh(f ◦W gxt + (1− f) ◦ z) (3)

o = σ(W oxt + Uoht−1) (4)
ht = o ◦ ct + (1− o) ◦ ht−1 (5)

where ◦ is an element-wise multiplication and all weight matrices W,U, V,X ∈ RH×H .

Equations 1 to 3 produce the first Gate3 while equations 4 and 5 produce the second Gate3 . The
output of the first Gate3 becomes the value for ct after passing through a tanh activation.

While only the core DSL was used, BC3 still breaks with many human intuitions regarding RNN
architectures. While the formulation of the gates f and o are standard in many RNN architectures, the
rest of the architecture is less intuitive. The Gate3 that produces ct (equation 3) is mixing between a
matrix multiplication of the current input xt and a complex interaction between ct−1 and xt (equation
2). In BC3, ct−1 passes through multiple matrix multiplications, a gate, and a tanh activation before
becoming ct. This is non-conventional as most RNN architectures allow ct−1 to become ct directly,
usually through a gating operation. The architecture also does not feature a masking output gate like
the LSTM, with outputs more similar to that of the GRU that does poorly on language modeling.
That this architecture would be able to learn without severe instability or succumbing to exploding
gradients is not intuitively obvious.

4.1.1 EVALUATING THE BC3 CELL

For the final results on BC3, we use the experimental setup from Merity et al. (2017a) and report
results for the Penn Treebank (Table 1) and WikiText-2 (Table 2) datasets. To show that not any
standard RNN can achieve similar perplexity on the given setup, we also implemented and tuned a
GRU based model which we found to strongly underperform compared to the LSTM, BC3, NASCell,
or Recurrent Highway Network (RHN). Full hyperparameters for the GRU and BC3 are in Appendix

6

Workshop track - ICLR 2018

Model Parameters Validation Test

Inan et al. (2016) - Variational LSTM (tied) + augmented loss 24M 75.7 73.2
Inan et al. (2016) - Variational LSTM (tied) + augmented loss 51M 71.1 68.5
Zilly et al. (2016) - Variational RHN (tied) 23M 67.9 65.4
Zoph and Le (2017) - Variational NAS Cell (tied) 25M − 64.0
Zoph and Le (2017) - Variational NAS Cell (tied) 54M − 62.4
Melis et al. (2017) - 4-layer skip connection LSTM (tied) 24M 60.9 58.3
Merity et al. (2017a) - 3-layer weight drop LSTM + NT-ASGD (tied) 24M 60.0 57.3

3-layer weight drop GRU + NT-ASGD (tied) 24M 76.1 74.0
3-layer weight drop BC3 + NT-ASGD (tied) 24M 64.4 61.4

Table 1: Model perplexity on validation/test sets for the Penn Treebank language modeling task.

Model Parameters Validation Test

Inan et al. (2016) - Variational LSTM (tied) 28M 92.3 87.7
Inan et al. (2016) - Variational LSTM (tied) + augmented loss 28M 91.5 87.0
Melis et al. (2017) - 1-layer LSTM (tied) 24M 69.3 65.9
Melis et al. (2017) - 2-layer skip connection LSTM (tied) 24M 69.1 65.9
Merity et al. (2017a) - 3-layer weight drop LSTM + NT-ASGD (tied) 33M 68.6 65.8

3-layer weight drop GRU + NT-ASGD (tied) 33M 92.2 89.1
3-layer weight drop BC3 + NT-ASGD (tied) 33M 79.7 76.4

Table 2: Model perplexity on validation/test sets for the WikiText-2 language modeling task.

B4. Our model uses equal or fewer parameters compared to the models it is compared against. While
BC3 did not outperform the highly tuned AWD-LSTM (Merity et al., 2017a) or skip connection
LSTM (Melis et al., 2017), it did outperform the Recurrent Highway Network (Zilly et al., 2016)
and NASCell (Zoph and Le, 2017) on the Penn Treebank, where NASCell is an RNN found using
reinforcement learning architecture search specifically optimized over the Penn Treebank.

4.2 INCREMENTAL ARCHITECTURE CONSTRUCTION USING RL FOR MACHINE TRANSLATION

For our experiments involving the extended DSL and our RL based generator, we use machine
translation as our domain. The candidate architectures produced by the RL agent were directly used
without the assistance of a ranking function. This leads to a different kind of generator: whereas
the ranking function learns global knowledge about the whole architecture, the RL agent is trimmed
towards local knowledge about which operator is ideal to be next.

Training details Before evaluating the constructed architectures, we pre-train our generator to
internalize intuitive priors. These priors include enforcing well formed RNNs (i.e. ensuring xt, ht−1,
and one or more matrix multiplications and activations are used) and moderate depth restrictions
(between 3 and 11 nodes deep). The full list of priors and model details are in Appendix C1.

For the model evaluation, we ran up to 28 architectures in parallel, optimizing one batch after
receiving results from at least four architectures. As failing architectures (such as those with exploding
gradients) return early, we needed to ensure the batch contained a mix of both positive and negative
results. To ensure the generator yielded mostly functioning architectures whilst understanding the
negative impact of invalid architectures, we chose to require at least three good architectures with a
maximum of one failing architecture per batch.

For candidate architectures with multiple placement options for the memory gate ct, we evaluated
all possible locations and waited until we had received the results for all variations. The best ct
architecture result was then used as the reward for the architecture.

Baseline Machine Translation Experiment Details To ensure our baseline experiment was fast
enough to evaluate many candidate architectures, we used the Multi30k English to German (Elliott
et al., 2016) machine translation dataset. The training set consists of 30,000 sentence pairs that briefly

7

Workshop track - ICLR 2018

Figure 4: Distribution of operators over time. Initially the generator primarily uses the core DSL
(faded colors) but begins using the extended DSL as the architecture representation stabilizes.

describe Flickr captions. Our experiments are based on OpenNMT codebase with an attentional
unidirectional encoder-decoder LSTM architecture, where we specifically replace the LSTM encoder
with architectures designed using the extend DSL.

For the hyper-parameters in our baseline experiment, we use a hidden and word encoding size of 300,
2 layers for the encoder and decoder RNNs, batch size of 64, back-propagation through time of 35
timesteps, dropout of 0.2, input feeding, and stochastic gradient descent. The learning rate starts at 1
and decays by 50% when validation perplexity fails to improve. Training stops when the learning
rate drops below 0.03.

Analysis of the Machine Translation Architecture Search Figure 4 shows the relative frequency
of each operator in the architectures that were used to optimize the generator each batch. For all the
architectures in a batch, we sum up the absolute number that each operator occurs and divide by the
total number of operators in all architectures of the batch. By doing this for all batches (x-axis), we
can see which operators the generator prefers over time.

Intriguingly, the generator seems to rely almost exclusively on the core DSL
(MM ,Gate3 ,Tanh,Sigmoid , xt, ht−1) when generating early batches. The low usage of
the extended DSL operators may also be due to these operators frequently resulting in unstable
architectures, thus being ignored in early batches. Part way through training however the generator
begins successfully using a wide variety of the extended DSL (Sub,Div ,Sin,Cos, . . .). We
hypothesize that the generator first learns to build robust architectures and is only then capable of
inserting more varied operators without compromising the RNN’s overall stability. Since the reward
function it is fitting is complex and unknown to the generator, it requires substantial training time
before the generator can understand how robust architectures are structured. However, the generator
seems to view the extended DSL as beneficial given it continues using these operators.

Overall, the generator found 806 architectures that out-performed the LSTM based on raw
test BLEU score, out of a total of 3450 evaluated architectures (23%). The best architec-
ture (determined by the validation BLEU score) achieved a test BLEU score of 36.53 respec-
tively, compared to the standard LSTM’s 34.05. Multiple cells also rediscovered a variant
of residual networks (Add(Transformation(xt), xt)) (He et al., 2016) or highway networks
(Gate3 (Transformation(xt), xt,Sigmoid(. . .))) (Srivastava et al., 2015). Every operation in the
core and extended DSL made their way into an architecture that outperformed the LSTM and many
of the architectures found by the generator would likely not be considered valid by the standards of
current architectures. Figure 5 highlights how often the full range of operators occur in architectures
that out-performed the LSTM. These results suggest that the space of successful RNN architectures
might hold many unexplored combinations with human bias possibly preventing their discovery.

In Table 3 we take the top five architectures found during automated architecture search on the
Multi30k dataset and test them over the IWSLT 2016 (English to German) dataset (Cettolo et al.,
2016). The training set consists of 209,772 sentence pairs from transcribed TED presentations

8

Workshop track - ICLR 2018

Si
gm

oi
d

Va
r('

hm
1'

)

Ga
te

3

Va
r('

x'
)

M
M

Va
r('

cm
1'

)

Si
n

Va
r('

po
se

nc
')

Ta
nh

Va
r('

xm
1'

)

Co
s

Se
lu

M
ul

t

Su
b

La
ye

rN
or

m

Ad
d

Po
sE

nc
Ad

d

Re
lu Di
v0

100

200

300

400

500

600

700

800

42%

28%
24% 23%

16%
9% 8% 7% 6% 6% 6% 4% 4%

1%

Operator frequency of architectures that out-perform LSTM on multi30k

Figure 5: Operator frequency of architectures that out-perform LSTM on Multi30k (colored like
Fig. 4). For every architecture with a BLEU score higher than LSTM, we count if an operator occurs
in its architecture. While variables xt and ht−1 are inherent to every architecture, the generator also
picked up on the Gate3 − Sigmoid combination for every one of its top architectures. Intriguingly,
even operators that are less commonly used in the field such as sine curves and positional encoding
occur in a large number of architectures and thus seem to contribute to successful architectures.

DSL Architecture Description Multi30k IWSLT’16
(encoder used in attentional encoder-decoder LSTM) Val Loss Test BLEU Test BLEU

LSTM 6.05 34.05 24.39
BC3 5.98 34.69 23.32

Gate3 (Add(MM (xt), xt),Sigmoid(MM (ht−1))) 5.83 36.03 22.76
Gate3 (MM (xt),Tanh(xt),Sigmoid(MM (ht−1))) 5.82 36.20 22.99
5-deep nested Gate3 with LayerNorm (see Appendix C2) 5.66 36.35 22.53
Residual xt with positional encoding (see Appendix C2) 5.65 35.63 22.48
Gate3 (MM (xt), xt,Sigmoid(MM (SeLU (ht−1)))) 5.64 36.53 23.04

Table 3: Model loss and BLEU on the Multi30k and IWSLT’16 MT datasets. All architectures were
generated on the Multi30k dataset other than the LSTM and BC3 from the LM architecture search.
We did not perform any hyperparameter optimizations on either dataset to avoid unfair comparisons,
though the initial OpenNMT hyperparameters likely favored the baseline LSTM model.

that cover a wide variety of topics with more conversational language than in the Multi30k dataset.
This dataset is larger, both in number of sentences and vocabulary, and was not seen during the
architecture search. While all six architectures achieved higher validation and test BLEU on Multi30k
than the LSTM baseline, it appears the architectures did not transfer cleanly to the larger IWSLT
dataset. This suggests that architecture search should be either run on larger datasets to begin with (a
computationally expensive proposition) or evaluated over multiple datasets if the aim is to produce
general architectures. We also found that the correlation between loss and BLEU is far from optimal:
architectures performing exceptionally well on the loss sometimes scored poorly on BLEU. It is also
unclear how these metrics generalize to perceived human quality of the model (Tan et al., 2015) and
thus using a qualitatively and quantitatively more accurate metric is likely to benefit the generator.
For hyper parameters of the IWSLT model, refer to Appendix C3.

9

Workshop track - ICLR 2018

5 RELATED WORK

Architecture engineering has a long history, with many traditional explorations involving a large
amount of computing resources and an extensive exploration of hyperparamters (Jozefowicz et al.,
2015; Greff et al., 2016; Britz et al., 2017). The approach most similar to our work is Zoph and
Le (2017) which introduces a policy gradient approach to search for convolutional and recurrent
neural architectures. Their approach to generating recurrent neural networks was slot filling, where
element-wise operations were selected for the nodes of a binary tree of specific size. The node to
produce ct was selected once all slots had been filled. This slot filling approach is not highly flexible
in regards to the architectures it allows. As opposed to our DSL, it is not possible to have matrix
multiplications on internal nodes, inputs can only be used at the bottom of the tree, and there is no
complex representation of the hidden states ht−1 or ct−1 as our unrolling ranking function provides.
Many other similar techniques utilizing reinforcement learning approaches have emerged such as
designing CNN architectures with Q-learning (Baker et al., 2016).

Neuroevolution techniques such as NeuroEvolution of Augmenting Topologies (NEAT) (Stanley
and Miikkulainen, 2002) and HyperNEAT (Stanley et al., 2009) evolve the weight parameters and
structures of neural networks. These techniques have been extended to producing the non-shared
weights for an LSTM from a small neural network (Ha et al., 2016) and evolving the structure of a
network (Fernando et al., 2016; Bayer et al., 2009).

6 CONCLUSION

We introduced a flexible domain specific language for defining recurrent neural network architectures
that can represent most human designed architectures. It is this flexibility that allowed our generators
to come up with novel combinations in two tasks. These architectures used both core operators that
are already used in current architectures as well as operators that are largely unstudied such as division
or sine curves. The resulting architectures do not follow human intuition yet perform well on their
targeted tasks, suggesting the space of usable RNN architectures is far larger than previously assumed.
We also introduce a component-based concept for architecture search from which we instantiated
two approaches: a ranking function driven search which allows for richer representations of complex
RNN architectures that involve long term memory (ct) nodes, and a Reinforcement Learning agent
that internalizes knowledge about the search space to propose increasingly better architectures. As
computing resources continue to grow, we see automated architecture generation as a promising
avenue for future research.

REFERENCES

J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer Normalization. arXiv preprint, 2016.

B. Baker, O. Gupta, N. Naik, and R. Raskar. Designing Neural Network Architectures using Reinforcement
Learning. arXiv preprint, 2016.

J. Bayer, D. Wierstra, J. Togelius, and J. Schmidhuber. Evolving memory cell structures for sequence learning.
Artificial Neural Networks – ICANN, 2009.

J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for hyper-parameter optimization. In Advances
in Neural Information Processing Systems, 2011.

J. Bradbury, S. Merity, C. Xiong, and R. Socher. Quasi-Recurrent Neural Networks. International Conference
on Learning Representations (ICLR), 2017.

D. Britz, A. Goldie, M.-T. Luong, and Q. V. Le. Massive exploration of neural machine translation architectures.
CoRR, 2017.

M. Cettolo, J. Niehues, S. Stüker, L. Bentivogli, and M. Federico. The IWSLT 2016 Evaluation Campaign.
Proceedings of the 13th Workshop on Spoken Language Translation, 2016.

K. Cho, B. van Merrienboer, D. Bahdanau, and Y. Bengio. On the Properties of Neural Machine Translation:
Encoder-Decoder Approaches. CoRR, 2014.

D. Elliott, S. Frank, K. Sima’an, and L. Specia. Multi30k: Multilingual English-German Image Descriptions.
arXiv preprint, 2016.

10

Workshop track - ICLR 2018

C. Fernando, D. Banarse, M. Reynolds, F. Besse, D. Pfau, M. Jaderberg, M. Lanctot, and D. Wierstra. Convolution
by evolution: Differentiable pattern producing networks. In Proceedings of the 2016 on Genetic and
Evolutionary Computation Conference, pages 109–116. ACM, 2016.

Y. Gal and Z. Ghahramani. A theoretically grounded application of dropout in recurrent neural networks. In
Advances in Neural Information Processing Systems, pages 1019–1027, 2016.

K. Greff, R. K. Srivastava, J. Koutník, B. R. Steunebrink, and J. Schmidhuber. LSTM: A search space odyssey.
IEEE transactions on neural networks and learning systems, 2016.

D. Ha, A. Dai, and Q. V. Le. HyperNetworks. arXiv preprint, 2016.

A. Harutyunyan, M. G. Bellemare, T. Stepleton, and R. Munos. Q(λ) with Off-Policy Corrections. In
International Conference on Algorithmic Learning Theory, pages 305–320. Springer, 2016.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 770–778, 2016.

S. Hochreiter and J. Schmidhuber. Long Short-Term Memory. Neural Computation, 9(8):1735–1780, Nov 1997.

H. Inan, K. Khosravi, and R. Socher. Tying Word Vectors and Word Classifiers: A Loss Framework for Language
Modeling. arXiv preprint, 2016.

R. Jozefowicz, W. Zaremba, and I. Sutskever. An empirical exploration of recurrent network architectures. In
Proceedings of the 32nd International Conference on Machine Learning (ICML-15), pages 2342–2350, 2015.

G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter. Self-Normalizing Neural Networks. arXiv preprint,
2017.

G. Melis, C. Dyer, and P. Blunsom. On the State of the Art of Evaluation in Neural Language Models. arXiv
preprint, 2017.

S. Merity, N. S. Keskar, and R. Socher. Regularizing and Optimizing LSTM Language Models. arXiv preprint,
2017a.

S. Merity, C. Xiong, J. Bradbury, and R. Socher. Pointer Sentinel Mixture Models. In ICLR, 2017b.

R. Munos, T. Stepleton, A. Harutyunyan, and M. Bellemare. Safe and efficient off-policy reinforcement learning.
In Advances in Neural Information Processing Systems, pages 1046–1054, 2016.

O. Press and L. Wolf. Using the output embedding to improve language models. arXiv preprint, 2016.

J. Snoek, H. Larochelle, and R. P. Adams. Practical Bayesian Optimization of Machine Learning Algorithms. In
NIPS, 2012.

R. K. Srivastava, K. Greff, and J. Schmidhuber. Highway Networks. arXiv preprint, 2015.

K. O. Stanley and R. Miikkulainen. Evolving Neural Networks through Augmenting Topologies. Evolutionary
computation, 10(2):99–127, 2002.

K. O. Stanley, D. B. D’Ambrosio, and J. Gauci. A Hypercube-Based Encoding for Evolving Large-Scale Neural
Networks. Artificial life, 15 2:185–212, 2009.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.
Going deeper with convolutions. In CVPR, 2015.

K. S. Tai, R. Socher, and C. D. Manning. Improved semantic representations from tree-structured long short-term
memory networks. ACL, 2015.

L. Tan, J. Dehdari, and J. van Genabith. An awkward disparity between bleu/ribes scores and human judgements
in machine translation. In Proceedings of the 2nd Workshop on Asian Translation (WAT2015), pages 74–81,
2015.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin. Attention
Is All You Need. arXiv preprint, 2017.

R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning.
Machine learning, 8(3-4):229–256, 1992.

W. Zaremba, I. Sutskever, and O. Vinyals. Recurrent neural network regularization. arXiv preprint, 2014.

11

Workshop track - ICLR 2018

G.-B. Zhou, J. Wu, C.-L. Zhang, and Z.-H. Zhou. Minimal gated unit for recurrent neural networks. CoRR,
abs/1603.09420, 2016.

J. G. Zilly, R. K. Srivastava, J. Koutník, and J. Schmidhuber. Recurrent Highway Networks. arXiv preprint,
2016.

B. Zoph and Q. V. Le. Neural Architecture Search with Reinforcement Learning. International Conference on
Learning Representations (ICLR), 2017.

12

Workshop track - ICLR 2018

APPENDIX A: DOMAIN SPECIFIC LANGUAGE

DSL GRU Definition

Gate3(
Tanh(

Add(
MM(xt),
Mult(

MM(ht−1),
Sigmoid(

Add(MM(ht−1), MM(xt))
)

)
)

),
ht−1,
Sigmoid(

Add(MM(ht−1), MM(xt)),
)

)

DSL BC3 Definition

Gate3(
Tanh(

Gate3(
MM(xt),
Mult(

MM(
Mult(MM(ct−1),MM(xt))

),
MM(xt)

),
Sigmoid(

Add(MM(xt), MM(ht−1))
)

)
),
ht−1,
Sigmoid(

Add(MM(xt), MM(ht−1))
)

)|12

1. ARCHITECTURE OPTIMIZATIONS DURING DSL COMPILATION

To improve the running speed of the RNN cell architectures, we can collect all matrix multiplications performed
on a single source node (xt, xt−1, ht−1, or ct−1) and batch them into a single matrix multiplication. As an
example, this optimization would simplify the LSTM’s 8 small matrix multiplications (4 for xt, 4 for ht−1) into
2 large matrix multiplications. This allows for higher GPU utilization and lower CUDA kernel launch overhead.

2. PREVENTING DUPLICATES THROUGH CANONICAL ARCHITECTURE ORDERING

There exist many possible DSL specifications that result in an equivalent RNN cell. When two matrix multiplica-
tions are applied to the same source node, such as Add(MM (xt),MM (xt)), a matrix multiplication reaching
an equivalent result can be achieved by constructing a specific matrix and calculating MM (xt). Additional
equivalences can be found when an operator is commutative, such as Add(xt, ht−1) being equivalent to the
reordered Add(ht−1, xt). We can define a canonical ordering of an architecture by sorting the arguments of any
commutative nodes. In our work, nodes are sorted according to their DSL represented as a string, though any
consistent ordering is allowable. For our core DSL, the only non-commutative operation is Gate3 , where the
first two arguments can be sorted, but the input to the gate must remain in its original position. For our extended
DSL, the Sub and Div operators are order sensitive and disallow any reordering.

13

Workshop track - ICLR 2018

APPENDIX B: LANGUAGE MODELING

1. BASELINE EXPERIMENTAL SETUP AND HYPERPARAMETERS

The models are trained using stochastic gradient descent (SGD) with an initial learning rate of 20. Training
continues for 40 epochs with the learning rate being divided by 4 if the validation perplexity has not improved
since the last epoch. Dropout is applied to the word embeddings and outputs of layers as in Zaremba et al. (2014)
at a rate of 0.2. Weights for the word vectors and the softmax were also tied (Inan et al., 2016; Press and
Wolf, 2016). Aggressive gradient clipping (0.075) was performed to ensure that architectures such as the ReLU
RNN would be able to train without exploding gradients. The embeddings were initialized randomly between
[−0.04, 0.04].

During training, any candidate architectures that experienced exploding gradients or had perplexity over 500
after five epochs were regarded as failed architectures. Failed architectures were immediately terminated. While
not desirable, failed architectures still serve as useful training examples for the ranking function.

2. RANKING FUNCTION HYPERPARAMETERS

For the ranking function, we use a hidden size of 128 for the TreeLSTM nodes and a batch size of 16. We use
L2 regularization of 1× 10−4 and dropout on the final dense layer output of 0.2. As we are more interested in
reducing the perplexity error for better architectures, we sample architectures more frequently if their perplexity
is lower.

For unrolling of the architectures, a proper unroll would replace xt with xt−1 and xt−1 with xt−2. We found
the ranking network performed better without these substitutions however and thus only substituted ht−1 to
ht−2 and ct−1 to ct−2.

3. HOW BASELINE EXPERIMENTAL SETTINGS MAY IMPAIR ARCHITECTURE SEARCH

The baseline experiments that are used during the architecture search are important in dictating what models
are eventually generated. As an example, BC3 may not have been discovered if we had used all the standard
regularization techniques in the baseline language modeling experiment. Analyzing how variational dropout (Gal
and Ghahramani, 2016) would work when applied to BC3 frames the importance of hyperparameter selection
for the baseline experiment.

On LSTM cells, variational dropout (Gal and Ghahramani, 2016) is only performed upon ht−1, not ct−1, as
otherwise the long term hidden state ct would be destroyed. For BC3, equation 6 shows that the final gating
operation mixes ct and ht−1. If variational dropout is applied to ht−1 in this equation, BC3’s hidden state ht

will have permanently lost information. Applying variational dropout only to the ht−1 values in the two gates f
and o ensures no information is lost. This observation provides good justification for not performing variational
dropout in the baseline experiment given that this architecture (and any architecture which uses ht−1 in a direct
manner like this) would be disadvantaged otherwise.

4. HYPERPARAMETERS FOR PTB AND WIKITEXT-2 BC3 EXPERIMENTS

For the Penn Treebank BC3 language modeling results, the majority of hyper parameters were left equal to that
of the baseline AWD-LSTM. The model was trained for 200 epochs using NT-ASGD with a learning rate of 15,
a batch size of 20 and BPTT of 70. The variational dropout for the input, RNN hidden layers, and output were
set to 0.4, 0.25, and 0.4 respectively. Embedding dropout of 0.1 was used. The word vectors had dimensionality
of 400 and the hidden layers had dimensionality of 1080. The BC3 used 3 layers with weight drop of 0.5 applied
to the recurrent weight matrices. Activation regularization and temporal activation regularization of 2 and 2 were
used. Gradient clipping was set to 0.25. Finetuning was run for an additional 13 epochs. For the WikiText-2
BC3 language modeling results, the parameters were kept equal to that of the Penn Treebank experiment. The
model was run for a total of 100 epochs with 7 epochs of finetuning.

For the Penn Treebank GRU language modeling results, the hyper parameters were equal to that of the BC3
PTB experiment but with a hidden size of 1350, weight drop of 0.3, learning rate of 20, and gradient clipping of
0.15, and temporal activation regularization of 1. The model was run for 280 epochs with 6 epochs of finetuning.
For the WikiText-2 GRU language modeling results, the hyper parameters were kept equal to those of the Penn
Treebank experiment. The model was run for 125 epochs with 50 epochs of finetuning where the weight drop
was reduced to 0.15.

14

Workshop track - ICLR 2018

APPENDIX C: MACHINE TRANSLATION

1. BASELINE EXPERIMENTAL SETUP AND HYPERPARAMETERS FOR RL

To represent an architecture with the encoder, we traverse through the architecture recursively, starting from the
root node. For each node, the operation is tokenized and embedded into a vector. An LSTM is then applied to
this vector as well as the result vectors of all of the current node’s children. Note that we use the same LSTM for
every node but reset its hidden states between nodes so that it always starts from scratch for every child node.

Based on the encoder’s vector representation of an architecture, the action scores are determined as follows:

action scores = softmax(linear(LSTM(ReLU(linear(architecture encoding)))))

We then choose the specific action with a multinomial applied to the action scores. We encourage exploration by
randomly choosing the next action according to an epsilon-greedy strategy with ε = 0.05.

The reward that expresses how well an architecture performed is computed based on the validation loss. We
re-scale it according to a soft exponential so that the last few increases (distinguishing a good architecture from
a great one) are rewarded more. The specific reward function we use is R(loss) = 0.2 × (140 − loss) +

40.3815×(140−loss)−50) which follows earlier efforts to keep the reward between zero and 140.

For pre-training the generator, our list of priors are:

1. to maintain a depth between 3 and 11
2. use the current input xt, the hidden state ht−1, at least one matrix multiplication (MM) and at least one

activation function
3. do not use the same operation as a child
4. do not use an activation as a child of another activation
5. do not use the same inputs to a gate
6. that the matrix multiplication operator (MM) should be applied to a source node

2. FULL DSL FOR DEEPLY NESTED Gate3 AND RESIDUAL xt WITH POSITIONAL ENCODING

For obvious reasons these DSL definitions would not fit within the result table. They do give an indication of the
flexibility of the DSL however, ranging from minimal to quite complex!

5-deep nested Gate3 with LayerNorm

Gate3(Gate3(Gate3(Gate3(Gate3(LayerNorm(MM(Tanh(MM(Var(’hm1’))))), MM(
Tanh(MM(Tanh(Tanh(MM(Var(’hm1’))))))), Sigmoid(MM(Var(’hm1’)))), Var
(’hm1’), Sigmoid(MM(Var(’hm1’)))), Var(’hm1’), Sigmoid(MM(Var(’hm1’))
)), Var(’hm1’), Sigmoid(MM(Var(’hm1’)))), Var(’x’), Sigmoid(MM(Var(’
hm1’))))

Residual xt with positional encoding

Gate3(Gate3(Var(’fixed_posenc’), Var(’hm1’), Sigmoid(MM(Tanh(MM(Tanh(MM(
Tanh(MM(Tanh(Var(’hm1’))))))))))), Var(’x’), Sigmoid(MM(Tanh(MM(Tanh(
MM(Var(’hm1’))))))))

3. HYPER PARAMETERS FOR THE IWSLT’16 MODELS

For the models trained on the IWSLT’16 English to German dataset, the hyper parameters were kept largely
equivalent to that of the default OpenMT LSTM baseline. All models were unidirectional and the dimensionality
of both the word vectors and hidden states were 600, required as many of the generated architectures were
residual in nature. The models were 2 layers deep, utilized a batch size of 64, and standard dropout of 0.2
between layers. The learning rate began at 1 and decayed by 0.5 whenever validation perplexity failed to
improve. When the learning rate fell below 0.03 training was finished. Models were evaluated using a batch size
of 1 to ensure RNN padding did not impact the results.

4. FINDING AN ARCHITECTURE FOR THE DECODER AND ENCODER/DECODER

We also briefly explored automated architecture generation for the decoder as well as for the encoder and
decoder jointly which yielded good results with interesting architectures but performances fell short of the more
promising approach of focusing on the encoder.

With additional evaluated models, we believe both of these would yield comparable or greater results.

15

Workshop track - ICLR 2018

5. VARIATION IN ACTIVATION PATTERNS BY GENERATED ARCHITECTURES

Given the differences in generated architectures, and the usage of components likely to impact the long term
hidden state of the RNN models, we began to explore the progression of the hidden state over time. Each of the
activations differs substantially from those of the other architectures even though they are parsing the same input.

As the input features are likely to not only be captured in different ways but also stored and processed differently,
this suggests that ensembles of these highly heterogeneous architectures may be effective.

Figure 6: Visualization of the hidden state over time for a variety of different generated architectures.

16

Workshop track - ICLR 2018

6. EXPLORATION VERSUS EXPLOITATION

Figure 7: This figure shows the progress of the generator over time, highlighting the switches between
exploitation (increasing running average up to plateau) and exploitation (trying out new strategies
and thus decreasing running average at first). Only valid architectures are shown. Higher reward is
better with the x-axis showing progress in time.

7. INFRASTRUCTURE DETAILS

We ran the architecture search for 5 days on one CPU head node and several worker nodes with a total of
28 GPUs on AWS. 24 GPUs were of the type Tesla K80 and 4 GPUs were of the type Tesla M40. The best
architecture (Table 3, bottom row) was found after 40 hours. However, as evident in Figure 6, the generator
created well-performing architectures more and more consistently with more training.

17

	Introduction
	A Domain Specific Language for Defining RNNs
	Adding support for architectures with long term memory
	Expressibility of the domain specific language
	Extending the Domain Specific Language
	Compiling a DSL definition to executable code

	Candidate Architecture generation
	Incremental Architecture Construction using Reinforcement Learning
	Filtering Candidate Architectures using a Ranking Function

	Experiments
	Language Modeling using Random Search with a Ranking Function
	Evaluating the BC3 cell

	Incremental Architecture Construction using RL for Machine Translation

	Related Work
	Conclusion

