
Workshop track - ICLR 2017

DEEP PYRAMIDAL RESIDUAL NETWORKS WITH
STOCHASTIC DEPTH

Yoshihiro Yamada, Masakazu Iwamura, and Koichi Kise
Graduate School of Engineering Osaka Prefecture University
1-1 Gakuen-cho, Naka-ku Sakai-shi, Osaka
yamada@m.cs.osakafu-u.ac.jp,{masa,kise}@cs.osakafu-u.ac.jp

ABSTRACT

In generic object recognition tasks, ResNet and its improvements have broken the
lowest error rate records. ResNet enables us to make a network deeper by intro-
ducing residual learning. Some ResNet improvements achieve higher accuracy by
focusing on channels. Thus, the network depth and channels are thought to be im-
portant for high accuracy. In this paper, in addition to them, we pay attention to use
of multiple models in data-parallel learning. We refer to it as data-parallel multi-
model learning. We observed that the accuracy increased as models concurrently
used increased on some methods, particularly on the combination of PyramidNet
and the stochastic depth proposed in the paper. As a result, we confirmed that the
methods outperformed the conventional methods; on CIFAR-100, the proposed
methods achieved error rates of 16.13% and 16.18% in contrast to PiramidNet
achieving that of 18.29% and the current state-of-the-art DenseNet-BC 17.18%.

1 INTRODUCTION

It is expected that a deeper network can have a higher discriminant ability (Simonyan & Zisser-
man (2014)). However, realizing it is difficult because of nuisances such as the vanishing gradient
problem (Glorot & Bengio (2010)). To avoid them and facilitates learning of deeper networks,
ResNet (He et al. (2016)) introduces residual learning. The residual learning is realized by a pro-
cessing block, called residual block; it has the ability to realize the identity mapping that directly
outputs the input. ResNet is known well because ResNet and its improvements, some of which are
shown in Table 1, have broken the lowest error rate records.

ResDrop (Huang et al. (2016b)) is a ResNet improvement which further avoids the nuisances. In
deep convolutional neural networks (even in ResNet), as a network becomes deeper, gradients of
processing layers tend to be smaller. As a result, learning does not progress well. To avoid the prob-
lem, ResDrop makes the network apparently shallow in learning by introducing a regularizer called
Stochastic Depth; it treats some of residual blocks stochastically selected as the identity mapping.

In addition to making a network deeper for which ResNet and ResDrop aim, increase of channels
is also thought to be important to increase accuracy. On this line, some ResNet improvements such
as Wide ResNet (Zagoruyko & Komodakis (2016)), PyramidNet (Han et al. (2016)), ResNeXt (Xie
et al. (2016)) and DenseNet-BC (Huang et al. (2016a)) are proposed. Among them, we focus on
PyramidNet because it was the state of the art when we began this research. Compared with ResNet
where the number of channels does not increase except a few special residual blocks, on PyramidNet,
the number of channels increases step by step on each residual block.

As ResDrop and PyramidNet are complementary improvements of ResNet, merging them is rela-
tively easily conceivable but has a potential to increase accuracy. Indeed, the authors of PyramidNet
mention use of stochastic regularizers such as Dropout (Srivastava et al. (2014)) and the stochastic
depth (Huang et al. (2016b)) could improve the performance of PyramidNet, without reporting any
result. Thus, in this paper, we investigate the effect on combining PyramidNet and the stochastic
depth by “proposing” two methods; one is a simple combination of them, named PyramidDrop, that
might be suggested by the authors of PyramidNet, and the other is its extended version named Pyra-
midSepDrop. In the investigation, in addition to network depth, we pay attention to use of multiple
models in data-parallel learning. We refer to it as data-parallel multi-model learning. To the best of

1

Workshop track - ICLR 2017

Table 1: Comparison of conventional and two proposed methods. Random Drop means the stochas-
tic depth is introduced if checked. Gentle Channel the number of channels increases step by step on
each residual block if checked. The error rates of conventional methods are from their papers.

Method
Random Gentle

CIFAR-10 CIFAR-100Drop Channel
ResNet (He et al. (2016)) × × 6.43% 25.16%

ResDrop(Huang et al. (2016b)) ✓ × 5.23% 24.58%
PyramidNet (Han et al. (2016)) × ✓ 3.77% 18.29%

ResNeXt (Xie et al. (2016)) × × 3.58% 17.31%
DenseNet-BC (Huang et al. (2016a)) × ✓ 3.46% 17.18%

PyramidDrop ✓ ✓ - 16.13%(Han et al. (2016) and this paper)
PyramidSepDrop (this paper) ✓ ✓ 3.31% 16.18%

Table 2: Result of preliminary experiment with 110 layers and 4 models. The error rates of Pyra-
midNet are from their papers.

Method CIFAR-10 CIFAR-100
PyramidNet (Han et al. (2016)) 3.77% 18.29%

PyramidDrop (Han et al. (2016) and this paper) 3.99% 18.30%
PyramidSepDrop (this paper) 3.66% 18.01%

our knowledge, it has not been intentionally introduced for the purpose of increasing the accuracy
because it can be thought to even decrease the accuracy. However, surprisingly, we observed that
the accuracy increased as models concurrently used increased on some methods, particularly on the
proposed methods. As a result, we confirmed that the proposed methods outperformed the conven-
tional methods; on CIFAR-100, the introduced methods achieved error rates of 16.13% and 16.18%
in contrast to existing methods shown in Table 1.

2 PROPOSED METHODS

We introduce two methods obtained by combining PyramidNet with the stochastic depth. One is
named Deep Pyramidal Residual Networks with Stochastic Depth (PyramidDrop) that is a simple
combination of PyramidNet and the stochastic depth; the random drop mechanism of the stochastic
depth is introduced to each residual block. In our preliminary experiment shown in Table 2, Pyra-
midDrop did not gain the accuracy as expected. Therefore, we propose another method named Deep
Pyramidal Residual Networks with Separated Stochastic Depth (PyramidSepDrop). To explain this
method, let us remind the readers of the following; the number of channels increases in each resid-
ual block in PyramidNet, and the same number of channels as the dimensionality of the input vector
are convoluted with the input vector while zero is padded in the rest. Thus, in PyramidSepDrop,
two independent random drop mechanisms of the stochastic depth are introduced to the two parts of
channels of each residual block.

3 EXPERIMENTS

In addition to the preliminary experiment shown in Table 2, we conducted three experiments to in-
vestigate the effects on 1) the number of models, 2) network depth and 3) their combination. For
conventional methods, we used existing implementations based on the Facebook ResNet implemen-
tation on Torch available at https://github.com/facebook/fb.resnet.torch. The
proposed methods are also based on it. In the data-parallel multi-model learning, we turned on the
shareGradInput flag. Regarding the preprocessing of images and learning conditions, we fol-
lowed the experiments of ResNet and PyramidNet papers. On the other hand, the initial learning rate
of ResNet and ResDrop was set to 0.1, decayed by a factor of 0.1 at 81 and 122 training epochs for
163 epochs. Parameters α and Death Rate were set according to PyramidNet and ResDrop papers;
parameter α was adjusted in order to increase 5 channels per residual block.

2

https://github.com/facebook/fb.resnet.torch

Workshop track - ICLR 2017

24
25
26
27
28
29
30
31
32

1 Model 4 Models 8 Models 16 Models

ResNet ResDrop

Error Rate (%)

25.92%26.09%25.63%
26.56%

27.56%27.16%

28.58%

30.54%

(a) ResNet and ResDrop

16.4
16.6
16.8

17
17.2
17.4
17.6
17.8

18
18.2
18.4

1 Model 4 Models 8 Models 16 Models

PyramidNet

PyramidDrop

PyramidSepDrop

Error Rate (%)

17.12%

17.28%
17.53%

18.01%

17.97%
17.80%

17.40%

17.87%

17.05%

18.30%
18.29%

17.78%

(b) PyramidNet and proposed methods

Figure 1: Effect on increasing models in the data-parallel multi-model learning with 110 layers.

16
16.2
16.4
16.6
16.8

17
17.2
17.4
17.6
17.8

18

110 Layers 182 Layers

PyramidNet
PyramidDrop
PyramidSepDrop

Error Rate (%)

16.33%

16.28%

17.13%

17.53%

17.78%
17.87%

Figure 2: Effect on increasing layers with 4
models.

16
16.2
16.4
16.6
16.8

17
17.2
17.4
17.6
17.8

18

16 models4 models

PyramidNet
PyramidDrop
PyramidSepDrop

Error Rate (%)

16.18%

16.13%

16.61%
16.33%

16.28%

17.13%

Figure 3: Effect on increasing models with 182
layers.

1) Effects on the number of models
On the experiment, the input to the network was a mini-batch of 128 samples. They were divided
into the sub-batch size (≡ 128/#model). The samples in each sub-batch were used in each model for
training, and network parameters learned in each model were communicated across the models in the
process. Figure 1 shows the effect on increasing models in the data-parallel multi-model learning
with 110 layers in five methods. Hereafter, error rates shown in the figure are on the last epoch
on CIFAR-100. The figure shows that as the number of models increased, the error rates of two
proposed methods kept decreasing until 16 models we could run, although the others were not. The
result suggest that two proposed methods have different mechanism from other compared methods.
Only in ResDrop and two proposed methods, models concurrently processed in the data-parallel
multi-model learning are not identical due to the random drop mechanism. Thus, we expected that
the results of these three methods have the same tendency. However, unexpectedly it was not true.

2) Effects on network depth
Figure 2 shows the effect on increasing layers with 4 models. Error rates of the proposed methods,
especially PyramidDrop, dropped much more than that of PyramidNet.

3) Effect on the number of models on a deep network
Figure 3 shows the effect on increasing models in the data-parallel multi-model learning with 182
layers. As a result, the error rates tended to decrease as the number of layers increased. In addi-
tion, the proposed methods achieved error rates of 16.13% and 16.18% with 16 models. Thus, we
confirmed that the proposed methods outperformed the conventional methods.

4 ACKNOWLEDGEMENT

This work is partly supported by JSPS KAKENHI #25240028, JST CREST and AWS Cloud Credits
for Research program.

3

Workshop track - ICLR 2017

REFERENCES

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neu-
ral networks. In In Proceedings of the International Conference on Artificial Intelligence and
Statistics (AISTATS ’10). Society for Artificial Intelligence and Statistics, 2010.

Dongyoon Han, Jiwhan Kim, and Junmo Kim. Deep pyramidal residual networks.
arXiv:1610.02915 [cs.CV], 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proc. CVPR, 2016. doi: 10.1109/CVPR.2016.90.

Gao Huang, Zhuang Liu, and Kilian Q. Weinberger. Densely connected convolutional networks.
arXiv:1608.06993 [cs.CV], 2016a.

Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Weinberger. Deep networks with stochas-
tic depth. arXiv:1603.09382 [cs.LG], 2016b.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv:1409.1556 [cs.CV], abs/1409.1556, 2014. URL http://arxiv.
org/abs/1409.1556.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdi-
nov. Dropout: A simple way to prevent neural networks from overfitting. Journal of Ma-
chine Learning Research, 15:1929–1958, 2014. URL http://jmlr.org/papers/v15/
srivastava14a.html.

Saining Xie, Ross B. Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual
transformations for deep neural networks. arXiv:1611.05431 [cs.CV], abs/1611.05431,
2016. URL http://arxiv.org/abs/1611.05431.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv:1605.07146
[cs.CV], abs/1605.07146, 2016. URL http://arxiv.org/abs/1605.07146.

4

http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
http://arxiv.org/abs/1611.05431
http://arxiv.org/abs/1605.07146

	Introduction
	Proposed Methods
	Experiments
	Acknowledgement

