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ABSTRACT

Reinforcement Learning is a powerful framework for training agents to navigate
different situations, but it is susceptible to changes in environmental dynamics.
However, solving Markov Decision Processes that are robust to changes is difficult
due to nonconvexity and complex interactions between policy and environment.
While most works have analyzed this problem by taking different assumptions
on the problem, a general and efficient theoretical analysis is still missing. We
generate a simple, Nonconvex No-Regret framework for improving robustness by
solving a minimax iterative optimization problem where a policy player and an
environmental dynamics player are playing against each other. By decoupling the
behavior of both players with our framework, we yield several scalable algorithms
that solve Robust MDPs under different conditions on the order of O

(
1

T
1
2

)
with

only a convex uncertainty set assumption.

Reinforcement Learning (RL) is a powerful subset of machine learning that enables agents to learn
through trial-and-error interactions with their environment. RL has succeeded in various applications
such as game playing, robotics, and finance (Sutton & Barto, 2018). However, when a trained policy
operates in different environmental dynamics than the training environment, it often underperforms
and achieves suboptimal rewards (Farebrother et al., 2018; Packer et al., 2018; Cobbe et al., 2018;
Song et al., 2019; Raileanu & Fergus, 2021). Mitigating disastrous failures of RL-trained agents in
practice can prevent many undesirable outcomes (Srinivasan et al., 2020; Choi et al., 2021). Robust
MDPs have emerged as a promising solution to mitigate this problem and address the issue of the
sensitivity of reinforcement learning to changing environments. By optimizing policies to have large
value functions even in the worst-case environmental dynamics, Robust MDPs provide a more stable
approach to training agents (Nilim & Ghaoui, 2003).

However, designing algorithms to solve Robust MDPs that converge to robust minima is notably
tricky. The first problem is that many objectives in Robust MDPs are nonconvex. For example,
maximizing the value function is a nonconvex problem for which optimization is much more difficult.
The second problem is that many MDPs have complex interactions between the policy and the
environment. Many strategies rely on tuning a policy variable and environment in turn and have
specially designed updates to account for these complex interactions. Designing such algorithms
and proving their convergence is often tricky; people often take stringent and unideal rectangularity
assumptions on possible transitions to make convergence easier to prove. As a result, many different
variants of algorithms exist for different settings of Robust MDPs, each needing their own analysis
on convergence.

However, the convergence of similar iterative procedures has been studied in settings where the
optimization objective is convex. The No-Regret Framework is one of the most powerful frameworks
for generating such algorithms that converge to robust minima in convex settings. These frameworks
phrase the optimization algorithm as a game between two players, much like the turn-based strategies.
However, the benefit of No-Regret Frameworks is that the two players’ interactions can be decoupled
during analysis, and the convergence to robust minima only depends on the regret of the two players’
strategies. This decoupling greatly simplifies convergence analysis. Moreover, the framework is
versatile since different choices for each player’s strategy create different but simple-to-analyze
behaviors. For these reasons, using No-Regret Frameworks has led to the most powerful algorithms
for finding robust minima in many convex settings, such as Perceptron algorithms (Wang et al., 2022a)
or Electronic Markets (Kalita, 2018). While it would be desirable to use No-Regret frameworks as
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is for Robust MDPs, the convergence for no-regret frameworks has been only shown for convex
optimization objectives. This optimization objective is often not convex in the case of Robust MDPs.

Here, we make our first contribution. We develop a Nonconvex No-Regret Framework, where policy
and environment players play nonconvex online learning updates. We demonstrate that convergence
to robust minima in expectation for nonconvex loss functions can still be expressed as the sum of the
regrets of the two players’ strategies. This convergence is a powerful result that allows the simple
generation of many different algorithms to find robust minima in nonconvex settings. While this
framework is powerful, the toolbox of nonconvex online learning algorithms needs to be augmented.
For the first augmentation, the environmental player in our framework can see the incoming loss
function, so nonconvex online learning algorithms that can be used for the environment player must
be developed. For this reason, we developed two new algorithms known as Best-Response and
Follow the Perturbed Leader Plus (FTPL+) that have improved regret rates with this ability to see the
incoming loss function. The second augmentation is that the nonconvex online learning literature
often depends on a minimization oracle that can find a global minimizer of the nonconvex loss
function. While this is impossible to build in every setting, we provide tools for this minimization
oracle for Robust MDPs. Namely, we demonstrate that for both the policy and environmental players,
the Value Function, a common objective for Robust MDPs, exhibits gradient dominance. Thus,
using Projected Gradient Descent (PGD) will surprisingly suffice as a minimization oracle for both
players. This choice has the added benefit of enjoying the scalability of gradient methods. Thus,
under different conditions, including simple gradient dominance, smooth MDPs, or strongly gradient-
dominated MDPs, we build different algorithms from our framework using different algorithms that
take advantage of each setting. With our framework, proving convergence for each algorithm is
simple yet powerful. For example, in the most common setting where the objective function is the
Value Function, our algorithm achieves the strong convergence rate of 1√

T
where T is the number of

iterations of our algorithm. Moreover, due to the decoupling of the policy and environmental players’
behavior, we do not need any rectangularity assumption; instead, we only need the uncertainty set to
be convex.

Overall, we provide different algorithms for Robust MDPs with Gradient Dominance, Smooth
MDPs, or strongly Gradient-Dominated MDPs and prove robust convergence rates without any
rectangularity assumption on the uncertainty set of environments. Alongside these guarantees, we
run small experiments on the convergence behavior of our algorithm where the Value Function is the
optimization objective in the GridWorld MDP. Our small experiments corroborate this convergence
rate in Appendix A.

Contributions Overall, our contributions are as follows.

1. We develop a Nonconvex No-Regret Framework for two-player games where the iterations
needed in expectation for convergence to the robust minima is upper bounded by the regret of
the two players. We develop two new nonconvex online learning algorithms, Best-Response
and FTPL+, that can be used for the environmental player who can look at the incoming
loss function in the No-Regret Framework.

2. We provide tools for demonstrating when the objective function of the Robust MDPs is
gradient-dominated. Namely, we show that the Value Function is gradient-dominated for
both players. Thus, using Follow the Perturbed Leader and Best-Response for the policy
player and environmental player with PGD as a minimization oracle in our No-Regret
Framework yields an algorithm that solves the Robust MDP scalably in 1√

T
time with only

a convexity assumption on the set of environments. To our knowledge, this is the best
convergence rate for MDPs under these assumptions.

3. When the objective function is smooth, such as in Smooth MDPs, we show that using
OFTPL and FTPL+ as the strategies for the policy player and the environment player in our
No-Regret Framework achieves an even better convergence rate, which takes advantage of
the smoothness. Similarly, when the objective function is strongly gradient dominated (we
provide a small example), FTPL for the policy player and Best Response for the environment
player yields a convergence rate that takes advantage of the strong gradient dominance. To
our knowledge, this is the first work to study Robust MDPs with strong gradient dominance.
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1 RELATED WORKS

Robust MDPs Some of the first algorithms to solve Robust MDPs with guarantees and empirical
performance are via transition dynamics set assumptions(Nilim & Ghaoui, 2003; Iyengar, 2005),
Robust Policy Iteration (Mankowitz et al., 2019; Tamar et al., 2014; Sinha & Ghate, 2016) or Robust
Q-Learning (Wang & Zou, 2021). Regarding robust policy optimization, Mankowitz et al. (2018)
proposed robust learning through policy gradient for learning temporally extended action. Mankowitz
et al. (2019) used Bellman contractors to optimize the robust objective but did not provide any
sub-optimality guarantees, only convergence. Dong et al. (2022) used an online approach similar
to ours but used rectangular uncertainty set assumptions and did not utilize any no-regret dynamics.
Wang et al. (2023) and Tamar et al. (2014) discussed a policy iteration approach to improving the
Average Reward Robust MDP using Bellman Equations. Wang et al. (2022b) uses a similar game
framework but does not use no-regret dynamics or sophisticated online-learning algorithms to achieve
their guarantees, achieving a worse convergence rate with less robust guarantees.

No-Regret Learning In the context of game no-regret learning, McMahan & Abernethy (2013)
used a similar game framework to solve linear optimization. In contrast, Wang et al. (2022a) used
this framework for solving binary linear classification. Wang et al. (2021) used these frameworks
to solve Fenchel games, phrasing many optimization algorithms. Daskalakis et al. (2017) showed
that using a similar framework using online players for training GANs yields strong theoretical and
empirical improvements. The classical Syrgkanis et al. (2015) uses No-Regret Dynamics to solve
social welfare games.

2 PRELIMINARY

2.1 NOTATION

We can state that our MDP is a tuple of (S,A,PW , R) where S is a set of states, A is a set of
actions, PW is a transition dynamics function parameterized by W that maps a state-action-state
triple s, a, s′ ∈ S ×A× S to a probability between 0 and 1, and R is a reward function that maps a
state s to a reward r. Moreover, we will denote Rmax as a constant denoting the largest possible value
of R. We will assume that both S and A are finite sets. We will design a policy πθ parameterized
by a term θ ∈ T where T is a bounded convex set of vectors of size d for some constant d. This
policy πθ maps a state action pair s, a ∈ S × A to a probability [0, 1]. For most of this paper, we
will refer to πθ as π where clear. We denote the value function V of a state s under the policy π
and transition dynamics PW as V π

W (s). Here, W parameterizes the transition dynamics belonging
to some bounded convex setW . This function is the expected value function of arriving in a state
s. We will define µ ∈ ∆(S) as some probability distribution over the initial states. Moreover, we
will slightly abuse notation call V π

W (µ) = µ⊤V π
W where V π

W is the vector of value functions for all
states. Moreover, we will define dWs0 (s) and dπs0(s) as the probability distribution over the occupancy
of states when a policy π interacts with an environment of dynamics W given the initial state s0.
Formally, this is written as dWs0 (s) = dπs0(s) = (1 − γ)

∑∞
t=0 γ

tP(st = s|s0, π,W ).We choose to
use either dWs0 (s) and dπs0(s) based on the context. Moroever, the state visitation distribution under
initial state distribution µ is formally dπµ(s) = E

s0∼µ
[dπs0(s)] and dWµ (s) = E

s0∼µ
[dWs0 (s)].

2.2 ROBUST POLICIES

Our main goal is to create a policy π where the expected value function over the initial state
distribution is as large as possible. We will first denote how we will define V .
Definition 2.1. Given a policy π and a transition dynamics PW , we define the value function
recursively as V π

W (s) = R(s) + γ
∑

a∈A π(a, s)
∑

s′∈S PW (s′, a, s)V π
W (s′). Here γ serves as a

discount factor and is a positive constant less than 1.

Within different formulations of Robust MDPs, there may be different objective functions for the
robust optimization, called g(π,W ). One common setup of Robust MDPs is where g(π,W ) is simply
the Value Function given π and W , specifically g(π,W ) = V π

W (µ). Therefore, the Robust MDP
problem is simply the task of finding a policy π that maximizes the Value Function under worst-case
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transition dynamics as in π = argmax
π∈T

min
W∈W

g(π,W ) = argmax
π∈T

min
W∈W

V π
W (µ). However, in

different setups such as Control or Regularized MDPs (Bhandari & Russo, 2022), it may be desirable
to find a policy solving a similar robust optimization problem with a different objective function. For
example, one may wish to regularize the policy parameter as in g(πθ,W ) = V πθ

W (µ) − ∥θ∥2. To
generalize the Robust MDP problem to all such possible MDPs, we will denote the optimization
problem as the following.
Definition 2.2. The Robust MDP problem is that of finding π such that π = argmax

π∈T
min
W∈W

g(π,W ).

For the rest of this paper, we will treat the case where g(π,W ) = V π
W (µ) for simplicity unless

explicitly noted. To connect this more clearly to work on repeated games, we will view this as
finding a policy π that minimizes the suboptimality, i.e., argmax

π∗∈T
min
W∈W

g(π∗,W )− min
W∈W

g(π,W ).

Improving the robustness of the policy can similarly be seen as reducing the difference between our
policy’s robustness and the best policy’s robustness. The second definition intuitively connects to
the online learning literature definition of regret. We will similarly use this algorithmic perspective
to design a Robust Policy Optimization algorithm that minimizes the suboptimality of the learned
policy with the least amount of computational complexity possible.
Remark 2.1. We note that this work does not include details about the differences in optimizing an
empirical estimate of the Value Function and the true Value Function. Our contribution lies in the effi-
cient optimization of a deterministic Value Function, dealing with the nonconvex interactions between
a policy and the environment. However, this work can possibly be extended to the nondeterministic
Value Function setting (Dong et al., 2022; Panaganti & Kalathil, 2020)

3 NO REGRET DYNAMICS

3.1 ALGORITHM DETAILS
Algorithm 1: No-Regret RL
Data: T
for t ∈ [T ] do

OLπ chooses a policy: πt ← OLπ;
OLW sees the policy: OLW ← πt;
OLW chooses environment: Wt ← OLW ;
OLπ sees the environment: OLπ ←Wt;
OLW incur losses: OLW ← lt(Wt);
OLπ incur losses: OLπ ← ht(πt);

end

This framework frames the suboptimality
of a policy as a min-max game between the
π player and the W player. We solve the op-
timization problem by iteratively choosing
a policy and transition dynamics until con-
vergence. Formally, we introduce a policy
player, called OLπ, that chooses a policy
πt at time step t. Our second player is a
W -player, called OLW , which will see the
policy πt outputted by the policy player and, then, outputs a transition dynamic Wt. The policy player
then sees the Wt that was chosen. The policy player incurs a loss ht(πt), and the environment player
then incurs a loss lt(Wt) corresponding to their decision. They repeatedly play this game until an
equilibrium is reached. Our framework can be seen as in Algorithm 1.

This framework is a simple and versatile method of solving many optimization problems. We need
only choose the online algorithms that the π-player and W -player employ and the loss function
they see. In No-Regret Dynamics, when the loss functions for both players are negative of the
others, the algorithm’s convergence is simply the convergence for two players. Therefore, if we set
lt(Wt) = g(Wt, πt) and ht(πt) = −g(Wt, πt), we have Theorem 3.1.
Theorem 3.1. We have the difference between the robustnesses of the chosen policies and any policy
π̄ is upper bounded by the regret of the two players

1

T
min

W∗∈W

T∑
t=0

g(W ∗, π̄)− 1

T
min

W∗∈W

T∑
t=0

g(W ∗, πt) ≤ RegW + Regπ .

Here, RegW and Regπ are the two average regrets of the two players OLW and OLπ .

As in Theorem 3.1, the convergence of this player is explained by the regret of the two players.
This framework is both powerful and intuitive. Say we are in the traditional Robust MDP setting
where g(W,π) = V π

W (µ). We can get convergence guarantees for the robustness of our setting by
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configuring the loss functions lt and ht in the following way. In this setting, the tth loss function
for the W -player is lt(Wt) = V πt

Wt
(µ) and for the π-player is ht(πt) = −V πt

Wt
(µ). Setting the loss

functions according to the above, we similarly get the following convergence guarantee based on the
regret of the two players, just like in Theorem 3.1. Therefore, despite the nonconvexity, we have
a simple framework for solving the Robust MDP problem. However, we still must choose online
learning algorithms for both players and bound their regret to use this framework. Notably, many
recent online learning results require the underlying loss functions to be convex or even strongly
convex. Regrettably, in the simplest setting where g(W,π) = V π

W (µ), neither of these properties
are satisfied. Therefore, we must look for efficient online learning algorithms for nonconvex loss
functions.

4 REGRET MINIMIZATION FOR SMOOTH NONCONVEX LOSS FUNCTIONS

Here, we will develop a toolbox of nonconvex online learning algorithms usable in our framework.
First, we will use two algorithms from Suggala & Netrapalli (2019). They present two algorithms
that achieve strong convergence in expectation in nonconvex settings: Follow the Perturbed Leader
and Optimistic Follow the Perturbed Leader. At each time step, the Follow the Perturbed Leader
algorithm generates a random noise vector σt according to an Exponential distribution with parameter
η. It then chooses xt = Oα

(∑t−1
i=1 fi − σi

)
. Here, Oα is an Approximate Optimization Oracle

that approximately minimizes the received loss function fi to accuracy α. The Optimistic Follow
the Perturbed Leader follows a similar procedure, except it chooses xt = Oα

(
gt +

∑t−1
i=1 fi − σi

)
where gt is some optimistic function. The main dependency of their regret bounds is that there
exists an Approximate Optimization Oracle Oα. In this setting, such an oracle takes a nonconvex
function f and a noise vector σ and returns an approximate minimizer x∗ such that f(x∗)−⟨σ, x∗⟩ ≤[
inf
x
f(x)− ⟨σ, x⟩

]
+ α. Throughout this section, we will assume the presence of such an oracle and

discuss how to set this oracle later. They then prove a regret bound for Follow the Perturbed Leader
and Optimistic Follow the Perturbed Leader algorithms when they can access such an oracle.

However, for our framework, the environmental player can see the incoming loss function. Neither
of the aforementioned methods can account for this. Thus, we will prove that a "Best Response"
algorithm achieves an even smaller upper bound regarding regret. The Best Response algorithm
assumes knowledge of the coming loss function and returns the value that minimizes the incoming
loss function. Formally, the Best Response algorithm outputs xt = argmin

xt

ft(xt). This is a useful

algorithm given that the W player can see the output of the π player when making its decision and
can greatly reduce its regret. We prove this in the following regret bond.

Lemma 4.1. Suppose we have an incoming sequence of loss functions ft for t ∈ [T ] with an
optimization oracle that can minimize a function to less than α error. The Best Response algorithm
satisfies the following regret bound 1

T

∑T
t=1 ft(xt)− 1

T inf
x∈X

∑T
t=1 ft(x) ≤ α.

We will also prove the regret of one more algorithm, Follow the Perturbed Leader Plus. Similar to
the Follow the Leader Plus algorithm from Wang et al. (2021), Follow the Perturbed Leader Plus
assumes knowledge of the incoming loss function and then outputs the minimizer of the sum of all
the seen loss functions minus the noise term. Formally, Follow the Perturbed Leader Plus outputs xt

that satisfies xt = argmin
xt

∑t
i=1 fi(xt)− ⟨σ, xt⟩. While this algorithm achieves worse regret than

Best Response, it produces more stable outcomes. This will be useful for later extensions. In fact,
Follow the Perturbed Leader Plus is equivalent to OFTPL, when the optimistic function mt = ft is
the true loss function ft. We present the regret of this algorithm here.

Lemma 4.2. Assume access to an optimization oracle that yields solutions with at most error α.
Given a series of choices by FTPL+ x1, . . . , xT with smooth and Gradient Dominated loss functions
f1, . . . , ft, the regret in expectation is upper bounded by

E

[
1

T

T∑
t=1

ft(xt)−
1

T
inf
x∈X

T∑
t=1

ft(x)

]
≤ O

(
dD

ηT
+ α

)
.
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We provide a summary of these algorithms in the appendix. These two algorithms are suitable
choices for the environmental player, and the two algorithms from Suggala & Netrapalli (2019)
are suitable choices for the policy player. However, we still have the issue that an Approximation
Optimization Oracle is challenging to parameterize. While the objective functions of Robust MDPs
do not exhibit convexity, they exhibit Gradient Dominance in some settings. This property helps us
design a sufficient Approximation Oracle.

5 GRADIENT DOMINANCE

Designing a sufficient Approximation Optimization Oracle is a complex problem. However, for
Gradient Dominated functions, one can prove convergence guarantees. Notably, we call a function
Gradient Dominated if the difference between the function value at a point x and the optimal function
value is upper bounded on the order of the function’s gradient at the point x. We formalize this in the
below definition.
Definition 5.1. We say a function f is Gradient Dominated for set X with constant K if f(x) −
min
x∗∈X

f(x∗) ≤ Kmin
x̄∈X
⟨x̄− x,∇f(x)⟩. Here, K is some constant greater than 0.

As noted by Bhandari & Russo (2022), this Gradient Dominated property is relatively common
for many different settings, including Quadratic Control or Direct Parameterization. It is useful
for proving convergence guarantees for traditional policy gradient methods (Agarwal et al., 2019).
For Gradient Dominated smooth functions, one can use projected gradient descent to minimize the
function f . Namely, Bhandari & Russo (2022) shows that
Lemma 5.1. The below property only holds if f is Gradient Dominated and β ≤

min

{
1

sup
x

∥∇f(x)∥2
, 1
L

}
. Here, TO is the number of iterations of Projected Gradient Descent runs.

Moreover, the function cx is used for brevity for cπ and cW later. Also, D = max
x,x′∈X

∥x− x′∥2. Given

that∇f is L-Lipschitz continuous, the sequence xt+1 = ProjX (xt − β∇f(xt)) enjoys the property

f(xTO )− inf
x∗

f(x∗) ≤

√
2D2K2(f(x0)− inf

x∗
f(x∗))

βTO
= cx(TO,K).

Ideally, we would like to use the straightforward projected gradient descent as our Approximate
Optimization Oracle for OLπ and OLW . However, this would require the loss functions lt and ht

to be Gradient Dominated. While not generally true, this is known to hold in many cases. Gradient
Dominance is a well-known phenomenon for the π-player, as seen in Agarwal et al. (2019). We
formally list some helpful conditions here.
Condition 5.1. Here, we list the conditions we have.

1. The function
∑t

i fi(x)− ⟨σ, x⟩ is Gradient Dominated, enabling the use of FTPL+

2. The function
∑t−1

i fi(x)− ⟨σ, x⟩ is Gradient Dominated, enabling the use of FTPL.

3. The function
∑t−1

i fi(x) + ft−1(x)− ⟨σ, x⟩ is Gradient Dominated, enabling the use of
OFTPL.

4. The function ft(x) is Gradient Dominated, enabling the use of Best Response.

We will first provide tools useful for showing when these conditions hold.

5.1 TOOLS FOR DEMONSTRATING GRADIENT DOMINANCE

Here, we will provide the tools to show that any of these conditions hold for the objective functions
for either the π or W players. We have a gradient term within the terms of Gradient Dominance from
Definition 5.1. In many cases, the loss function will often contain the Value Function. Therefore, we
must know what the gradients of the Value Functions will be for both players. While this is known
for the policy player from the Policy Gradient Theorem (Sutton & Barto, 2018), we demonstrate a
similar result for the gradient of the Value Function for the W -player.
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Lemma 5.2. The gradient of the value function V W with respect to the parameter W is

∇WV W (s) =
1

1− γ

∑
s′,a,s

dWµ (s)PW (s′, a, s)π(a|s)∇PW (s′, a, s)V W (s′).

Now, we express the suboptimality of a transition dynamics parameter W in terms of the gradient
of the Value Function. While this is shown via the Performance Difference Lemma from Kakade
& Langford (2002) for the policy player, we need a similar lemma for the transition dynamics. The
Performance Difference Lemma relies on the Advantage function. We will define an analogous
advantage function for the transition dynamics. Intuitively, this Advantage Function is the value of
taking state s′ over the expected value over all states. Given this, we can provide an analog of the
Performance Difference Lemma for the W -Player. We provide such a lemma here.

Lemma 5.3. Given two different transition dynamics parameters W and W ′, we have that
VW (µ) − VW ′(µ) =

∑
s′,a,s d

W
µ (s)π(a|s)PW (s′|a, s)AW ′

(s′, a, s). Here, we define the W -
Advantage Function as AW (s′, a, s) = γVW (s′) + r(s, a)− VW (s).

We now have ways for the policy and transition dynamics players to analyze both sides of Defini-
tion 5.1. We now sufficiently have tools to demonstrate Gradient Dominance in many cases.

5.2 DIRECT PARAMETERIZATION

We now begin with the direct parameterization case with standard Robust MDPs, where
PW (s′, a, s) = Ws′,a,s directly parameterizes the transition dynamics, π(s|a) = θs,a, and
g(W,π) = V π

W (µ). Moreover, the set of transition dynamics is some convex bounded set, such as a
rectangular uncertainty set (Dong et al., 2022). We demonstrate that in this setting, Item 2 holds for
the loss function of the policy player, and Item 4 holds for the loss function of the W -player.

Lemma 5.4. For any positive noise term σ, we have that under Direct Parameterization,
∑t−1

i li(·)−
⟨σ, ·⟩ and

∑t−1
i hi(·)− ⟨σ, ·⟩ are both Gradient Dominated for the W -player and the π-player on

setsW and T with constants KW = 1
1−γ

∥∥∥∥dW∗
µ

µ

∥∥∥∥
∞

and Kπ = 1
1−γ

∥∥∥∥dπ∗
µ

µ

∥∥∥∥
∞

respectively. Therefore,

Item 2 hold for both the loss functions for both players.

Now, we have shown that the loss function for the policy player satisfies Item 2 in this setting.
Therefore, we can use Follow the Perturbed Leader for OLπ . Now, we wish to show Item 4 holds for
the loss function of the W player.

Lemma 5.5. We have that the VW (µ) is Gradient Dominated with constant KW = 1
1−γ

∥∥∥∥dW∗
µ

µ

∥∥∥∥
∞

as in for an arbitrary W ∈ W and the optimal parameter W ∗ ∈ W , we have

VW (µ)− VW∗(µ) ≤ KW max
W̄∈W

[(
W − W̄

)⊤∇WVW (µ)
]

.

Here, we have that Item 4 holds for the W -player.

Now that we have that Item 4 holds for the W player, we know we can use Best Response for
the OLW player. Now, we have that in the Direct Paramaterization setting with standard Robust
MDPs; we can use our framework from Algorithm 1 with Follow the Perturbed Leader for OLπ

and Best Response for OLW where both use Projected Gradient Descent as their Approximate
Optimization Oracle. We can now prove the convergence and robustness of our framework using our
proof framework.

6 PUTTING THE BOUNDS TOGETHER

We now can achieve bounds for the regrets of either player. Now, if the policy player employs
FTPL and the environment player employs Best-Response, when the objective function is the Value
Function, we get the following convergence bound.
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Theorem 6.1. Assume that the set of possible transition matrices W is convex. Let Lπ be the
smoothness constant of ht with respect to the ℓ1 norm, Dπ = max

π,π′∈T
∥π − π′∥2, and dπ be the

dimension of the input for the π-player. Let OLπ use FTPL and OLW use Best-Response. When
η = 1

Lπ

√
Tdπ

the robustness of the set of trained algorithms is for any π̄

min
W∗∈W

T∑
t=0

V π̄
W∗(µ)− E

[
min

W∗∈W

T∑
t=0

V πt

W∗(µ)

]
≤ 2d

3
2
πDπLπ√

T
+ cπ (TO,Kπ) + cW (TO,KW ) .

Here, we have shown that in this simple setting, we have that the robustness in expectation is

O
(

1

T
1
2
+ 1

T
1
2
O

)
with simple gradient dominance assumptions. However, given some additional

properties, it may be possible to improve this bound slightly. We will investigate this in the following
sections.

7 EXTENSIONS

This robustness works with only the gradient dominance property of each player’s loss function.
However, with different assumptions, the algorithm’s robustness can be improved by utilizing different
properties. The two properties we will investigate are smoothness and strong Gradient Dominance.

7.1 SMOOTHNESS

As in Agarwal et al. (2019), for the direct parameterization, we have that the Value Function is
smooth with respect to the π-player as in V π

W (µ)− V π′

W (µ) = O
(

2γRmax|A|
(1−γ)2 ∥π − π′∥2

)
. Moreover,

it is generally difficult to show that the Lipschitz constant for the difference of value functions under
different transition dynamics is even smoother. Intuitively, such a function may be smooth in the
following manner

Condition 7.1. The difference in value functions between subsequent rounds is smooth with respect
to policies such that for all s ∈ S and policies π and π′, we have that

[g(W,π)− g(W ′, π)]− [g(W,π′)− g(W ′, π′)] ≤ L̃∥W −W ′∥1∥π − π′∥1.

In general, however, it is difficult to show that such an L̃ is smaller than the value that of 2γRmax|A|
(1−γ)2 .

However, if we are in a setting such that L̃ is small, we can take advantage of this by using Optimistic
Follow the Perturbed Leader Plus for the π-player where the optimistic function is simply the last
loss function gt = ht−1. As seen in Lemma D.1, the smoothness of ft − gt directly factors into the
regret. Therefore, we have that ht − ht−1 is very smooth; we can directly improve such a bound.
However, from the formulation of Condition 7.1, we need the outputs from the W -player so that
∥W −W ′∥1 is bounded, which we can demonstrate is the case if the W -player uses FTPL+. Now, in
the Direct Paramterization setting with the traditional objective function, we also show that the loss
functions seen by OFTPL for the policy player and FTPL+ satisfy our Gradient Dominance properties.
In the Direct Parameterization case with traditional objective, these conditions hold as shown in
Lemma C.1 and Lemma C.2 respectively. Furthermore, in this setting, we have the robustness as such.
Indeed, if L̃ is small here, we can improve the convergence and robustness of our trained algorithm
by approximately a constant of L̃

L .

Theorem 7.1. Assume that the set of possible transition matricesW is convex. Let OLπ use OFTPL
and OLW use FTPL+. Given that Condition 7.1 holds, we have that the robustness of the algorithm

is for any π̄ when setting η =

√
20Lπ(dwDW+dπDπ)

dπ

2
DπL̃2αT ,

min
W∗∈W

T∑
t=0

V π̄
W∗(µ)− E

[
min

W∗∈W

T∑
t=0

V πt

W∗(µ)

]
≤ O

([
dπL̃

√
Dπ(dwDw + dπDπ)√
5LπTcπ(TO,Kπ)

+ 1

]
cπ(TO,Kπ) + cW (TO,KW )

)
.
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7.2 STRONG GRADIENT DOMINANCE

Moreover, in specific parameterizations of interest, particular objective functions setup will obey what
we call Strongly Gradient Dominance, also known famously as the Polyak-Lojasiewicz condition
(Polyak, 1963). This condition helps improve convergence in nonconvex settings, analogous to the
strong convexity condition. We formally state such a property in Condition 7.2
Condition 7.2. A function a(x) =

∑
t lt(x)− ⟨σ, x⟩ satisfies K, γ-strong Gradient Dominance if

for any point x ∈ X ,

min
x∗∈X

a(x∗) ≥ a(x)− min
x′∈X

[
K⟨x′ − x,∇a(x)⟩+ γ

2
∥x′ − x∥

]
.

In general, this is useful for achieving even tighter optimization bounds. Indeed, from Karimi et al.
(2016), if we have this, Projected Gradient Descent enjoys better convergence.
Lemma 7.1. Here, x∗ = argmin

x∗∈X
at(x

∗) is the minimizer of at. csx is used for brevity. Given at

is L-Lipschitz continuous and is K, γ-strongly dominated, we have that using projected gradient
descent gets global linear convergence as in

at(xk)− at(x
∗) ≤

(
1− γ

K2L

)k
(at(x0)− at(x

∗)) = csx(k, γ,K).

7.3 DIRECT PARAMETERIZATION WITH REGULARIZATION

Say we are in a setting where we want to maximize V π
W and ensure that the policy π is regularized

according to the ℓ2 norm. In this way, we can redefine the loss function to be g(W,π) = V π
W (µ)−

∥π∥22. Again, the setsW and T are bounded convex sets in this setting.

Lemma 7.2. We have g(W,π) = V π
W (µ)− ∥π∥22 is Kπ,

T
2 -strongly-Gradient Dominated on set T

In this setting, if the π player employs FTPL where its Approximate Optimization Oracle enjoys
even better convergence and the W -Player employs Best Response, we have the robustness bound as
follows. Indeed, given strong Gradient Dominance, we have that the dependence on the complexity
for the Optimization Oracle is better for the π-player, slightly improving the robustness bounds.
Theorem 7.2. Assume that the set of possible transition matricesW is convex. Let OLπ use FTPL
and OLW use Best-Response. Given that Condition 7.2 holds and η = 1

Lπ

√
Tdπ

, we have that the
robustness of Algorithm 1 is for any π̄

min
W∗∈W

T∑
t=0

V π̄
W∗(µ)− ∥π̄∥2 − min

W∗∈W

T∑
t=0

V πt

W∗(µ) + ∥πt∥2 ≤
2d

3
2
πDπLπ√

T
+ csπ

(
TO,Kπ,

1

2

)
+ cW (TO,KW ).

8 LIMITATIONS AND DISCUSSION

We have designed a Nonconvex No-Regret Framework that has decoupled the convergence for Robust
MDP algorithms. With this, we have designed different Robust MDP algorithms for solving different
Robust MDPs under standard Gradient Dominance, Strong Gradient Dominance, and Smooth MDPs.
The proven convergence results are some of the strongest in the literature, with only a convexity
assumption on the set of possible transition matrices. Possible extensions include using this nonconvex
No-Regret Framework for other nonconvex problems, such as other nonconvex games, or exploring
how different minimization oracles could empirically improve the performance of our algorithms.
Another possible avenue could be studying Robust MDPs where the optimization objective obeys the
strict saddle property.

Limitations However, our work has several limitations. Firstly, we require some Gradient Domi-
nance conditions for the policy and environmental dynamics player. In many settings, the objective
function for the Robust MDP does not satisfy this. This assumption does reduce the scope of our
work. Moreover, many of our convergence guarantees are only made in expectation, while many
other bounds in the literature are made absolutely. Moreover, we do not generate a single policy that
achieves strong robustness but, instead, a series of policies that, if used together, obey our convergence
guarantees.
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Algorithm 2: A set of useful online learning algorithms
Input: η,Oα

for t = 1, . . . , T do

Sample σ ∈ Rd and σi ∼ Exp(η) where i ∈ [d]

FTPL : xt = Oα

(
t−1∑
i=1

fi(x)− ⟨σ, x⟩

)

OFTPL[gt] : xt = Oα

(
t−1∑
i=1

fi(x) + gt(x)− ⟨σ, x⟩

)
Best-Response : xt = Oα (ft(x))

FTPL+ : xt = Oα

(
t∑

i=1

fi(x)− ⟨σ, x⟩

)

end

A EXPERIMENTS

We now turn to verify the algorithm numerically. We will use our algorithm to optimize a policy in
the GridWorld MDP (Sutton & Barto, 2018). This setting is a traditional MDP where the world is a
grid where the initial state is one corner of the grid. The goal state is the opposite corner of the grid.
At each step, the policy can take any of four actions. The next state is sampled respectively from the
transition matrix. If the policy lands in the goal state, it receives a reward of 10, and the MDP is
finished. Otherwise, it receives a reward of −1. We wish to measure how quickly the robustness of
policy is improved through each iteration of our algorithm. As a metric to measure robustness, given
a policy, we choose the transition matrix that minimizes the expected reward of the initial state and
reports the initial state’s expected reward. We do this for every iteration of our algorithm. We will do
this over different adversarial transition matrix sets. The sets in question will be

T = {T s.t. ∥T − T0∥q ≤ γ}.

Here, T0 is some randomly generated initial transition matrix, q is a hyperparameter affecting the
shape of the transition set, and γ is the radius of the transition set. We demonstrate the improvement
of robustness over several different values of γ and q. We plot the convergence of our algorithm over
q ∈ {1, 2} and γ ∈ {.1, .2, .3, .5} in Figure 1.

B PROOF OF PRELIMINARY THEOREMS

B.1 PROOF OF THEOREM 3.1

Theorem 3.1. We have the difference between the robustnesses of the chosen policies and any policy
π̄ is upper bounded by the regret of the two players

1

T
min

W∗∈W

T∑
t=0

g(W ∗, π̄)− 1

T
min

W∗∈W

T∑
t=0

g(W ∗, πt) ≤ RegW + Regπ .

Here, RegW and Regπ are the two average regrets of the two players OLW and OLπ .
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(a) γ = .1, q = 1 (b) γ = .2, q = 1 (c) γ = .3, q = 1 (d) γ = .5, q = 1

(e) γ = .1, q = 2 (f) γ = .2, q = 2 (g) γ = .3, q = 2 (h) γ = .5, q = 2

Figure 1: We plot the convergence of our algorithm over many different transition matrix uncertainty
set shapes. We see that over all shapes, our algorithm converges in roughly the predicted 1√

T
rate

predicted by our results.

Proof. By definition, the regret of the W -player is equivalent to

RegW =

T∑
t=0

lt(Wt)−min
W∗

T∑
t=0

lt(W
∗)

=

T∑
t=0

g(Wt, πt)−min
W∗

T∑
t=0

g(W ∗, πt)

Similarly, for the π player, we have that

Regπ =

T∑
t=0

lt(πt)−min
π∗

T∑
t=0

lt(π
∗)

= max
π∗

T∑
t=0

g(Wt, π
∗)−

T∑
t=0

g(Wt, πt) (1)

Therefore, we can upper bound the sum of objective functions throughout our training process as
T∑

t=0

g(Wt, πt) = RegW +min
W∗

T∑
t=0

g(W ∗, πt).

We similarly lower bound the sum of value functions throughout our training process as
T∑

t=0

g(Wt, πt) = max
π∗

T∑
t=0

g(Wt, π
∗)− Regπ

≥
T∑

t=0

g(Wt, π̄)− Regπ

≥ min
W∗

T∑
t=0

g(W ∗, π̄)− Regπ (2)

Combining Equation (1) and Equation (2), we have our desired statement

min
W∗

T∑
t=0

g(W ∗, π̄)−min
W∗

T∑
t=0

g(W ∗, πt) ≤ RegW + Regπ .

13



Under review as a conference paper at ICLR 2024

C PROOFS OF GRADIENT DOMINANCE

C.1 PROOF OF LEMMA 5.2

Lemma 5.2. The gradient of the value function V W with respect to the parameter W is

∇WV W (s) =
1

1− γ

∑
s′,a,s

dWµ (s)PW (s′, a, s)π(a|s)∇PW (s′, a, s)V W (s′).

Proof. We wish to calculate the gradient of the value function V W with respect to PW (s′, a, s). We
have that

∇WV W (s) = ∇W

(∑
a

π(a|s)Qπ(s, a)

)
=
∑
a

π(a|s)∇WQπ(s, a)

=
∑
a

π(a|s)∇W

[
R(s, a) + γ

∑
s′

PW (s′, a, s)V π(s′)

]
=
∑
a

γπ(a|s)
∑
s′

[∇WPW (s′, a, s)V π(s′) + PW (s′, a, s)∇WV π(s′)]

=
∑
a,s′

γπ(a|s)PW (s′, a, s)∇WV π(s′) +
∑
s′,a

π(a|s)γ∇WPW (s′, a, s)V π(s′)

Here, the third inequality comes from the definition of the Q function. Unrolling this makes it such
that we have

∇WV W (µ) =

∞∑
t=0

∑
s′,a,s

Pr(st = s|µ)γtπ(a|s)∇PW (s′, a, s)V W (s′)

=
1

1− γ

∑
s′,a,s

dWµ (s)π(a|s)∇PW (s′, a, s)V W (s′)

We have now arrived at our desired quantity.

C.2 PROOF OF LEMMA 5.3

Lemma 5.3. Given two different transition dynamics parameters W and W ′, we have that
VW (µ) − VW ′(µ) =

∑
s′,a,s d

W
µ (s)π(a|s)PW (s′|a, s)AW ′

(s′, a, s). Here, we define the W -
Advantage Function as AW (s′, a, s) = γVW (s′) + r(s, a)− VW (s).

Proof. This proof follows mainly from the proof of the Performance Difference Lemma from Kakade
& Langford (2002).

VW (µ)− VW ′(µ) =EPW ,π

∞∑
t=0

γtr(st, at)− V W ′
(µ)

=EPW ,π

[ ∞∑
t=0

γtr(st, at) + γtVW ′(st)− γtVW ′(st)

]
− V W ′

(µ)

=EPW ,π

[ ∞∑
t=0

γtr(st, at) + γt+1VW ′(st+1)− γtVW ′(st)

]

=EPW ,π

[ ∞∑
t=0

γtAW ′
(st+1, at, st)

]

=
1

1− γ

∑
s′,a,s

[
γtdWµ (s)π(a|s)PW (s′|a, s)AW ′

(s′, at, s)
]

14
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Here, the fourth equality comes from our definition of the Advantage function for the W -player. This
concludes the proof.

C.3 PROOF OF LEMMA 5.5

Lemma 5.5. We have that the VW (µ) is Gradient Dominated with constant KW = 1
1−γ

∥∥∥∥dW∗
µ

µ

∥∥∥∥
∞

as in for an arbitrary W ∈ W and the optimal parameter W ∗ ∈ W , we have

VW (µ)− VW∗(µ) ≤ KW max
W̄∈W

[(
W − W̄

)⊤∇WVW (µ)
]

.

Here, we have that Item 4 holds for the W -player.

Proof. We can use Lemma 5.3 to prove this. We will lower bound the difference between the optimal
VW∗(µ) and the VW (µ). In order to prove Gradient Dominance, we need that VW (µ)− VW∗(µ) to
be upper-bounded. We will equivalently lower bound the negative of this. We have

VW (µ)− VW∗(µ) =
−1

1− γ

∑
s′,a,s

[
γtdW

∗

µ (s)π(a|s)PW∗(s′|a, s)AW (s′, a, s)
]

≤ −1
1− γ

∑
s′,a,s

[
γtdW

∗

µ (s)π(a|s)min
s′

(
AW (s′, a, s)

)]

≤

(
max

s

dW
∗

µ (s)

dWµ (s)

)
−1

1− γ

∑
s′,a,s

[
γtdWµ (s)π(a|s) min

s′

(
AW (s′, a, s)

)]
Here, the first inequality comes from seeing that the value PW∗(s′|a, s)AW (s′, a, s) is minimized
when PW∗ puts the most weight on the state minimizing the advantage function. Looking only at that
last term, we can bound it in the following manner

−1
1− γ

∑
s′,a,s

[
γtdWµ (s)π(a|s) min

s′

(
AW (s′, a, s)

)]
=
−1

1− γ
min
W̄

∑
s′,a,s

[
γtdWµ (s)π(a|s) PW̄ (s′, a, s)

(
AW (s′, a, s)

)]
=
−1

1− γ
min
W̄

∑
s′,a,s

[
γtdWµ (s)π(a|s) (PW̄ (s′, a, s)− PW (s′, a, s))

(
AW (s′, a, s)

)]
=
−1

1− γ
min
W̄

∑
s′,a,s

[
γtdWµ (s)π(a|s) (PW̄ (s′, a, s)− PW (s′, a, s)) (VW (s′))

]
= −min

W̄

[(
W̄ −W

)⊤∇W ′VW (µ)
]

Here, the first equality comes from seeing that the value PW∗(s′|a, s)AW (s′, a, s) is minimized
when PW∗ puts the most weight on the state minimizing the advantage function. The second equality
comes from the fact that the

∑
s′ PW (s′, a, s)AW (s′, a, s) = 0. The third inequality comes from the

definition of the W -player advantage function. Finally, the fourth equality comes from Lemma 5.2.
Combining these yield

VW (µ)− VW∗(µ) ≤−

∥∥∥∥∥dW
∗

µ

dWµ

∥∥∥∥∥
∞

min
W̄

[(
W̄ −W

)⊤∇W ′VW (µ)
]

≤ −1
1− γ

∥∥∥∥∥dWµµ
∥∥∥∥∥
∞

min
W̄

[(
W̄ −W

)⊤∇W ′VW (µ)
]
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The last inequality comes from the fact that dW
∗

µ (s) ≥ (1− γ)µ(s) by definition. Here, flipping this,
we have

VW (µ)− VW∗(µ) ≤ −1
1− γ

∥∥∥∥∥dW
∗

µ

µ

∥∥∥∥∥
∞

min
W̄

[(
W̄ −W

)⊤∇W ′VW (µ)
]

≤ 1

1− γ

∥∥∥∥∥dW
∗

µ

µ

∥∥∥∥∥
∞

max
W̄

[(
W − W̄

)⊤∇W ′VW (µ)
]

This is a satisfying definition of Gradient Dominance.

C.4 PROOF OF LEMMA 5.4

Lemma 5.4. For any positive noise term σ, we have that under Direct Parameterization,
∑t−1

i li(·)−
⟨σ, ·⟩ and

∑t−1
i hi(·)− ⟨σ, ·⟩ are both Gradient Dominated for the W -player and the π-player on

setsW and T with constants KW = 1
1−γ

∥∥∥∥dW∗
µ

µ

∥∥∥∥
∞

and Kπ = 1
1−γ

∥∥∥∥dπ∗
µ

µ

∥∥∥∥
∞

respectively. Therefore,

Item 2 hold for both the loss functions for both players.

Proof. We can use Lemma 5.3 to prove both. We start with the W player.

t−1∑
i

V πi

W (µ)− V πi

W∗(µ)− ⟨σ,W −W ∗⟩ =

t−1∑
i

−1
1− γ

∑
s′,a,s

[
dW

∗

µ (s)πi(a|s)PW∗(s′|a, s)AW (s′, a, s)
]
− ⟨σ,W ∗ −W ⟩

≤

(
max

s

dW
∗

µ (s)

dWµ (s)

)[
t−1∑
i

−1
1− γ

∑
s′,a,s

[
dWµ (s)πi(a|s) PW∗(s′|a, s)

(
AW (s′, a, s)

)]
− ⟨σ,W ∗ −W ⟩

]

≤

(
max

s

dW
∗

µ (s)

dWµ (s)

)
max
W̄

[
t−1∑
i

−1
1− γ

∑
s′,a,s

[
dW

∗

µ (s)πi(a|s)PW̄ (s′|a, s)
(
AW (s′, a, s)

)]

− ⟨σ, W̄ −W ⟩

]

Here, the first inequality comes from the fact that the maximum of the interior of the RHS is always
nonnegative, and the final inequality comes from using the minimizing transition dynamics W̄ .
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Looking at the inside term, we have that

max
W̄

[
−1

1− γ

∑
s′,a,s

∑
i

[
dWµ (s)πi(a|s) PW̄ (s′, a, s)

(
AW (s′, a, s)

)]
− ⟨σ, W̄ −W ⟩

]

= max
W̄

 −1
1− γ

∑
s′,a,s

∑
i

[
dWµ (s)πi(a|s) (PW̄ (s′, a, s)− PW (s′, a, s))

(
AW (s′, a, s)

)
− ⟨σ, W̄ −W ⟩

]

= max
W̄

[
−1

1− γ

∑
s′,a,s

∑
i

[
dWµ (s)πi(a|s) (PW̄ (s′, a, s)− PW (s′, a, s)) (VW (s′))

]
− ⟨σ, W̄ −W ⟩

]

= max
W̄

[(
W − W̄

)⊤∇W

[∑
i

V πi

W (µ)− ⟨σ,W ⟩

]]
The first equality comes from the fact that the

∑
s′ PW (s′, a, s)AW (s′, a, s) = 0. The second

inequality comes from the definition of the W -player advantage function. Finally, the third equality
comes from Lemma 5.2. Combining these, we have that

t−1∑
i

V πi

W (µ)−V πi

W∗(µ)− ⟨σ,W −W ∗⟩ ≤∥∥∥∥∥dW
∗

µ

µ

∥∥∥∥∥
∞

1

1− γ
max
W̄

[(
W − W̄

)⊤∇W

[∑
i

V πi

W (µ)− ⟨σ,W ⟩

]]
Moreover, we use the fact that dWµ (s) ≥ (1− γ)µ(s) by definition. We now do this for the π-player.
By the Performance Difference Lemma,

t−1∑
i

V π∗

Wi
− V π

Wi
− ⟨σ, π∗ − π⟩ = 1

1− γ

t−1∑
i

∑
s,a

dπ
∗

µ (s)π∗(a, s)Aπ(s, a)− ⟨σ, π∗ − π⟩

≤ 1

1− γ
max
π̄

[
t−1∑
i

∑
s,a

dπ
∗

µ (s)π̄(s, a)Aπ(s, a)− ⟨σ, π̄ − π⟩

]

≤

∥∥∥∥∥dπ
∗

µ

dπµ

∥∥∥∥∥
∞

max
π̄

[
1

1− γ

t−1∑
i

∑
s,a

dπµ(s)π̄(s, a)A
π(s, a)− ⟨σ, π̄ − π⟩

]

=

∥∥∥∥∥dπ
∗

µ

dπµ

∥∥∥∥∥
∞

max
π̄

[
1

1− γ

t−1∑
i

∑
s,a

dπµ(s)(π̄(s, a)− π(a, s))Aπ(s, a)− ⟨σ, π̄ − π⟩

]

=

∥∥∥∥∥dπ
∗

µ

dπµ

∥∥∥∥∥
∞

max
π̄

[
1

1− γ

t−1∑
i

∑
s,a

dπµ(s)(π̄(s, a)− π(a, s))Qπ(s, a)− ⟨σ, π̄ − π⟩

]

≤ 1

1− γ

∥∥∥∥∥dπ
∗

µ

µ

∥∥∥∥∥
∞

max
π̄

(π̄ − π)⊤∇π

(
t−1∑
i

V π
Wi
− ⟨σ, π⟩

)
Here, the first equality comes from the Performance Difference Lemma, the second equality comes
from the fact that

∑
a π(a, s)A

π(s, a) = 0, the third equality comes from the definition of the
Advantage Function for the π-player, and the final inequality comes from the both the Policy Gradient
Theorem and the fact that dπµ(s) ≥ (1− γ)µ(s). We now have proven both claims of our lemma.
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Lemma C.1. The π-player enjoys Item 3, i.e.
∑t−1

i hi(·) + ht−1(·)− σ is gradient-dominated with

constant 1
1−γ

∥∥∥∥dπ∗
µ

µ

∥∥∥∥
∞

.

Proof. For simplicity, we will call
∑

j hj(·) :=
∑t−1

i hi(·) + ht−1(·) where j indexes over the set
{h1, . . . , ht−2, ht−1, ht−1}. With this, we can follow through with our proof. By the performance
difference lemma,∑

j

V π∗

Wi
− V π

Wi
− ⟨σ, π∗ − π⟩

=
1

1− γ

∑
j

∑
s,a

dπ
∗

µ (s)π∗(a, s)Aπ(s, a)− ⟨σ, π∗ − π⟩

≤ 1

1− γ
max
π̄

∑
j

∑
s,a

dπ
∗

µ (s)π̄(s, a)Aπ(s, a)− ⟨σ, π∗ − π⟩

≤

∥∥∥∥∥dπ
∗

µ

dπµ

∥∥∥∥∥
∞

max
π̄

[
1

1− γ

∑
j

∑
s,a

dπµ(s)π̄(s, a)A
π(s, a)− ⟨σ, π̄ − π⟩

]

=

∥∥∥∥∥dπ
∗

µ

dπµ

∥∥∥∥∥
∞

max
π̄

[
1

1− γ

∑
j

∑
s,a

dπµ(s)(π̄(s, a)− π(a, s))Aπ(s, a)− ⟨σ, π̄ − π⟩

]

=

∥∥∥∥∥dπ
∗

µ

dπµ

∥∥∥∥∥
∞

max
π̄

[
1

1− γ

∑
j

∑
s,a

dπµ(s)(π̄(s, a)− π(a, s))Qπ(s, a)− ⟨σ, π̄ − π⟩

]

≤ 1

1− γ

∥∥∥∥∥dπ
∗

µ

µ

∥∥∥∥∥
∞

max
π̄

(π̄ − π)⊤∇π

∑
j

V π
Wi
− ⟨σ, π⟩


Here, the first equality comes from the Performance Difference Lemma, the second equality comes
from the fact that

∑
a π(a, s)A

π(s, a) = 0, the third equality comes from the definition of the
Advantage Function for the π-player, and the final inequality comes from the both the Policy Gradient
Theorem and the fact that dπµ(s) ≥ (1− γ)µ(s).

Lemma C.2. Item 1 is satisfied for the W -player, i.e.
∑t

i li − σ is Gradient Dominated.

Proof. We can use Lemma 5.3 to prove both. We start with the W player.

t∑
i

V πi

W (µ)−V πi

W∗(µ)− ⟨σ,W −W ∗⟩ =

t∑
i

−1
1− γ

∑
s′,a,s

[
dW

∗

µ (s)πi(a|s)PW∗(s′|a, s)AW (s′, a, s)
]
− ⟨σ,W ∗ −W ⟩

≤

∥∥∥∥∥dW
∗

µ (s)

dWµ (s)

∥∥∥∥∥
∞

[
t∑
i

−1
1− γ

∑
s′,a,s

[
dWµ (s)πi(a|s) PW∗(s′|a, s)

(
AW (s′, a, s)

)]
− ⟨σ,W ∗ −W ⟩

]

≤

∥∥∥∥∥dW
∗

µ (s)

dWµ (s)

∥∥∥∥∥
∞

max
W̄

t∑
i

−1
1− γ

∑
s′,a,s

[
dW

∗

µ (s)πi(a|s)PW̄ (s′|a, s)
(
AW (s′, a, s)

)
− ⟨σ, W̄ −W ⟩

]
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Here, the final inequality comes from using the minimizing transition dynamics W̄ . Looking at the
inside term, we have that

max
W̄

[
−1

1− γ

∑
s′,a,s

∑
i

[
dWµ (s)πi(a|s) PW̄ (s′, a, s)

(
AW (s′, a, s)

)]
− ⟨σ, W̄ −W ⟩

]

= max
W̄

[
−1

1− γ

∑
s′,a,s

∑
i

[
dWµ (s)πi(a|s) (PW̄ (s′, a, s)− PW (s′, a, s))

(
AW (s′, a, s)

)]
− ⟨σ, W̄ −W ⟩

]

= max
W̄

[
−1

1− γ

∑
s′,a,s

∑
i

[
dWµ (s)πi(a|s) (PW̄ (s′, a, s)− PW (s′, a, s)) (VW (s′))

]
− ⟨σ, W̄ −W ⟩

]

= max
W̄

[(
W − W̄

)⊤∇W

[∑
i

V πi

W (µ)− ⟨σ,W ⟩

]]
The first equality comes from the fact that the

∑
s′ PW (s′, a, s)AW (s′, a, s) = 0. The second

inequality comes from the definition of the W -player advantage function. Finally, the third equality
comes from Lemma 5.2. Combining these, we have that

t∑
i

V πi

W (µ)−V πi

W∗(µ)− ⟨σ,W −W ∗⟩ ≤

1

1− γ

∥∥∥∥∥dW
∗

µ

µ

∥∥∥∥∥
∞

max
W̄

[(
W − W̄

)⊤∇W

[∑
i

V πi

W (µ)− ⟨σ,W ⟩

]]
Moreover, we use the fact that dWµ (s) ≥ (1− γ)µ(s) by definition.

D PROOFS FOR CONVERGENCE

Here, we detail a lemma on the convergence of FTPL and OFTPL as proven in Suggala & Netrapalli
(2019).
Lemma D.1. Let D be the ℓ∞ diameter of the space X . Suppose the losses encountered by the
learner are L-Lipschitz w.r.t ℓ1 norm. Moreover, suppose the optimization oracle used has error α.
For any fixed η, the predictions of Follow the Perturbed Leader satisfy the following regret bound.
Here, d is the dimension of the noise vector.

E

[
1

T

T∑
t=1

ft(xt)−
1

T
inf
x∈X

T∑
t=1

ft(x)

]
≤ O

(
ηd2DL2 +

dD

ηT
+ α

)
.

For OFTPL, suppose our guess gt is such that gt − ft is Lt-Lipschitz w.r.t ℓ1 norm, for all t ∈ [T ].
The predictions of Optimistic Follow the Perturbed Leader satisfy the following regret bound.

E

[
1

T

T∑
t=1

ft(xt)−
1

T
inf
x∈X

T∑
t=1

ft(x)

]
≤ O

(
ηd2D

T∑
t=1

L2
t

T
+

dD

ηT
+ α

)
.

D.1 PROOF OF LEMMA 4.1

Lemma 4.1. Suppose we have an incoming sequence of loss functions ft for t ∈ [T ] with an
optimization oracle that can minimize a function to less than α error. The Best Response algorithm
satisfies the following regret bound 1

T

∑T
t=1 ft(xt)− 1

T inf
x∈X

∑T
t=1 ft(x) ≤ α.
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Proof. The regret term is defined as 1
T

∑T
t=1 ft(xt)− 1

T inf
x∈X

∑T
t=1 ft(x) where xt are the choices

taken by the BestResponse algorithm. For an arbitrary time step t, we have that

ft(xt)− ft(x) ≤ min
x∗

ft(x
∗) + α− ft(x)

≤ α

where the first inequality comes from the fact that an optimization oracle is used to calculate xt and
has error upper bounded by α. Therefore, we have that

1

T

T∑
t=1

ft(xt)−
1

T
inf
x∈X

T∑
t=1

ft(x) ≤ α.

E PROOFS FOR EXTENSION SECTION

E.1 PROOF OF LEMMA E.1

Lemma E.1. Given a series of choices by FTPL+ x1, . . . , xT with smooth and Gradient Dominated
loss functions f1, . . . , ft and noise sampled σ ∼ Exp(η), the stability in choices is bounded in
expectation by

E(∥xt+1 − xt∥1) ≤ 125ηLd2D +
α

20L

To prove this, we will first prove two properties of monotonicity of the loss function on an input of
noise σ. Much of this proof structure is inspired by Suggala & Netrapalli (2019).

Lemma E.2. Let xt(σ) be the solution chosen by FTPL+ under noise sigma. Let σ′ = σ + cei for
some positive constant c, then we have that

xt,i(σ
′) ≥ xt,i(σ)−

2α

c
.

Proof. Given that the approximate optimality of xt(σ), we have that

t−1∑
i=1

fi(xt(σ)) +mt(xt(σ))− ⟨σ, xt(σ)⟩ (3)

≤
t−1∑
i=1

fi(xt(σ
′)) +mt(xt(σ

′))− ⟨σ, xt(σ
′)⟩+ α

=

t−1∑
i=1

fi(xt(σ
′)) +mt(xt(σ

′))− ⟨σ′, xt(σ
′)⟩+ ⟨σ′ − σ, xt(σ

′)⟩+ α

≤
t−1∑
i=1

fi(xt(σ)) +mt(xt(σ))− ⟨σ′, xt(σ)⟩+ ⟨σ′ − σ, xt(σ
′)⟩+ 2α

=

t−1∑
i=1

fi(xt(σ)) +mt(xt(σ))− ⟨σ, xt(σ)⟩+ ⟨σ′ − σ, xt(σ
′)− xt(σ)⟩+ 2α (4)

Here, the first equality comes from the fact that xt(σ) is an approximate minimizer for the loss
function, and the second inequality comes from the fact that xt(σ

′) minimizes the loss function with
noise set to σ′ by definition. Combining Equation (3) and Equation (4), we have that

0 ≤ ⟨σ′ − σ, xt(σ
′)− xt(σ)⟩+ 2α

≤ c(x(t,i)(σ
′)− x(t,i)(σ)) + 2α

We, therefore, get that x(t,i)(σ
′) ≥ x(t,i)(σ)− 2α

c .
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Moreover, we have that the difference between predictions made by our algorithm at sequential
timesteps is close.
Lemma E.3. If ∥xt(σ)− xt+1(σ)∥1 ≤ 10d|xt,i(σ)− xt+1,i(σ)| and σ′ = 100Ldei + σ, we have
that

min (xt,i(σ
′), xt+1,i(σ

′)) ≥ max(xt,i(σ), xt+1,i(σ))−
1

10
|xt,i(σ)− xt+1,i(σ

′)| − 3α

100Ld

Proof. We have that
t−1∑
i=1

fi(xt(σ))− ⟨σ, xt(σ)⟩+ ft(xt(σ)) +mt+1(xt(σ))

≤
t−1∑
i=1

fi(xt+1(σ))− ⟨σ, xt+1(σ)⟩+ ft(xt+1(σ)) + +mt+1(xt(σ)) + α

≤
t−1∑
i=1

fi(xt+1(σ))− ⟨σ, xt+1(σ)⟩+ ft(xt+1(σ)) +mt+1(xt+1(σ))

+ L∥xt+1(σ)− xt(σ)∥1 + α

Here, we have the first inequality from the approximate optimality of xt(σ) and the second inequality
from the smoothness of the optimistic function. Moreover, from the opposite direction, we have that

t−1∑
i=1

fi(xt(σ))− ⟨σ, xt(σ)⟩+ ft(xt(σ)) +mt+1(xt(σ))

=

t−1∑
i=1

fi(xt(σ))− ⟨σ′, xt(σ)⟩+ ⟨σ′ − σ, xt(σ)⟩+ ft(xt(σ)) +mt+1(xt(σ))

≥
t−1∑
i=1

fi(xt(σ
′))− ⟨σ′, xt+1(σ

′)⟩+ ⟨σ′ − σ, xt(σ)⟩+ ft(xt+1(σ
′))

+mt+1(xt+1(σ
′))− α

=

t−1∑
i=1

fi(xt(σ
′))− ⟨σ, xt+1(σ

′)⟩+ ⟨σ′ − σ, xt(σ)− xt+1(σ
′)⟩+ ft(xt+1(σ

′))

+mt+1(xt+1(σ
′))− α

≥
t−1∑
i=1

fi(xt(σ))− ⟨σ, xt+1(σ)⟩+ ⟨σ′ − σ, xt(σ)− xt+1(σ
′)⟩+ ft(xt+1(σ))

+mt+1(xt+1(σ))− 2α

Here, we have the first inequality from the approximate optimality of xt(σ
′) and the final inequality

from the approximate optimality of xt(σ). From these and our original assumption, we have that,

10Ld∥xt+1,i(σ)− xt,i(σ)∥1 + α ≥ 100Ld(xt,i(σ)− xt+1,i(σ
′))− 2α.

Using a similar argument, we have that

10Ld∥xt+1,i(σ)− xt,i(σ)∥1 + α ≥ 100Ld(xt+1,i(σ)− xt,i(σ
′))− 2α.

Moreover, from Lemma E.2,we know that xt+1,i(σ
′)− xt+1,i(σ) ≥ −3α

100Ld and xt,i(σ
′)− xt,i(σ) ≥

−3α
100Ld . Combining these, we have our claim.

We can now finally prove our claim. This proof is very similar to the proof of Theorem 1 in Suggala
& Netrapalli (2019).

Proof. We note that we can decompose the ℓ1 norm in E [∥xt(σ)− xt+1(σ)∥1] as

E [∥xt(σ)− xt+1(σ)∥1] =
d∑

i=1

E [|xt,i(σ)− xt+1,i(σ)|] .
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To bound E [∥xt(σ)− xt+1(σ)∥1] we derive an upper bound for each dimension
E [|xt,i(σ)− xt+1,i(σ)|] ,∀i ∈ [d]. For any i ∈ [d], define E−i [|xt,i(σ)− xt+1,i(σ)|] as

E−i [|xt,i(σ)− xt+1,i(σ)|] = E
[
|xt,i(σ)− xt+1,i(σ)| | {σj}j ̸=i

]
where σj is the jth coordinate of σ. Intuitively, we are computing in expectation of the noise
of a single dimension while holding the other dimensions’ noise constant. Let xmax,i(σ) =
max (xt,i(σ),xt+1,i(σ)) and xmin,i(σ) = min (xt,i(σ),xt+1,i(σ)). Then, by definition, we have
that

E−i [|xt,i(σ)− xt+1,i(σ)|] = E−i [xmax,i(σ)]− E−i [xmin,i(σ)] .
Define event E as

E = {σ : ∥xt(σ)− xt+1(σ)∥1 ≤ 10d · |xt,i(σ)− xt+1,i(σ)|}
For notational ease, let P = exp(−100ηLd) be a constant. Consider the following

E−i [xmin,i(σ)] = P (σi < 100Ld)E−i [xmin,i(σ) | σi < 100Ld]

+ P (σi ≥ 100Ld)E−i [xmin,i(σ) | σi ≥ 100Ld]

≥ (1−P) (E−i [xmax,i(σ)]−D)

+PE−i [xmin,i (σ + 100Ldei)]

where the last inequality follows the fact that the domain of ith coordinate lies within some interval
of length D and since E−i [xmin,i(σ) | σi < 100Ld] and E−i [xmax,i(σ)] are points in this interval,
their difference is bounded by D. We can further lower bound E−i [xmin,i(σ)] as follows

E−i [xmin,i(σ)] ≥(1−P) (E−i [xmax,i(σ)]−D)

+PP−i(E)E−i [xmin,i (σ + 100Ldei) | E ]
+PP−i (Ec)E−i [xmin,i (σ + 100Ldei) | Ec]

where P−i(E) is defined as P−i(E) := P
(
E | {σj}j ̸=i

)
. We now use the monotonicity properties

proved in Lemma E.2 and Lemma E.3 to further lower bound E−i [xmin,i(σ)]. Then

E−i [xmin,i(σ)] ≥(1−P) (E−i [xmax,i(σ)]−D)

+PP−i(E)E−i

[
xmax,i(σ)−

1

10
|xt,i(σ)− xt+1,i(σ)| −

3α

100Ld
| E
]

+PP−i (Ec)E−i

[
xmin,i(σ)−

2α

100Ld
| Ec
]

≥(1−P) (E−i [xmax,i(σ)]−D)

+PP−i(E)E−i

[
xmax,i(σ)−

1

10
|xt,i(σ)− xt+1,i(σ)| −

3α

100Ld
| E
]

+PP−i (Ec)E−i

[
xmax,i(σ)−

1

10d
∥xt(σ)− xt+1(σ)∥1 −

2α

100Ld
| Ec
]

where the first inequality follows from Lemma E.2 and Lemma E.3 , the second inequality follows
from the definition of Ec. Rearranging the terms in the RHS and using P−i(E) ≤ 1 gives us

E−i [xmin,i(σ)] ≥(1−P) (E−i [xmax,i(σ)]−D)

+PE−i

[
xmax,i(σ)−

3α

100Ld

]
−PE−i

[
1

10
|xt,i(σ)− xt+1,i(σ)|+

1

10d
∥xt(σ)− xt+1(σ)∥1

]
≥E−i [xmax,i(σ)]− 100ηLdD − 3α

100Ld

− E−i

[
1

10
|xt,i(σ)− xt+1,i(σ)|+

1

10d
∥xt(σ)− xt+1(σ)∥1

]
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where the last inequality uses the the fact that exp(x) ≥ 1 + x. Rearranging the terms in the last
inequality gives us

E−i [|xt,i(σ)− xt+1,i(σ)|] ≤
1

9d
E−i [∥xt(σ)− xt+1(σ)∥1] +

1000

9
ηLdD +

E−i[α]

30Ld
.

Since the above bound holds for any {σj}j ̸=i, we get the following bound on the unconditioned
expectation

E [|xt,i(σ)− xt+1,i(σ)|] ≤
1

9d
E [∥xt(σ)− xt+1(σ)∥1] +

1000

9
ηLdD +

E[α]
30Ld

Substituting this with the above yields the following bound on the stability of predictions of FTPL+

E [∥xt(σ)− xt+1(σ)∥1] ≤ 125ηLd2D +
α

20L

Plugging the above bound gives us the required bound on regret.

E.2 PROOFS FOR STRONG GRADIENT DOMINANCE

We will first prove what the gradient of the value function is with respect to θ in this setting.
Lemma 7.2. We have g(W,π) = V π

W (µ)− ∥π∥22 is Kπ,
T
2 -strongly-Gradient Dominated on set T

Proof. By the Performance Difference Lemma,∑
t

V π∗

Wt
−
∑
t

V π
Wt
− ⟨σ, π∗ − π⟩ − ∥π∗∥22 + ∥π∥22

=
1

1− γ

∑
t

∑
s,a

dπ
∗

µ (s)π∗(a, s)Aπ(s, a)− ⟨σ, π∗ − π⟩ − ∥π∗∥22 + ∥π∥22

≤ max
π̄

[
1

1− γ

∑
t

∑
s,a

dπ
∗

µ (s)π̄(s, a)Aπ(s, a)− ⟨σ, π∗ − π⟩ − ∥π∗∥22 + ∥π∥22

]

≤

∥∥∥∥∥dπ
∗

µ

dπµ

∥∥∥∥∥
∞

max
π̄

[
1

1− γ

∑
t

∑
s,a

dπµ(s)π̄(s, a)A
π(s, a)− ⟨σ, π̄ − π⟩ − ∥π̄∥22 + ∥π∥22

]

=

∥∥∥∥∥dπ
∗

µ

dπµ

∥∥∥∥∥
∞

max
π̄

[
1

1− γ

∑
t

∑
s,a

dπµ(s)(π̄(s, a)− π(a, s))Aπ(s, a)− ⟨σ, π̄ − π⟩

− ∥π̄∥22 + ∥π∥22

]

=

∥∥∥∥∥dπ
∗

µ

dπµ

∥∥∥∥∥
∞

max
π̄

[
1

1− γ

∑
t

∑
s,a

dπµ(s)(π̄(s, a)− π(a, s))Qπ(s, a)− ⟨σ, π̄ − π⟩

− ∥π̄∥22 + ∥π∥22

]

=

∥∥∥∥∥dπ
∗

µ

dπµ

∥∥∥∥∥
∞

max
π̄

[
1

1− γ

∑
t

∑
s,a

dπµ(s)(π̄(s, a)− π(a, s))Qπ(s, a)− ⟨σ, π̄ − π⟩

− ⟨2π, π̄ − π⟩ − ∥π̄ − π∥22

]

≤ 1

1− γ

∥∥∥∥∥dπ
∗

µ

µ

∥∥∥∥∥
∞

max
π̄

[
(π̄ − π)⊤∇π

(∑
t

V π
Wt
− ⟨σ, π⟩ − T∥π∥22

)
− T

2
∥π̄ − π∥22

]

Here, the first equality comes from the Performance Difference Lemma, the second equality comes
from the fact that

∑
a π(a, s)A

π(s, a) = 0, the third equality comes from the definition of the
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Advantage Function for the π-player, and the final inequality comes from the both the Policy Gradient
Theorem and the fact that dπµ(s) ≥ (1 − γ)µ(s). Moreover, the second-from-last equality comes
from the following logic

−∥π̄ − π∥22 = −
[
π̄⊤π̄ − 2π̄⊤π + π⊤π

]
= −

[
π̄⊤π̄ − 2π̄⊤π + 2π⊤π − π⊤π

]
= −

[
∥π̄∥22 − ∥π∥22 + 2⟨π − π̄, π⟩

]
= −∥π̄∥22 + ∥π∥22 + 2⟨π̄ − π, π⟩

From this, we have that the value function done in this manner is strongly Gradient Dominated with
constant T

2 .

E.3 PROOF OF THEOREM 6.1

Theorem 6.1. Assume that the set of possible transition matrices W is convex. Let Lπ be the
smoothness constant of ht with respect to the ℓ1 norm, Dπ = max

π,π′∈T
∥π − π′∥2, and dπ be the

dimension of the input for the π-player. Let OLπ use FTPL and OLW use Best-Response. When
η = 1

Lπ

√
Tdπ

the robustness of the set of trained algorithms is for any π̄

min
W∗∈W

T∑
t=0

V π̄
W∗(µ)− E

[
min

W∗∈W

T∑
t=0

V πt

W∗(µ)

]
≤ 2d

3
2
πDπLπ√

T
+ cπ (TO,Kπ) + cW (TO,KW ) .

Proof. From Theorem 3.1, we have that

min
W∗

T∑
t=0

V π̄
W∗(µ)−min

W∗

T∑
t=0

V πt

W∗(µ) ≤ RegW + Regπ .

When the π-player is using FTPL, its regret is bounded according to

E(Regπ) ≤ O
(
ηd2πDπL

2
π +

dπDπ

ηT
+ α

)
.

Setting η = 1
Lπ

√
Tdπ

to minimize this, we have

E(Regπ) ≤ O

(
2d

3
2
πDπLπ√

T
+ α

)
.

Moreover, α is the Oracle Error term. Therefore, given that we have Gradient Dominance, using
Projected Gradient Descent yields from Lemma 5.1

E(Regπ) ≤ O

(
2d

3
2
πDπLπ√

T
+ cπ (TO,Kπ)

)
.

Given the W -player employs Best-Response, we have that the regret of the W -player is bounded by
the following by Lemma 4.1

E(RegW ) ≤ α

where α is the optimization error. Given that we have Gradient Dominance properties for the
W -player as well, we have that using the Projected Gradient Descent for

E(RegW ) ≤ cW (TO,KW ) .

Adding these two inequalities together gets our final result.
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E.4 PROOF OF THEOREM 7.1

Theorem 7.1. Assume that the set of possible transition matricesW is convex. Let OLπ use OFTPL
and OLW use FTPL+. Given that Condition 7.1 holds, we have that the robustness of the algorithm

is for any π̄ when setting η =

√
20Lπ(dwDW+dπDπ)

dπ

2
DπL̃2αT ,

min
W∗∈W

T∑
t=0

V π̄
W∗(µ)− E

[
min

W∗∈W

T∑
t=0

V πt

W∗(µ)

]
≤ O

([
dπL̃

√
Dπ(dwDw + dπDπ)√
5LπTcπ(TO,Kπ)

+ 1

]
cπ(TO,Kπ) + cW (TO,KW )

)
.

Proof. From Theorem 3.1, we have that

min
W∗

T∑
t=0

V π̄
W∗(µ)−min

W∗

T∑
t=0

V πt

W∗(µ) ≤ RegW + Regπ .

Given the π-player employs OFTPL, we have from Lemma D.1 that the regret is upper bounded by

Regπ ≤ O

(
ηd2πDπ

T∑
t=1

L2
t

T
+

dπDπ

ηT
+ α

)
.

However, we have that

E(L2
t ) = L̃2∥Wt −Wt−1∥1

≤ L̃2

(
125ηLπd

2
πDπ +

α

20Lπ

)
Here, the last inequality comes from the fact that the W -player uses FTPL+, and the decisions made
by FTPL+ are stable from Lemma E.1. Using this above, we have that

Regπ ≤ O

(
ηd2πDπL̃

2

(
125ηLπd

2
πDπ +

α

20Lπ

)
+

dπDπ

ηT
+ α

)
.

Since our π-player enjoys Gradient Dominance for its loss function, we have from Lemma 5.1 that

α ≤ cπ (TO,Kπ) .

Moreover, given the W -player is employing FTPL+, from Lemma 4.2, we have that regret of the
W -player is bounded by

RegW ≤ O
(
dWDW

ηT
+ α

)
.

In this setting, the W -player still enjoys Gradient Dominance properties, so using Projected Gradient
Descent has

α ≤ cW (TO,KW ) .

Adding these together yields

Regπ + RegW ≤ O(ηd2πDπL̃
2

(
125ηLπd

2
πDπ +

α

20Lπ

)
+

dWDW + dπDπ

ηT
+

cπ (TO,Kπ) + cW (TO,KW )).

Setting η =

√
20Lπ(dwDW+dπDπ)

dπ

2
DπL̃2αT , we have that

Regπ + RegW ≤ O

([
dπL̃

√
Dπ(dwDw + dπDπ)√
5LπTcπ(TO,Kπ)

+ 1

]
cπ(TO,Kπ) + cW (TO,KW )

)
.
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E.5 PROOF FOR THEOREM 7.2

Theorem 7.2. Assume that the set of possible transition matricesW is convex. Let OLπ use FTPL
and OLW use Best-Response. Given that Condition 7.2 holds and η = 1

Lπ

√
Tdπ

, we have that the
robustness of Algorithm 1 is for any π̄

min
W∗∈W

T∑
t=0

V π̄
W∗(µ)− ∥π̄∥2 − min

W∗∈W

T∑
t=0

V πt

W∗(µ) + ∥πt∥2 ≤
2d

3
2
πDπLπ√

T
+ csπ

(
TO,Kπ,

1

2

)
+ cW (TO,KW ).

Proof. From Theorem 3.1, we have that

min
W∗

T∑
t=0

V π̄
W∗(µ)−min

W∗

T∑
t=0

V πt

W∗(µ) ≤ RegW + Regπ .

When the π-player is using FTPL, its regret is bounded according to

E(Regπ) ≤ O
(
ηd2πDπL

2
π +

dπDπ

ηT
+ α

)
.

Setting η = 1
L
√
Td

to minimize this, we have

E(Regπ) ≤ O

(
2d

3
2
πDπLπ√

T
+ α

)
.

Moreover, α is the Oracle Error term. Therefore, given that we have strong Gradient Dominance,
using Projected Gradient Descent yields from Lemma 7.1

E(Regπ) ≤ O

(
2d

3
2
πDπLπ√

T
++csπ

(
TO,Kπ,

1

2

))
.

Given the W -player employs Best-Response, we have that the regret of the W -player is bounded by
the following by Lemma 4.1

E(RegW ) ≤ α

where α is the optimization error. Given that we have Gradient Dominance properties for the
W -player as well, we have that using the Projected Gradient Descent for

E(RegW ) ≤ cW (TO,KW ) .

Adding these two inequalities together gets our final result.
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