
Stochastic Q-learning for Large Discrete Action Spaces

Fares Fourati∗
KAUST

Thuwal, Saudi Arabia

Vaneet Aggarwal
Purdue University

West Lafayette, IN, USA

Mohamed-Slim Alouini
KAUST

Thuwal, Saudi Arabia

Abstract

In complex environments with large discrete action spaces, effective decision-
making is critical in reinforcement learning (RL). Despite the widespread use
of value-based RL approaches like Q-learning, they come with a computational
burden, necessitating the maximization of a value function over all actions in each
iteration. This burden becomes particularly challenging when addressing large-
scale problems and using deep neural networks as function approximators. In this
paper, we present stochastic value-based RL approaches which, in each iteration,
as opposed to optimizing over the entire set of n actions, only consider a variable
stochastic set of a sublinear number of actions, possibly as small asO(log(n)). The
presented stochastic value-based RL methods include, among others, Stochastic
Q-learning, StochDQN, and StochDDQN, all of which integrate this stochastic
approach for both value-function updates and action selection. The theoretical
convergence of Stochastic Q-learning is established, while an analysis of stochastic
maximization is provided. Moreover, through empirical validation, we illustrate
that the various proposed approaches outperform the baseline methods across
diverse environments, including different control problems, achieving near-optimal
average returns in significantly reduced time.

1 Introduction

Reinforcement learning (RL), a continually evolving field of machine learning, has achieved notable
successes, especially when combined with deep learning [46, 57]. While there have been several
advances in the field, a significant challenge lies in navigating complex environments with large
discrete action spaces [7, 8]. In such scenarios, standard RL algorithms suffer in terms of compu-
tational efficiency [1]. Identifying the optimal actions might entail cycling through all of them, in
general, multiple times within different states, which is computationally expensive and may become
prohibitive with large discrete action spaces [50].

Such challenges apply to various domains, including combinatorial optimization [32, 11, 14, 13],
natural language processing [18, 19, 20, 50], communications and networking [30, 12], recommen-
dation systems [7], transportation [2, 16, 28], and robotics [7, 48, 47, 44, 45, 15, 22]. Although
tailored solutions leveraging action space structures and dimensions may suffice in specific contexts,
their applicability across diverse problems, possibly unstructured, still needs to be expanded. We
complement these works by proposing a general method that addresses a broad spectrum of problems,
accommodating structured and unstructured single and multi-dimensional large discrete action spaces.

Value-based and actor-based approaches are both prominent approaches in RL. Value-based ap-
proaches, which entail the agent implicitly optimizing its policy by maximizing a value function,
demonstrate superior generalization capabilities but demand significant computational resources,
particularly in complex settings. Conversely, actor-based approaches, which entail the agent directly
optimizing its policy, offer computational efficiency but often encounter challenges in generalizing
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across multiple and unexplored actions [7]. While both hold unique advantages and challenges, they
represent distinct avenues for addressing the complexities of decision-making in large action spaces.
However, comparing them falls outside the scope of this work. While some previous methods have
focused on the latter [7], our work concentrates on the former. Specifically, we aim to exploit the natu-
ral generalization inherent in value-based RL approaches while reducing their per-step computational
complexity.

Q-learning, as introduced by [58], for discrete action and state spaces, stands out as one of the most
famous examples of value-based RL methods and remains one of the most widely used ones in the
field. As an off-policy learning method, it decouples the learning process from the agent’s current
policy, allowing it to leverage past experiences from various sources, which becomes advantageous
in complex environments. In each step of Q-learning, the agent updates its action value estimates
based on the observed reward and the estimated value of the best action in the next state.

Some approaches have been proposed to apply Q-learning to continuous state spaces, leveraging
deep neural networks [35, 53]. Moreover, several improvements have also been suggested to address
its inherent estimation bias [17, 53, 61, 27, 56]. However, despite the different progress and its
numerous advantages, a significant challenge still needs to be solved in Q-learning-like methods
when confronted with large discrete action spaces. The computational complexity associated with
selecting actions and updating Q-functions increases proportionally with the increasing number of
actions, which renders the conventional approach impractical as the number of actions substantially
increases. Consequently, we confront a crucial question: Is it possible to mitigate the complexity of
the different Q-learning methods while maintaining a good performance?

This work proposes a novel, simple, and practical approach for handling general, possibly unstruc-
tured, single-dimensional or multi-dimensional, large discrete action spaces. Our approach targets
the computational bottleneck in value-based methods caused by the search for a maximum (max and
argmax) in every learning iteration, which scales as O(n), i.e., linearly with the number of possible
actions n. Through randomization, we can reduce this per-step complexity to logarithmic.

We introduce stochmax and stoch argmax, which, instead of exhaustively searching for the precise
maximum across the entire set of actions, rely on at most two random subsets of actions, both of
sub-linear sizes, possibly each of size ⌈log(n)⌉. The first subset is randomly sampled from the
complete set of actions, and the second from the previously exploited actions. These stochastic
maximization techniques amortize the computational overhead of standard maximization operations
in various Q-learning methods [58, 17, 35, 53]. Stochastic maximization methods significantly
accelerate the agent’s steps, including action selection and value-function updates in value-based RL
methods, making them practical for handling challenging, large-scale, real-world problems.

We propose Stochastic Q-learning, Stochastic Double Q-learning, StochDQN, and StochDDQN,
which are obtained by changing max and argmax to stochmax and stoch argmax in the Q-learning
[58], the Double Q-learning [17], the deep Q-network (DQN) [35] and the Double DQN (DDQN)
[53], respectively. Furthermore, we observed that our approach works even for Sarsa [41].

We conduct a theoretical analysis of the proposed method, proving the convergence of Stochastic
Q-learning, which integrates these techniques for action selection and value updates, and establishing
a lower bound on the probability of sampling an optimal action from a random set of size ⌈log(n)⌉
and analyze the error of stochastic maximization compared to exact maximization. Furthermore, we
evaluate the proposed RL algorithms on environments from Gymnasium [3]. For the stochastic deep
RL algorithms, the evaluations were performed on control tasks within the MuJoCo environment [51]
with discretized actions [7, 48, 47]. These evaluations demonstrate that the stochastic approaches
outperform non-stochastic ones regarding wall time speedup and sometimes rewards.

Our key contributions are summarized as follows: We introduce novel stochastic maximization
techniques denoted as stochmax and stoch argmax, offering a compelling alternative to exact
maximization operations, particularly beneficial for handling large discrete action spaces, ensuring
sub-linear complexity regarding the number of actions. We present a suite of value-based RL
algorithms suitable for large discrete actions, including Stochastic Q-learning, Stochastic Sarsa,
Stochastic Double Q-learning, StochDQN, and StochDDQN, which integrate stochastic maximization
within Q-learning, Sarsa, Double Q-learning, DQN, and DDQN, respectively. We analyze stochastic
maximization and demonstrate the convergence of Stochastic Q-learning. Furthermore, we empirically
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validate our approach on tasks from the Gymnasium and MuJoCO environments, encompassing
various dimensional discretized actions.

2 Related Works

While RL has shown promise in diverse domains, practical applications often grapple with real-
world complexities. A significant hurdle arises when dealing with large discrete action spaces
[7, 8]. Previous research has investigated strategies to address this challenge by leveraging the
combinatorial or the dimensional structures in the action space [20, 48, 50, 5, 44, 45, 11, 14, 13,
1, 14, 13, 22]. For example, [20] leveraged the combinatorial structure of their language problem
through sub-action embeddings. Compressed sensing was employed in [50] for text-based games
with combinatorial actions. [5] formulated the combinatorial action decision of a vehicle routing
problem as a mixed-integer program. Moreover, [1] introduced dynamic neighbourhood construction
specifically for structured combinatorial large discrete action spaces. Previous works tailored solutions
for multi-dimensional spaces such as those in [44, 45, 22], among others, while practical in the multi-
dimensional spaces, may not be helpful for single-dimensional large action spaces. While relying
on the structure of the action space is practical in some settings, not all problems with large action
spaces are multi-dimensional or structured. We complement these works by making no assumptions
about the structure of the action space. See Appendix A for more detailed related work overview.

3 Problem Description

In the context of a Markov decision process (MDP), we have specific components: a finite set
of actions denoted as A, a finite set of states denoted as S, a transition probability distribution
P : S ×A×S → [0, 1], a bounded reward function r : S ×A → R, and a discount factor γ ∈ [0, 1].
Furthermore, for time step t, we denote the chosen action as at, the current state as st, and the
received reward as rt ≜ r(st,at). Additionally, for time step t, we define a learning rate function
αt : S ×A → [0, 1]. The cumulative reward an agent receives during an episode in an MDP with
variable length time T is the return Rt. It is calculated as the discounted sum of rewards from time
step t until the episode terminates: Rt ≜

∑T
i=t γ

i−tri. RL aims to learn a policy π : S → A
mapping states to actions that maximize the expected return across all episodes. The state-action
value function, denoted as Qπ(s,a), represents the expected return when starting from a given state
s, taking action a, and following a policy π afterwards. The function Qπ can be expressed using the
Bellman equation:

Qπ(s,a) = r(s,a) + γ
∑
s′∈S
P(s′ | s,a)Qπ(s′, π(s′)). (1)

Two main categories of policies are commonly employed in RL systems: value-based and actor-based
policies [46]. This study primarily concentrates on the former type, where the value function directly
influences the policy’s decisions. An example of a value-based policy in a state s involves an εs-
greedy algorithm, selecting the action with the highest Q-function value with probability (1− εs),
where εs ≥ 0, function of the state s, requiring the use of argmax operation, as follows:

πQ(s) =

{
play randomly with proba. ϵs
argmaxa∈A Q(s,a) otherwise.

(2)

Furthermore, during the training, to update the Q-function, Q-learning [58], for example, uses the
following update rule, which requires a max operation:

Qt+1 (st,at) = (1− αt (st,at))Qt (st,at) + αt (st,at)

[
rt + γmax

b∈A
Qt (st+1, b)

]
. (3)

Therefore, the computational complexity of both the action selections in Eq. (2) and the Q-function
updates in Eq. (3) scales linearly with the cardinality n of the action set A, making this approach
infeasible as the number of actions increases significantly. The same complexity issues remain for
other Q-learning variants, such as Double Q-learning [17], DQN [35], and DDQN [53].

When representing the value function as a parameterized function, such as a neural network, taking
only the current state s as input and outputting the values for all actions, as proposed in DQN [35],
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the network must accommodate a large number of output nodes, which results in increasing memory
overhead and necessitates extensive predictions and maximization over these final outputs in the
last layer. A notable point about this approach is that it does not exploit contextual information
(representation) of actions, if available, which leads to lower generalization capability across actions
with similar features and fails to generalize over new actions.

Previous works have considered generalization over actions by taking the features of an action a
and the current state s as inputs to the Q-network and predicting its value [59, 33, 52]. However,
it leads to further complications when the value function is modeled as a parameterized function
with both state s and action a as inputs. Although this approach allows for improved generalization
across the action space by leveraging contextual information from each action and generalizing
across similar ones, it requires evaluating the function for each action within the action set A. This
results in a linear increase in the number of function calls as the number of actions grows. This
scalability issue becomes particularly problematic when dealing with computationally expensive
function approximators, such as deep neural networks [7]. Addressing these challenges forms the
motivation behind this work.

4 Proposed Approach

To alleviate the computational burden associated with maximizing a Q-function at each time step,
especially when dealing with large action spaces, we introduce stochastic maximization methods
with sub-linear complexity relative to the size of the action set A. Then, we integrate these methods
into different value-based RL algorithms.

4.1 Stochastic Maximization

We introduce stochastic maximization as an alternative to maximization when dealing with large
discrete action spaces. Instead of conducting an exhaustive search for the precise maximum across
the entire set of actions A, stochastic maximization searches for a maximum within a stochastic
subset of actions of sub-linear size relative to the total number of actions. In principle, any size can
be used, trading off time complexity and approximation. We mainly focus on O(log(n)) to illustrate
the power of the method in recovering Q-learning, even with such a small number of actions, with
logarithmic complexity.

We consider two approaches to stochastic maximization: memoryless and memory-based approaches.
The memoryless one samples a random subset of actions R ⊆ A with a sublinear size and seeks
the maximum within this subset. On the other hand, the memory-based one expands the randomly
sampled set to include a few actionsM with a sublinear size from the latest exploited actions E and
uses the combined sets to search for a stochastic maximum. Stochastic maximization, which may
miss the exact maximum in both versions, is always upper-bounded by deterministic maximization,
which finds the exact maximum. However, by construction, it has sublinear complexity in the number
of actions, making it appealing when maximizing over large action spaces becomes impractical.

Formally, given a state s, which may be discrete or continuous, along with a Q-function, a random
subset of actions R ⊆ A, and a memory subset M ⊆ E (empty in the memoryless case), each
subset being of sublinear size, such as at most O(log(n)) each, the stochmax is the maximum value
computed from the union set C = R∪M, defined as:

stochmax
k∈A

Qt(s, k) ≜ max
k∈C

Qt(s, k). (4)

Besides, the stoch argmax is computed as follows:

stoch argmax
k∈A

Qt(s, k) ≜ argmax
k∈C

Qt(s, k). (5)

In the analysis of stochastic maximization, we explore both memory-based and memoryless max-
imization. In the analysis and experiments, we consider the random set R to consist of ⌈log(n)⌉
actions. When memory-based, in our experiments, within a given discrete state, we consider the two
most recently exploited actions in that state. For continuous states, where it is impossible to retain
the latest exploited actions for each state, we consider a randomly sampled subsetM⊆ E , which
includes ⌈log(n)⌉ actions, even though they were played in different states. We demonstrate that this
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approach was sufficient to achieve good results in the benchmarks considered; see Section 7.3. Our
Stochastic Q-learning convergence analysis considers memoryless stochastic maximization with a
random setR of any size.
Remark 4.1. By setting C equal toA, we essentially revert to standard approaches. Consequently, our
method is an extension of non-stochastic maximization. However, in pursuit of our objective to make
RL practical for large discrete action spaces, for a given state s, in our analysis and experiments, we
keep the union set C limited to at most 2⌈log(n)⌉, ensuring sub-linear (logarithmic) complexity.

4.2 Stochastic Q-learning

We introduce Stochastic Q-learning, described in Algorithm 1 in Appendix D, and Stochastic Double
Q-learning, described in Algorithm 2 in Appendix D, that replace the max and argmax operations in
Q-learning and Double Q-learning with stochmax and stoch argmax, respectively. Furthermore, we
introduce Stochastic Sarsa, described in Algorithm 3 in Appendix D, which replaces the maximization
in the greedy action selection (argmax) in Sarsa.

Our proposed solution takes a distinct approach from the conventional method of selecting the action
with the highest Q-function value from the complete set of actions A. Instead, it uses stochastic
maximization, which finds a maximum within a stochastic subset C ⊆ A, constructed as explained
in Section 4.1. Our stochastic policy πS

Q(s), uses an εs-greedy algorithm, in a given state s, with a
probability of (1− εs), for εs > 0, is defined as follows:

πS
Q(s) ≜

{
play randomly with proba. ϵs
stoch argmaxa∈A Q(s,a) otherwise.

(6)

Furthermore, during the training, to update the Q-function, our proposed Stochastic Q-learning uses
the following rule:

Qt+1 (st,at) = (1− αt (st,at))Qt (st,at) + αt (st,at)

[
rt + γ stochmax

b∈A
Qt (st+1, b)

]
. (7)

While Stochastic Q-learning, like Q-learning, employs the same values for action selection and
action evaluation, Stochastic Double Q-learning, similar to Double Q-learning, learns two separate
Q-functions. For each update, one Q-function determines the policy, while the other determines the
value of that policy. Both stochastic learning methods remove the maximization bottleneck from
exploration and training updates, making these proposed algorithms significantly faster than their
deterministic counterparts.

4.3 Stochastic Deep Q-network

We introduce Stochastic DQN (StochDQN), described in Algorithm 4 in Appendix D, and Stochas-
tic DDQN (StochDDQN) as efficient variants of deep Q-networks. These variants substitute the
maximization steps in the DQN [35] and DDQN [53] algorithms with the stochastic maximization
operations. In these modified approaches, we replace the εs-greedy exploration strategy with the
same exploration policy as in Eq. (6).

For StochDQN, we employ a deep neural network as a function approximator to estimate the action-
value function, represented as Q(s,a; θ) ≈ Q(s,a), where θ denotes the weights of the Q-network.
This network is trained by minimizing a series of loss functions denoted as Li(θi), with these loss
functions changing at each iteration i as follows:

Li (θi) ≜ Es,a∼ρ(·)

[
(yi −Q (s,a; θi))

2
]
, (8)

where yi ≜ E [r + γ stochmaxb∈A Q(s′, b; θi−1)| s,a]. In this context, yi represents the target value
for an iteration i, and ρ(.) is a probability distribution that covers states and actions. Like the DQN
approach, we keep the parameters fixed from the previous iteration, denoted as θi−1 when optimizing
the loss function Li(θi).

These target values depend on the network weights, which differ from the fixed targets typically used
in supervised learning. We employ stochastic gradient descent for the training. While StochDQN,
like DQN, employs the same values for action selection and evaluation, StochDDQN, like DDQN,
trains two separate value functions. It does this by randomly assigning each experience to update
one of the two value functions, resulting in two sets of weights, θ and θ′. For each update, one set of
weights determines the policy, while the other set determines the values.
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5 Stochastic Maximization Analysis

5.1 Memoryless Stochastic Maximization

Memoryless stochastic maximization, i.e., C = R∪∅, does not always yield an optimal maximizer. To
return an optimal action, this action needs to be randomly sampled from the set of actions. Finding an
exact maximizer, without relying on memoryM, is a random event with a probability p, representing
the likelihood of sampling such an exact maximizer. In the following lemma, we provide a lower
bound on the probability of discovering an optimal action within a uniformly randomly sampled
subset C = R of ⌈log(n)⌉ actions, which we prove in Appendix C.1.1.
Lemma 5.1. For any given state s, the probability p of sampling an optimal action from a uniformly
randomly chosen subset C of size ⌈log(n)⌉ actions is at least ⌈log(n)⌉

n .

While finding an exact maximizer through sampling may not always occur, the rewards of near-
optimal actions can still be similar to those obtained from an optimal action. Therefore, the difference
between stochastic maximization and exact maximization might be a more informative metric than
just the probability of finding an exact maximizer. Thus, at time step t, given state s and the current
estimated Q-function Qt, we define the estimation error as βt(s), as follows:

βt(s) ≜ max
a∈A

Qt (s,a)− stochmax
a∈A

Qt (s,a) . (9)

Furthermore, we define the similarity ratio ωt(s), as follows:

ωt(s) ≜ stochmax
a∈A

Qt (s,a) /max
a∈A

Qt (s,a) . (10)

It can be seen from the definitions that βt(s) ≥ 0 and ωt(s) ≤ 1. While sampling the exact
maximizer is not always possible, near-optimal actions may yield near-optimal values, providing
good approximations, i.e., βt(s) ≈ 0 and ωt(s) ≈ 1. In general, this difference depends on the value
distribution over the actions.

While we do not make any specific assumptions about the value distribution in our work, we note that
with some simplifying assumptions on the value distributions over the actions, one can derive more
specialized guarantees. For example, assuming that the rewards are uniformly distributed over the
actions, we demonstrate in Appendix C.3 that for a given discrete state s, if the values of the sampled
actions independently follow a uniform distribution from the interval [Qt(s,a

⋆
t )− bt(s), Qt(s,a

⋆
t )],

where bt(s) represents the range of the Qt(s, .) values over the actions in state s at time step t, then
the expected value of βt(s), even without memory, is: E [βt(s) | s] ≤ bt(s)

⌈log(n)⌉+1 . Furthermore, we
empirically demonstrate that for the considered control problems, the difference βt(s) is not large,
and the ratio ωt(s) is close to one, as shown in Section 7.4.

5.2 Stochastic Maximization with Memory

While memoryless stochastic maximization could approach the maximum value or find it with the
probability p, lower-bounded in Lemma 5.1, it does not converge to an exact maximization, as it keeps
sampling purely at random, as can be seen in Fig. 5 in Appendix F.2.1. However, memory-based
stochastic maximization, i.e., C = R∪M withM ̸= ∅, can become an exact maximization when
the Q-function becomes stable, as we state in the Corollary 5.3, which we prove in Appendix C.2.1,
and as confirmed in Fig. 5.
Definition 5.2. A Q-function is considered stable for a given time range and state s when its
maximizing action in that state remains unchanged for all subsequent steps within that time, even if
the Q-function’s values themselves change.

A straightforward example of a stable Q-function occurs during validation periods when no function
updates are performed. However, in general, a stable Q-function does not have to be static and might
still vary over the rounds; the critical characteristic is that its maximizing action remains the same
even when its values are updated. Although the stochmax has sub-linear complexity compared to
the max, without any assumption of the value distributions, the following corollary shows that, on
average, for a stable Q-function, after a certain number of iterations, the output of the stochmax
matches precisely the output of max.
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Corollary 5.3. For a given state s, assuming a time range where the Q-function becomes stable in
that state, βt(s) is expected to converge to zero after n

⌈log(n)⌉ iterations.

Recalling the definition of the similarity ratio ωt, it follows that ωt(s) = 1−β(s)/maxa∈A Qt(s,a).
Therefore, for a given state s, where the Q-function becomes stable, given the boundedness of iterates
in Q-learning, it is expected that ωt converges to one. This observation was confirmed, even with
continuous states and using neural networks as function approximators, in Section 7.4.

6 Stochastic Q-learning Convergence

In this section, we analyze the convergence of the Stochastic Q-learning, described in Algorithm
1 in Appendix D. This algorithm employs the policy πS

Q(s), as defined in Eq. (6), with εs > 0 to
guarantee that Pπ[at = a | st = s] > 0 for all state-action pairs (s,a) ∈ S ×A. The value update
rule, on the other hand, uses the update rule specified in Eq. (7).

In the convergence analysis, we focus on memoryless maximization. While the stoch argmax
operator for action selection can be employed with or without memory, we assume a memoryless
stochmax operator for value updates, which means that value updates are performed by maximizing
over a randomly sampled subset of actions from A, sampled independently from both the next state
s′ and the set used for the stoch argmax.

For a stochastic variable subset of actions C ⊆ A, following some probability distribution P : 2A →
[0, 1], we consider, without loss of generality Q(., ∅) = 0, and define, according to P, a target
Q-function, denoted as Q∗, as:

Q∗(s,a) ≜ E
[
r(s,a) + γ max

b∈C∼P
Q∗(s′, b) | s,a

]
. (11)

Remark 6.1. The Q∗ defined above depends on the sampling distribution P. Therefore, it does not
represent the optimal value function of the original MDP problem; instead, it is optimal under the
condition where only a random subset of actions following the distribution P is available to the agent
at each time step. However, as the sampling cardinality increases, it increasingly better approximates
the optimal value function of the original MDP and fully recovers the optimal Q-function of the
original problem when the sampling distribution becomes P(A) = 1.

The following theorem states the convergence of the iterates Qt of Stochastic Q-learning with
memoryless stochastic maximization to the Q∗, defined in Eq. (11), for any sampling distribution P,
regardless of the cardinality.
Theorem 6.2. For a finite MDP, as described in Section 3, let C be a randomly independently sampled
subset of actions from A, of any cardinality, following any distribution P, exclusively sampled for the
value updates, for the Stochastic Q-learning, given by the following update rule:

Qt+1 (st,at) = (1− αt (st,at))Qt (st,at) + αt (st,at)

[
rt + γ max

b∈C∼P
Qt (st+1,a)

]
,

given any initial estimate Q0, Qt converges with probability 1 to Q∗, defined in Eq. (11), as long as∑
t αt(s,a) =∞ and

∑
t α

2
t (s,a) <∞ for all (s,a) ∈ S ×A.

The theorem’s result demonstrates that for any cardinality of actions, Stochastic Q-learning converges
to Q∗, as defined in Eq. (11), which recovers the convergence guarantees of Q-learning when the
sampling distribution is P(A) = 1.
Remark 6.3. In principle, any size can be used, balancing time complexity and approximation. Our
empirical experiments focused on log(n) to illustrate the method’s ability to recover Q-learning, even
with a few actions. Using

√
n will approach the value function of Q-learning more closely compared

to using log(n), albeit at the cost of higher complexity than log(n).

The theorem shows that even with memoryless stochastic maximization, using randomly sampled
O(log(n)) actions, the convergence is still guaranteed. However, relying on memory-based stochastic
maximization helps minimize the approximation error in stochastic maximization, as shown in
Corollary 5.3, and outperforms Q-learning as shown in the experiments in Section 7.1.

The full proof is provided in Appendix B.
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Figure 1: Comparison of stochastic vs. non-stochastic value-based variants on the FrozenLake-v1, with steps
on the x-axis and cumulative rewards on the y-axis.

7 Experiments

We compare stochastic maximization to exact maximization and evaluate the proposed RL algorithms
in Gymnasium [3] and MuJoCo [51] environments. The stochastic tabular Q-learning approaches
are tested on CliffWalking-v0, FrozenLake-v1, and a generated MDP environment. Additionally,
the stochastic deep Q-network approaches are tested on control tasks and compared against their
deterministic counterparts, as well as against DDPG [29], A2C [34], and PPO [43], using Stable-
Baselines implementations [21], which can directly handle continuous action spaces. Further details
can be found in Appendix E.

7.1 Stochastic Q-learning Average Return

We test Stochastic Q-learning, Stochastic Double Q-learning, and Stochastic Sarsa in environments
with discrete states and actions. Interestingly, as shown in Fig. 1, our stochastic algorithms outperform
their deterministic counterparts. Furthermore, we observe that Stochastic Q-learning outperforms
all the methods considered regarding the cumulative rewards in the FrozenLake-v1. Moreover, in
the CliffWalking-v0 (as shown in Fig. 9), as well as for the generated MDP environment with 256
actions (as shown in Fig. 11), all the stochastic and non-stochastic methods reach the optimal policy
in a similar number of steps.

7.2 Exponential Wall Time Speedup

Stochastic maximization methods exhibit logarithmic
complexity regarding the number of actions. There-
fore, StochDQN and StochDDQN, which apply these
techniques for action selection and updates, have expo-
nentially faster execution times than DQN and DDQN,
as confirmed in Fig. 2. For the time duration of ac-
tion selection alone, please refer to Appendix F.1. The
time analysis results show that the proposed methods
are nearly as fast as a random algorithm that selects
actions randomly. Specifically, in the experiments with
the InvertedPendulum-v4, the stochastic methods took
around 0.003 seconds per step for a set of 1000 actions,
while the non-stochastic methods took 0.18 seconds,
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Figure 2: Comparison of wall time in seconds
of stochastic and non-stochastic DQN methods
on various action set sizes.

which indicates that the stochastic versions are 60 times faster than their deterministic counterparts.
Furthermore, for the HalfCheetah-v4 experiment, we considered 4096 actions, where one (D)DQN
step takes 0.6 seconds, needing around 17 hours to run for 100,000 steps, while the Stoch(D)DQN
needs around 2 hours to finish the same 100,000 steps. In other words, we can easily run for 10x more
steps in the same period (seconds). This makes the stochastic methods more practical, especially with
large action spaces.

7.3 Stochastic Deep Q-network Average Return

Fig. 8a shows the performance of various RL algorithms on the InvertedPendulum-v4 task, which has
512 actions. StochDQN achieves the optimal average return in fewer steps than DQN, with a lower

8



per-step time advantage (as shown in Section 7.2). Interestingly, while DDQN struggles, StochDDQN
nearly reaches the optimal average return, demonstrating the effectiveness of stochasticity. StochDQN
and StochDDQN significantly outperform DDQN, A2C, and PPO by obtaining higher average returns
in fewer steps. Similarly, Fig. 8b in Appendix F.3 shows the results for the HalfCheetah-v4 task,
which has 4096 actions. Stochastic methods, particularly StochDDQN, achieve results comparable to
the non-stochastic methods. Notably, all DQN methods (stochastic and non-stochastic) outperform
PPO and A2C, highlighting their efficiency in such scenarios.
Remark 7.1. While comparing them falls outside the scope of our work, we note that DDQN was
proposed to mitigate the inherent overestimation in DQN. However, exchanging overestimation for
underestimation bias is not always beneficial, as our results demonstrate and as shown in other studies
such as [27].

7.4 Stochastic Maximization

This section analyzes stochastic maximization by
tracking returned values of ωt (Eq. (10)) across the
steps. As shown in Fig. 3, for StochDQN, for the
InvertedPendulum-v4, ωt approaches one rapidly,
similarly for the HalfCheetah-v4, as shown in Ap-
pendix F.2.2. Furthermore, we track the returned
values of the difference βt (Eq. (9)) and show that
it is bounded by small values in both environments,
as illustrated in Appendix F.2.2.

101 102 103 104
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0.95
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0.97

0.98

0.99

1.00
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Figure 3: The stochmax and max ra-
tio values tracked over the steps on the
InvertedPendulum-v4.

8 Discussion

In this work, we focus on adapting value-based methods, which excel in generalization compared
to actor-based approaches [7]. However, this advantage comes at the cost of lower computational
efficiency due to the maximization operation required for action selection and value function updates.
Therefore, our primary motivation is to provide a computationally efficient alternative for situations
with general large discrete action spaces.

While the primary goal of this work is to reduce the complexity and wall time of Q-learning-like
algorithms, our experiments revealed that stochastic methods not only achieve shorter step times
(in seconds) but also, in some cases, yield higher rewards and exhibit faster convergence in terms
of the number of steps compared to other methods. These improvements can be attributed to
several factors. Firstly, introducing more stochasticity into the greedy choice through stoch argmax
enhances exploration. Secondly, Stochastic Q-learning specifically helps to reduce the inherent
overestimation in Q-learning-like methods [17, 27, 56]. This reduction is achieved using stochmax,
a lower bound to the max operation.

Q-learning methods, focused initially on discrete actions, can be adapted to tackle continuous
problems with discretization techniques and stochastic maximization. Our control experiments
show that Q-network methods with discretization achieve superior performance to algorithms with
continuous actions, such as PPO, by obtaining higher rewards in fewer steps, which aligns with
observations in previous works that highlight the potential of discretization for solving continuous
control problems [7, 48, 47]. Notably, the logarithmic complexity of the proposed stochastic methods
concerning the number of considered actions makes them well-suited for scenarios with finer-grained
discretization, leading to more practical implementations.

9 Conclusion

We propose adapting Q-learning-like methods to mitigate the computational bottleneck associated
with the max and argmax operations in these methods. By reducing the maximization complexity
from linear to sublinear using stochmax and stoch argmax, we pave the way for practical and
efficient value-based RL for large discrete action spaces. We prove the convergence of Stochastic
Q-learning, analyze stochastic maximization, and empirically show that it performs well with
significantly low complexity.
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A Related Works

While RL has shown promise in diverse domains, practical applications often grapple with real-
world complexities. A significant hurdle arises when dealing with large discrete action spaces
[7, 8]. Previous research has investigated strategies to address this challenge by leveraging the
combinatorial or the dimensional structures in the action space [20, 48, 50, 5, 44, 45, 11, 14, 13,
1, 14, 13, 22]. For example, [20] leveraged the combinatorial structure of their language problem
through sub-action embeddings. Compressed sensing was employed in [50] for text-based games
with combinatorial actions. [5] formulated the combinatorial action decision of a vehicle routing
problem as a mixed-integer program. Moreover, [1] introduced dynamic neighbourhood construction
specifically for structured combinatorial large discrete action spaces. Previous works tailored solutions
for multi-dimensional spaces such as those in [44, 45, 22], among others, while practical in the multi-
dimensional spaces, may not be helpful for single-dimensional large action spaces. While relying
on the structure of the action space is practical in some settings, not all problems with large action
spaces are multi-dimensional or structured. We complement these works by making no assumptions
about the structure of the action space.

Some approaches have proposed factorizing the action spaces to reduce their size. For example, these
include factorizing into binary subspaces [26, 42, 37, 6], expert demonstration [49], tensor factor-
ization [31], and symbolic representations [4]. Additionally, some hierarchical and multi-agent RL
approaches employed factorization as well [60, 25, 38, 9]. While some of these methods effectively
handle large action spaces for certain problems, they necessitate the design of a representation for
each discrete action. Even then, for some problems, the resulting space may still be large.

Methods presented in [54, 7, 55] combine continuous-action policy gradients with nearest neighbour
search to generate continuous actions and identify the nearest discrete actions. Although these
methods have shown good performance on different tasks, they require continuous-to-discrete
mapping and are mainly policy-based rather than value-based approaches. In the works of [24] and
[39], the cross-entropy method [40] was utilized to approximate action maximization. This approach
requires multiple iterations (r) for a single action selection. During each iteration, it samples n′ values,
where n′ < n, fits a Gaussian distribution to m < n′ of these samples, and subsequently draws a
new batch of n′ samples from this Gaussian distribution. As a result, this approximation remains
costly, with a complexity of O(rn′). Additionally, in the work of [52], a neural network was trained
to predict the optimal action in combination with a uniform search. This approach involves the use of
an expensive autoregressive proposal distribution to generate n′ actions and samples a large number
of actions (m), thus remaining computationally expensive, with O(n′ +m). In [33], sequential DQN
allows the agent to choose sub-actions one by one, which increases the number of steps needed to
solve a problem and requires d steps with a linear complexity of O(i) for a discretization granularity
i. Additionally, [48] employs a branching technique with duelling DQN for combinatorial control
problems. Their approach has a complexity of O(di) for actions with discretization granularity i
and d dimensions, whereas our method, in a similar setting, achieves O(d log(i)). Another line
of work introduces action elimination techniques, such as the action elimination DQN [59], which
employs an action elimination network guided by an external elimination signal from the environment.
However, it requires this domain-specific signal and can be computationally expensive (O(n′) where
n′ ≤ n are the number of remaining actions). In contrast, curriculum learning, as proposed by [10],
initially limits an agent’s action space, gradually expanding it during training for efficient exploration.
However, its effectiveness relies on having an informative restricted action space, and as the action
space size grows, its complexity scales linearly with its size, eventually reaching O(n).
In the context of combinatorial bandits with a single state but large discrete action spaces, previous
works have exploited the combinatorial structure of actions, where each action is a subset of main
arms. For instance, for submodular reward functions, which imply diminishing returns when adding
arms, in [11] and [14], stochastic greedy algorithms are used to avoid exact search. The former
evaluates the marginal gains of adding and removing sub-actions (arms), while the latter assumes
monotonic rewards and considers adding the best arm until a cardinality constraint is met. For
general reward functions, [13] propose using approximation algorithms to evaluate and add sub-
actions. While these methods are practical for bandits, they exploit the combinatorial structure of
their problems and consider a single-state scenario, which is different from general RL problems.

While some approaches above are practical for handling specific problems with large discrete action
spaces, they often exploit the dimensional or combinatorial structures inherent in their considered
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problems. In contrast, we complement these approaches by proposing a solution to tackle any general,
potentially unstructured, single-dimensional or multi-dimensional, large discrete action space without
relying on structure assumptions. Our proposed solution is general, simple, and efficient.

B Stochastic Q-learning Convergence Proofs

In this section, we prove Theorem 6.2, which states the convergence of Stochastic Q-learning. This
algorithm uses a stochastic policy for action selection, employing a stoch argmax with or without
memory, possibly dependent on the current state s. For value updates, it utilizes a stochmax without
memory, independent of the following state s′.

B.1 Lemma B.1

For the transition probability distribution P : S ×A×S → [0, 1], the set probability distribution
P : 2A → [0, 1], the reward function r : S ×A → R, and the discount factor, γ ∈ [0, 1], we define
the following contraction operator Φ, defined for a function q : S ×A → R as

(Φq)(s,a) =
∑
C∈2A

P(C)
∑
s′∈S
P(s′ | s,a)

[
r(s,a) + γmax

b∈C
q(s′, b)

]
. (12)

Lemma B.1. The operator Φ, defined in Eq. (12), is a contraction in the sup-norm, with a contraction
factor γ, i.e., ∥Φq1 − Φq2∥∞ ≤ γ ∥q1 − q2∥∞ .

Proof. For the transition probability distribution P : S ×A×S → [0, 1], the set probability distri-
bution P defined over the combinatorial space of actions, i.e., P : 2A → [0, 1], the reward function
r : S ×A → R, and the discount factor γ ∈ [0, 1], for a function q : S ×A → R, the operator Φ is
defined as follows:

(Φq)(s,a) =
∑
C∈2A

P(C)
∑
s′∈S
P(s′ | s,a)

[
r(s,a) + γmax

b∈C
q(s′, b)

]
. (13)

Therefore,

∥Φq1 − Φq2∥∞ = max
s,a

∣∣∣∣∣ ∑
C∈2A

P(C)
∑
s′∈S
P(s′ | s,a)

[
r(s,a) + γmax

b∈C
q1(s

′, b)− r(s,a) + γmax
b∈C

q2(s
′, b)

]∣∣∣∣∣
= max

s,a
γ

∣∣∣∣∣ ∑
C∈2A

P(C)
∑
s′∈S
P(s′ | s,a)

[
max
b∈C

q1(s
′, b)−max

b∈C
q2(s

′, b)

]∣∣∣∣∣
≤ max

s,a
γ

∑
C∈2A

P(C)
∑
s′∈S
P(s′ | s,a)

∣∣∣∣max
b∈C

q1(s
′, b)−max

b∈C
q2(s

′, b)

∣∣∣∣
≤ max

s,a
γ

∑
C∈2A

P(C)
∑
s′∈S
P(s′ | s,a)max

z,b
|q1(z, b)− q2(z, b)|

≤ max
s,a

γ
∑
C∈2A

P(C)
∑
s′∈S
P(s′ | s,a) ∥q1 − q2∥∞

= γ ∥q1 − q2∥∞ .

B.2 Proof of Theorem 6.2

Proof. Stochastic Q-learning employs a stochastic policy in a given state s, which use stoch argmax
operation, with or without memoryM, with probability (1−εs), for εs > 0, which can be summarized
by the following equation:

πS
Q(s) =

{
play randomly with probability ϵs
stoch argmaxa∈A Q(s,a) otherwise .

(14)
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This policy, with εs > 0, ensures that Pπ[at = a | st = s] > 0 for all (s,a) ∈ S ×A.

Furthermore, during the training, to update the Q-function, given any initial estimate Q0, we consider
a Stochastic Q-learning which uses stochmax operation as in the following stochastic update rule:

Qt+1 (st,at) = (1− αt (st,at))Qt (st,at) + αt (st,at)

[
rt + γ stochmax

b∈A
Qt (st+1, b)

]
. (15)

For the function updates, we consider a stochmax without memory, which involves a max over a
random subset of action C sampled from a set probability distribution P defined over the combinatorial
space of actions, i.e., P : 2A → [0, 1], which can be a uniform distribution over the action sets of size
⌈log(n)⌉.
Hence, for a random subset of actions C, the update rule of Stochastic Q-learning can be written as:

Qt+1 (st,at) = (1− αt (st,at))Qt (st,at) + αt (st,at)

[
rt + γmax

b∈C
Qt (st+1, b)

]
. (16)

We define an optimal Q-function, denoted as Q∗, as follows:

Q∗(s,a) = E
[
r(s,a) + γ stochmax

b∈A
Q∗(s′, b) | s,a

]
(17)

= E
[
r(s,a) + γmax

b∈C
Q∗(s′, b) | s,a

]
. (18)

Subtracting from both sides Q∗ (st,at) and letting
∆t(s,a) = Qt(s,a)−Q∗(s,a), (19)

yields
∆t+1 (st,at) = (1− αt (st,at))∆t (st,at) + αt(st,at)Ft(st,at), (20)

with
Ft(s,a) = r(s,a) + γmax

b∈C
Qt (s

′, b)−Q∗ (s,a) . (21)

For the transition probability distribution P : S ×A×S → [0, 1], the set probability distribution
P : 2A → [0, 1], the reward function r : S ×A → R, and the discount factor, γ ∈ [0, 1], we define
the following contraction operator Φ, defined for a function q : S ×A → R as

(Φq)(s,a) =
∑
C∈2A

P(C)
∑
s′∈S
P(s′ | s,a)

[
r(s,a) + γmax

b∈C
q(s′, b)

]
. (22)

Therefore, with Ft representing the past at time step t,

E [Ft(s,a) | Ft] =
∑
C∈2A

P(C)
∑
s′∈S
P(s′ | s,a)

[
r(s,a) + γmax

b∈C
Qt (s

′, b)−Q∗ (s,a)

]
= (Φ(Qt)) (s,a)−Q∗(s,a).

Using the fact that Q∗ = ΦQ∗,
E [Ft(s,a) | Ft] = (ΦQt) (s,a)− (ΦQ∗) (s,a).

It is now immediate from Lemma B.1, which we prove in Appendix B.1, that
∥E [Ft(s,a) | Ft]∥∞ ≤ γ ∥Qt −Q∗∥∞ = γ ∥∆t∥∞ . (23)

Moreover,

var [Ft(s,a) | Ft] = E

[(
r(s,a) + γmax

b∈C
Qt(s

′, b)−Q∗(s,a)− (ΦQt) (s,a) +Q∗(s,a)

)2

| Ft

]

= E

[(
r(s,a) + γmax

b∈C
Qt(s

′, b)− (ΦQt) (s,a)

)2

| Ft

]

= var

[
r(s,a) + γmax

b∈C
Qt(s

′, b) | Ft

]
= var [r(s,a) | Ft] + γ2 var

[
max
b∈C

Qt(s
′, b) | Ft

]
+ 2γ cov(r(s,a),max

b∈C
Qt(s

′, b) | Ft)

= var [r(s,a) | Ft] + γ2 var

[
max
b∈C

Qt(s
′, b) | Ft

]
.
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The last line follows from the fact that the randomness of maxb∈C Qt(s
′, b) | Ft only depends on the

random set C and the next state s′. Moreover, we consider the reward r(s,a) independent of the set C
and the next state s′, by not using the same set C for both the action selection and the value update.

Given that r is bounded, its variance is bounded by some constant B. Therefore,

var [Ft(s,a) | Ft] ≤ B + γ2 var

[
max
b∈C

Qt(s
′, b) | Ft

]
= B + γ2E

[
(max
b∈C

Qt(s
′, b))2 | Ft

]
− γ2E

[
max
b∈C

Qt(s
′, b) | Ft

]2
≤ B + γ2E

[
(max
b∈C

Qt(s
′, b))2 | Ft

]
≤ B + γ2E

[
(max
s′∈S

max
b∈A

Qt(s
′, b))2 | Ft

]
≤ B + γ2(max

s′∈S
max
b∈A

Qt(s
′, b))2

= B + γ2∥Qt∥2∞
= B + γ2∥∆t +Q∗∥2∞
≤ B + γ2∥Q∗∥2∞ + γ2∥∆t∥2∞
≤ (B + γ2∥Q∗∥2∞)(1 + ∥∆t∥2∞) + γ2(1 + ∥∆t∥2∞)

≤ max{B + γ2∥Q∗∥2∞, γ2}(1 + ∥∆t∥2∞)

≤ max{B + γ2∥Q∗∥2∞, γ2}(1 + ∥∆t∥∞)2.

Therefore, for constant C = max{B + γ2∥Q∗∥2∞, γ2},

var [Ft(s,a) | Ft] ≤ C(1 + ∥∆t∥∞)2. (24)

Then, by Eq. (23), Eq. (24), and Theorem 1 in [23], ∆t converges to zero with probability 1, i.e., Qt

converges to Q∗ with probability 1.
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C Stochastic Maximization

We analyze the proposed stochastic maximization method by comparing its error to that of exact
maximization. First, we consider the case without memory, where C = R, and then the case with
memory, whereM ≠ ∅. Finally, we provide a specialized bound for the case where the action values
follow a uniform distribution.

C.1 Memoryless Stochastic Maximization

In the following lemma, we give a lower bound on the probability of finding an optimal action within
a uniformly sampled subsetR of ⌈log(n)⌉ actions. We prove that for a given state s, the probability
p of sampling an optimal action within the uniformly randomly sampled subsetR of size ⌈log(n)⌉
actions is lower bounded with p ≥ ⌈log(n)⌉

n .

C.1.1 Proof of Lemma 5.1

Proof. In the presence of multiple maximizers, we focus on one of them, denoted as a∗0, and then the
probability p of sampling at least one maximizer is lower-bounded by the probability pa∗

0
of finding

a∗0, i.e.,
p ≥ pa∗

0
.

The probability pa∗
0

of finding a∗0 is the probability of sampling a∗0 within the random setR of size
⌈log(n)⌉, which is the fraction of all possible combinations of size ⌈log(n)⌉ that include a∗0.

This fraction can be calculated as
(

n−1
⌈log(n)⌉−1

)
divided by all possible combinations of size ⌈log(n)⌉,

which is
(

n
⌈log(n)⌉

)
.

Therefore, pa∗
0
=

( n−1
⌈log(n)⌉−1)
( n
⌈log(n)⌉)

.

Consequently,

p ≥ ⌈log(n)⌉
n

. (25)

C.2 Stochastic Maximization with Memory

While stochastic maximization without memory could approach the maximum value or find it with
the probability p, lower-bounded in Lemma 5.1, it never converges to an exact maximization, as it
keeps sampling purely at random, as can be seen in Fig. 5. However, stochastic maximization with
memory can become an exact maximization when the Q-function becomes stable, which we prove in
the following Corollary. Although the stochmax has sub-linear complexity compared to the max,
the following Corollary shows that, on average, for a stable Q-function, after a certain number of
iterations, the output of the stochmax matches the output of max.

Definition C.1. A Q-function is considered stable for a given state s if its best action in that state
remains unchanged for all subsequent steps, even if the Q-function’s values themselves change.

A straightforward example of a stable Q-function occurs during validation periods when no function
updates are performed. However, in general, a stable Q-function does not have to be static and
might still vary over the rounds; the key characteristic is that its maximizing action remains the same
even when its values are updated. Although the stochmax has sub-linear complexity compared to
the max, without any assumption of the value distributions, the following Corollary shows that, on
average, for a stable Q-function, after a certain number of iterations, the output of the stochmax
matches exactly the output of max.

C.2.1 Proof of Corollary 5.3

Proof. We formalize the problem as a geometric distribution where the success event is the event of
sampling a subset of size ⌈log(n)⌉ that includes at least one maximizer. The geometric distribution
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gives the probability that the first time to sample a subset that includes an optimal action requires
k independent calls, each with success probability p. From Lemma 5.1, we have p ≥ ⌈log(n)⌉

n .
Therefore, on an average, success requires: 1

p ≤
n

⌈log(n)⌉ calls.

For a given discrete state s,M keeps track of the most recent best action found. For C = R∪M,

stochmax
a∈A

Q(s,a) = max
a∈C

Q(s,a) ≥ max
a∈M

Q(s,a). (26)

Therefore, for a given state s, on average, if the Q-function is stable, then within n
⌈log(n)⌉ ,M will

contain the optimal action a∗. Therefore, on an average, after n
⌈log(n)⌉ time steps,

stochmax
a∈A

Q(s,a) ≥ max
a∈M

Q(s,a) = max
a∈A

Q(s,a).

We know that, stochmaxa∈A Q(s,a) ≤ maxa∈A Q(s,a). Therefore, for a stable Q-function, on an
average, after n

⌈log(n)⌉ time steps, stochmaxa∈A Q(s,a) becomes maxa∈A Q(s,a).

C.3 Stochastic Maximization with Uniformly Distributed Rewards

While the above corollary outlines an upper-bound on the average number of calls needed to determine
the exact optimal action eventually, the following lemma offers insights into the expected maximum
value of a randomly sampled subset of actions, comprising ⌈log(n)⌉ elements when their values are
uniformly distributed.
Lemma C.2. For a given state s and a uniformly randomly sampled subset R of size ⌈log(n)⌉
actions, if the values of the sampled actions follow independently a uniform distribution in the
interval [Qt(s,a

⋆
t )− bt(s), Qt(s,a

⋆
t )], then the expected value of the maximum Q-function within

this random subset is:

E
[
max
k∈R

Qt(s, k) | s,a⋆t
]
= Qt(s,a

⋆
t )−

bt(s)

⌈log(n)⌉+ 1
. (27)

Proof. For a given state s we assume a uniformly randomly sampled subset R of size ⌈log(n)⌉
actions, and the values of the sampled actions are independent and follow a uniform distribution in
the interval [Qt(s,a

⋆
t )− bt(s), Qt(s,a

⋆
t )]. Therefore, the cumulative distribution function (CDF) for

the value of an action a given the state s and the optimal action a∗t is:

G(y; s,a) =

{
0 for y < Qt(s,a

∗
t )− bt(s)

y for y ∈ [Qt(s,a
∗
t )− bt, Qt(s,a

∗)]
1 for y > Qt(s,a

∗
t ) .

We define the variable x = (y − (Qt(s,a
∗
t )− bt(s)))/bt(s).

F (x; s,a) =

{
0 for x < 0
x for x ∈ [0, 1]
1 for x > 1 .

If we select ⌈log(n)⌉ such actions, the CDF of the maximum of these actions, denoted as Fmax is the
following:

Fmax(x; s,a) = P
(
max
a∈R

Qt(s,a) ≤ x

)
=

∏
a∈R

P (Qt(s,a) ≤ x)

=
∏
a∈R

F (x; s,a)

= F (x; s,a)⌈log(n)⌉.

The second line follows from the independence of the values, and the last line follows from the
assumption that all actions follow the same uniform distribution.
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The CDF of the maximum is therefore given by:

Fmax(x; s,a) =

 0 for x < 0
x⌈log(n)⌉ for x ∈ [0, 1]
1 for x > 1 .

Now, we can determine the desired expected value as

E
[
max
a∈R

Qt(s,a)− (Qt(s,a
∗
t )− bt(s))

bt(s)

]
=

∫ ∞

−∞
x dFmax(x; s,a)

=

∫ 1

0

x dFmax(x; s,a)

= [xFmax(x; s,a)]
1
0 −

∫ 1

0

Fmax(x; s,a) dx

= 1−
∫ 1

0

x⌈log(n)⌉ dx

= 1− 1

⌈log(n)⌉+ 1
.

We employed the identity
∫ 1

0
x dµ(x) =

∫ 1

0
1 − µ(x) dx, which can be demonstrated through

integration by parts. To return to the original scale, we can first multiply by bt and then add
Qt(s,a

∗
t )− bt(s), resulting in:

E
[
max
a∈R

Qt(s,a) | s,a∗t
]
= Qt(s,a

∗
t )−

bt(s)

⌈log(n)⌉+ 1
.

As an example of this setting, for Qt(s,a
⋆
t ) = 100, bt = 100, for a setting with n = 1000 actions,

⌈log(n)⌉ + 1 = 11. Hence the E [maxk∈R Qt(s, k) | s,a⋆t ] ≈ 91. This shows that even with a
randomly sampled set of actionsR, the stochmax can be close to the max. We simulate this setting
in the experiments in Fig. 5.

Our proposed stochastic maximization does not solely rely on the randomly sampled subset of
actionsR but also considers actions from previous experiences throughM. Therefore, the expected
stochmax should be higher than the above result, providing an upper bound on the expected βt as
described in the following corollary of Lemma C.2.

Corollary C.3. For a given discrete state s, if the values of the sampled actions follow independently
a uniform distribution from the interval [Qt(s,a

⋆
t ) − bt(s), Qt(s,a

⋆
t )], then the expected value of

βt(s) is:

E [βt(s) | s] ≤
bt(s)

⌈log(n)⌉+ 1
. (28)

Proof. At time step t, given a state s, and the current estimated Q-function Qt, βt(s) is defined as
follows:

βt(s) = max
a∈A

Qt (s,a)− stochmax
a∈A

Qt (s,a) . (29)
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For a given state s and a uniformly randomly sampled subsetR of size ⌈log(n)⌉ actions and a subset
of some previous played actionsM⊂ E , using the law of total expectation,

E [βt(s) | s] = E [E [βt(s) | s,a⋆t ] | s]

= E
[
E
[
max
k∈A

Qt(s, k)− stochmax
k∈A

Qt(s, k) | s,a⋆t
]
| s

]
= E

[
E
[
max
k∈A

Qt(s, k)− max
k∈R∪M

Qt(s, k) | s,a⋆t
]
| s

]
≤ E

[
E
[
max
k∈A

Qt(s, k)−max
k∈R

Qt(s, k) | s,a⋆t
]
| s

]
= E

[
Qt(s,a

∗
t )− E

[
max
k∈R

Qt(s, k) | s,a⋆t
]
| s

]
.

Therefore by Lemma C.2:

E [βt(s) | s] ≤ E
[
Qt(s,a

∗
t )− (Qt(s,a

∗
t )−

bt(s)

⌈log(n)⌉+ 1
) | s

]
= E

[
bt(s)

⌈log(n)⌉+ 1
| s

]
=

bt(s)

⌈log(n)⌉+ 1
.
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D Pseudocodes

Algorithm 1 Stochastic Q-learning

Initialize Q(s,a) for all s ∈ S,a ∈ A
for each episode do

Observe state s.
for each step of episode do

Choose a from s with policy πS
Q(s).

Take action a, observe r, s′.
b∗ ← stoch argmaxb∈A Q(s′, b).
∆← r + γQ(s′, b∗)−Q(s,a).
Q(s,a)← Q(s,a) + α(s,a)∆.
s← s′.

end for
end for

Algorithm 2 Stochastic Double Q-learning

Initialize QA(s,a) and QB(s,a) for all s ∈ S,a ∈ A, n = | A |
for each episode do

Observe state s.
for each step of episode do

Choose a from s via QA +QB with policy πS
(QA+QB)(s) in Eq. (6).

Take action a, observe r, s′.
Choose either UPDATE(A) or UPDATE(B), for example randomly.
if UPDATE(A) then
∆A ← r + γQB(s′, stoch argmaxb∈A QA(s′, b))−QA(s,a).
QA(s,a)← QA(s,a) + α(s,a)∆A.

else if UPDATE(B) then
∆B ← r + γQA(s′, stoch argmaxb∈A QB(s′, b))−QB(s,a).
QB(s,a)← QB(s,a) + α(s,a)∆B .

end if
s← s′.

end for
end for

Algorithm 3 Stochastic Sarsa

Initialize Q(s,a) for all s ∈ S,a ∈ A, n = | A |
for each episode do

Observe state s.
Choose a from s with policy πS

Q(s) in Eq. (6).
for each step of episode do

Take action a, observe r, s′.
Choose a′ from s′ with policy πS

Q(s
′) in Eq. (6).

Q(s,a)← Q(s,a) + α(s,a)[r + γQ(s′,a′)−Q(s,a)].
s← s′; a← a′.

end for
end for
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Algorithm 4 Stochastic Deep Q-Network (StochDQN)

Algorithm parameters: learning rate α ∈ (0, 1], replay buffer E , update rate τ .
Initialize: neural network Q(s,a; θ) with random weights θ, target network Q̂(s,a; θ−) with
θ− = θ, set of actions A of size n.
for each episode do

Initialize state s.
while not terminal state is reached do

Choose a from s using a stochastic policy as defined in Eq. (14) using Q(s, .; θ).
Take action a, observe reward r(s,a) and next state s′.
Store (s,a, r(s,a), s′) in replay buffer E .
Compute target values for the mini-batch:

yi =

{
ri if s′i is terminal
ri + γQ̂(s′i, stoch argmaxa′∈A Q̂(s′i,a

′; θ−); θ−) otherwise.

Perform a gradient descent step on the loss:

L(θ) = 1

⌈log(n)⌉

⌈log(n)⌉∑
i=1

(yi −Q(si,ai; θ))
2.

Update the target network weights:

θ− ← τ · θ + (1− τ) · θ−.

Update the Q-network weights using gradient descent:

θ ← θ + α∇θL(θ).

s← s′.
end while

end for

E Experimental Details

E.1 Environments

We test our proposed algorithms on a standardized set of environments using open-source libraries.
We compare stochastic maximization to exact maximization and evaluate the proposed stochastic RL
algorithms on Gymnasium environments [3]. Stochastic Q-learning and Stochastic Double Q-learning
are tested on the CliffWalking-v0, the FrozenLake-v1, and a generated MDP environment, while
stochastic deep Q-learning approaches are tested on MuJoCo control tasks [51].

E.1.1 Environments with Discrete States and Actions

We generate an MDP environment with 256 actions, with rewards following a normal distribution of
mean -50 and standard deviation of 50, with 3 states. Furthermore, while our approach is designed
for large discrete action spaces, we tested it in Gymnasium environments [3] with only four discrete
actions, such as CliffWalking-v0 and FrozenLake-v1. CliffWalking-v0 involves navigating a grid
world from the starting point to the destination without falling off a cliff. FrozenLake-v1 requires
moving from the starting point to the goal without stepping into any holes on the frozen surface,
which can be challenging due to the slippery nature of the ice.

E.1.2 Environments with Continuous States: Discretizing Control Tasks

We test the stochastic deep Q-learning approaches on MuJoCo [51] for continuous states discretized
control tasks. We discretize each action dimension into i equally spaced values, creating a discrete
action space with n = id d-dimensional actions. We mainly focused on the inverted pendulum and
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the half-cheetah. The inverted pendulum involves a cart that can be moved left or right, intending
to balance a pole on top using a 1D force, with i = 512 resulting in 512 actions. The half-cheetah
is a robot with nine body parts aiming to maximize forward speed. It can apply torque to 6 joints,
resulting in 6D actions with i = 4, which results in 4096 actions.

E.2 Algorithms

E.2.1 Stochastic Maximization

We have two scenarios, one for discrete and the other for continuous states. For discrete states, E is a
dictionary with the keys as the states in S with corresponding values of the latest played action in
every state. In contrast, E comprises the actions in the replay buffer for continuous states. Indeed,
we do not consider the whole set E either. Instead, we only consider a subsetM⊂ E . For discrete
states, for a given state s,M includes the latest two exploited actions in state s. For continuous states,
where it is impossible to retain the last exploited action for each state, we consider randomly sampled
subsetM⊂ E , which includes ⌈log(n)⌉ actions, even though they were played in different states. In
the experiments involving continuous states, we demonstrate that this was sufficient to achieve good
results, see Section 7.3.

E.2.2 Tabular Q-learning Methods

We set the training parameters the same for all the Q-learning variants. We follow similar hyper-
parameters as in [17]. We set the discount factor γ to 0.95 and apply a dynamical polynomial learning
rate α with αt(s,a) = 1/zt(s,a)

0.8, where zt(s,a) is the number of times the pair (s,a) has been
visited, initially set to one for all the pairs. For the exploration rate, we use use a decaying ε, defined
as ε(s) = 1/

√
(z(s)) where z(s) is the number of times state s has been visited, initially set to one

for all the states. For Double Q-learning zt(s,a) = zAt (s,a) if QA is updated and zt(s,a) = zBt (s,a)
if QB is updated, where zAt and zBt store the number of updates for each action for the corresponding
value function. We averaged the results over ten repetitions. For Stochastic Q-learning, we track a
dictionary D with keys being the states, and values being the latest exploited action. Thus, for a state
s, the memoryM = D(s), thusM is the latest exploited action in the same state s.

E.2.3 Deep Q-network Methods

We set the training parameters the same for all the deep Q-learning variants. We set the discount
factor γ to 0.99 and the learning rate α to 0.001. Our neural network takes input of a size equal to the
sum of the dimensions of states and actions with a single output neuron. The network consists of two
hidden linear layers, each with a size of 64, followed by a ReLU activation function [36]. We keep
the exploration rate ε the same for all states, initialize it at 1, and apply a decay factor of 0.995, with
a minimum threshold of 0.01. For n total number of actions, during training, to train the network,
we use stochastic batches of size ⌈log(n)⌉ uniformly sampled from a buffer of size 2⌈log(n)⌉. We
averaged the results over five repetitions. For the stochastic methods, we consider the actions in the
batch of actions as the memory setM. We choose the batch size in this way to keep the complexity
of the Stochastic Q-learning within O(log(n)).

E.3 Compute and Implementation

We implement the different Q-learning methods using Python 3.9, Numpy 1.23.4, and Pytorch
2.0.1. For proximal policy optimization (PPO) [43], asynchronous actor-critic (A2C) [34], and deep
deterministic policy gradient (DDPG) [29], we use the implementations of Stable-Baselines [21]. We
test the training time using a CPU 11th Gen Intel(R) Core(TM) i7-1165G7 @ 2.80GHz 1.69 GHz.
with 16.0 GB RAM.
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Figure 4: Comparison results for the stochastic and deterministic methods. The x-axis represents the
number of possible actions, and the y-axis represents the time step duration of the agent in seconds.
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Figure 5: stochmax with (w/) and without (w/o) memoryM vs. max on uniformly distributed
action values as described in Section C. The x-axis and y-axis represent the steps and the values,
respectively.

F Additional Results

F.1 Wall Time Speed

Stochastic maximization methods exhibit logarithmic complexity regarding the number of actions, as
confirmed in Fig. 4a. Therefore, both StochDQN and StochDDQN, which apply these techniques for
action selection and updates, have exponentially faster execution times compared to both DQN and
DDQN, which can be seen in Fig 4b which shows the complete step duration for deep Q-learning
methods, which include action selection and network update. The proposed methods are nearly as
fast as a random algorithm, which samples and selects actions randomly and has no updates.

F.2 Stochastic Maxmization

F.2.1 Stochastic Maxmization vs Maximization with Uniform Rewards

In the setting described in Section C.3 with 5000 uniformly independently distributed action values
in the range of [0, 100], as shown in Fig. 5, stochmax without memory, i.e.,M = ∅ reaches around
91 in average return, and keeps fluctuating around, while stochmax withM quickly achieves the
optimal reward.
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Figure 6: Comparison results for the stochastic and non-stochastic methods for the Inverted Pendulum
with 512 actions.
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Figure 7: Comparison results for the stochastic and non-stochastic methods for the Half Cheetah with
4096 actions.

F.2.2 Stochastic Maximization Analysis

In this section, we analyze stochastic maximization by tracking returned values across rounds, ωt

(Eq. (10)), and βt (Eq. (9)), which we provide here. At time step t, given a state s, and the current
estimated Q-function Qt, we define the non-negative underestimation error as βt(s), as follows:

βt(s) = max
a∈A

Qt (s,a)− stochmax
a∈A

Qt (s,a) . (30)

Furthermore, we define the ratio ωt(s), as follows:

ωt(s) =
stochmaxa∈A Qt (s,a)

maxa∈A Qt (s,a)
. (31)

It follows that:

ωt(s) = 1− βt(s)

maxa∈A Qt (s,a)
. (32)

For Deep Q-Networks, for the InvertedPendulum-v4, both stochmax and max return similar values
(Fig. 6a), ωt approaches one rapidly (Fig. 6b) and βt remains below 0.5 (Fig. 6c). In the case of
HalfCheetah-v4, both stochmax and max return similar values (Fig. 7a), ωt quickly converges to
one (Fig. 7b), and βt is upper bounded below eight (Fig. 7c).

While the difference βt remains bounded, the values of both stochmax and max increase over the
rounds as the agent explores better options. This leads to the ratio ωt converging to one as the error
becomes negligible over the rounds, as expected according to Eq. (32).
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(a) Inverted Pendulum
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(b) Half Cheetah

Figure 8: Stochastic vs non-stochastic of deep Q-learning variants on Inverted Pendulum and Half
Cheetah, with steps on the x-axis and average returns, smoothed over a size 100 window on the
y-axis.

F.3 Stochastic Q-network Reward Analysis

As illustrated in Fig. 8a and Fig. 8b for the inverted pendulum and half cheetah experiments, which
involve 512 and 4096 actions, respectively, both StochDQN and StochDDQN attain the optimal
average return in a comparable number of rounds to DQN and DDQN. Additionally, StochDQN
exhibits the quickest attainment of optimal rewards for the inverted pendulum. Furthermore, while
DDQN did not perform well on the inverted pendulum task, its modification, i.e., StochDDQN,
reached the optimal rewards.

F.4 Stochastic Q-learning Reward Analysis

We tested Stochastic Q-learning, Stochastic Double Q-learning, and Stochastic Sarsa in environments
with both discrete states and actions. Interestingly, as shown in Fig. 10, our stochastic algorithms
outperform their deterministic counterparts in terms of cumulative rewards. Furthermore, we notice
that Stochastic Q-learning outperforms all the considered methods regarding the cumulative rewards.
Moreover, in the CliffWalking-v0 (as shown in Fig. 9), as well as for the generated MDP environment
with 256 possible actions (as shown in Fig. 11), all the stochastic and non-stochastic algorithms reach
the optimal policy in a similar number of steps.
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(b) Cumulative Rewards

Figure 9: Comparing stochastic and non-stochastic Q-learning approaches on the Cliff Walking, with
steps on the x-axis, instantaneous rewards smoothed over a size 1000 window on the y-axis for plot
(a), and cumulative rewards on the y-axis for plot (b).
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(b) Cumulative Rewards

Figure 10: Comparing stochastic and non-stochastic Q-learning approaches on the Frozen Lake, with
steps on the x-axis, instantaneous rewards smoothed over a size 1000 window on the y-axis for plot
(a), and cumulative rewards on the y-axis for plot (b).
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(a) Instantaneous Rewards
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Figure 11: Comparing stochastic and non-stochastic Q-learning approaches on the generated MDP
environment, with steps on the x-axis, instantaneous rewards smoothed over a size 1000 window on
the y-axis for plot (a), and cumulative rewards on the y-axis for plot (b).
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