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ABSTRACT

We describe a simple scheme that allows an agent to learn about its environment
in an unsupervised manner. Our scheme pits two versions of the same agent, Al-
ice and Bob, against one another. Alice proposes a task for Bob to complete; and
then Bob attempts to complete the task. In this work we will focus on two kinds
of environments: (nearly) reversible environments and environments that can be
reset. Alice will “propose” the task by doing a sequence of actions and then Bob
must undo or repeat them, respectively. Via an appropriate reward structure, Alice
and Bob automatically generate a curriculum of exploration, enabling unsuper-
vised training of the agent. When Bob is deployed on an RL task within the en-
vironment, this unsupervised training reduces the number of supervised episodes
needed to learn, and in some cases converges to a higher reward.

1 INTRODUCTION

Model-free approaches to reinforcement learning are sample inefficient, typically requiring a huge
number of episodes to learn a satisfactory policy. The lack of an explicit environment model means
the agent must learn the rules of the environment from scratch at the same time as it tries to un-
derstand which trajectories lead to rewards. In environments where reward is sparse, only a small
fraction of the agents’ experience is directly used to update the policy, contributing to the ineffi-
ciency.

In this paper we introduce a novel form of unsupervised training for an agent that enables exploration
and learning about the environment without any external reward that incentivizes the agents to learn
how to transition between states as efficiently as possible. We demonstrate that this unsupervised
training allows the agent to learn new tasks within the environment quickly.

2 APPROACH

We consider environments with a single physical agent (or multiple physical units controlled by
a single agent), but we allow it to have two separate “minds”: Alice and Bob, each with its own
objective and parameters. During self-play episodes, Alice’s job is to propose a task for Bob to
complete, and Bob’s job is to complete the task. When presented with a target task episode, Bob is
then used to perform it (Alice plays no role). The key idea is that the Bob’s play with Alice should
help him understand how the environment works and enabling him to learn the target task more
quickly.

Our approach is restricted to two classes of environment: (i) those that are (nearly) reversible, or
(ii) ones that can be reset to their initial state (at least once). These restrictions allow us to sidestep
complications around how to communicate the task and determine its difficulty (see Appendix F.2
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Figure 1: Illustration of the self-play concept in a gridworld setting. Training consists of two types
of episode: self-play and target task. In the former, Alice and Bob take turns moving the agent
within the environment. Alice sets tasks by altering the state via interaction with its objects (key,
door, light) and then hands control over to Bob. He must return the environment to its original state
to receive an internal reward. This task is just one of many devised by Alice, who automatically
builds a curriculum of increasingly challenging tasks. In the target task, Bob’s policy is used to
control the agent, with him receiving an external reward if he visits the flag. He is able to learn to
do this quickly as he is already familiar with the environment from self-play.

for further discussion). In these two scenarios, Alice starts at some initial state s0 and proposes a
task by doing it, i.e. executing a sequence of actions that takes the agent to a state st. She then
outputs a STOP action, which hands control over to Bob. In reversible environments, Bob’s goal is
to return the agent back to state s0 (or within some margin of it, if the state is continuous), to receive
reward. In partially observable environments, the objective is relaxed to Bob finding a state that
returns the same observation as Alice’s initial state. In environments where resets are permissible,
Alice’s STOP action also reinitializes the environment, thus Bob starts at s0 and now must reach st
to be rewarded, thus repeating Alice’s task instead of reversing it. See Fig. 1 for an example, and
also Algorithm 1 in Appendix A.

In both cases, this self-play between Alice and Bob only involves internal reward (detailed below),
thus the agent can be trained without needing any supervisory signal from the environment. As such,
it comprises a form of unsupervised training where Alice and Bob explore the environment and learn
how it operates. This exploration can be leveraged for some target task by training Bob on target task
episodes in parallel. The idea is that Bob’s experience from self-play will help him learn the target
task in fewer episodes. The reason behind choosing Bob for the target task is because he learns to
transfer from one state to another efficiently from self-play. See Algorithm 2 in Appendix A for
detail.

For self-play, we choose the reward structure for Alice and Bob to encourage Alice to push Bob past
his comfort zone, but not give him impossible tasks. Denoting Bob’s total reward by RB (given at
the end of episodes) and Alice’s total reward by RA, we use

RB = −γtB (1)

where tB is the time taken by Bob to complete his task and

RA = γmax(0, tB − tA) (2)

where tA is the time until Alice performs the STOP action, and γ is a scaling coefficient that balances
this internal reward to be of the same scale as external rewards from the target task. The total length
of an episode is limited to tMax, so if Bob fails to complete the task in time we set tB = tMax − tA.

Thus Alice is rewarded if Bob takes more time, but the negative term on her own time will en-
courage Alice not to take too many steps when Bob is failing. For both reversible and resettable
environments, Alice must limit her steps to make Bob’s task easier, thus Alice’s optimal behavior is
to the find simplest tasks that Bob cannot complete. This eases learning for Bob since the new task
will be only just beyond his current capabilities. The self-regulating feedback between Alice and
Bob allows them to automatically construct a curriculum for exploration, a key contribution of our
approach.
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2.1 PARAMETERIZING ALICE AND BOB’S ACTIONS

Alice and Bob each have policy functions which take as input two observations of state variables,
and output a distribution over actions. In Alice’s case, the function will be of the form

aA = πA(st, s0),

where s0 is the observation of the initial state of the environment and st is the observation of the
current state. In Bob’s case, the function will be

aB = πB(st, s
∗),

where s∗ is the target state that Bob has to reach, and set to s0 when we have a reversible environ-
ment. In a resettable environment s∗ is the state where Alice executed the STOP action.

When a target task is presented, the agent’s policy function is aTarget = πB(st, ∅), where the second
argument of Bob’s policy is simply set to zero 1. If s∗ is always non-zero, then this is enough to let
Bob know whether the current episode is self-play or target task. In some experiments where s∗ can
be zero, we give third argument z ∈ {0, 1} that explicitly indicates the episode kind.

In the experiments below, we demonstrate our approach in settings where πA and πB are tabular;
where it is a neural network taking discrete inputs, and where it is a neural network taking in con-
tinuous inputs. When using a neural network, we use the same network architecture for both Alice
and Bob, except they have different parameters

πA(st, s0) = f(st, s0, θA), πB(st, s
∗) = f(st, s

∗, θB),

where f is an multi-layered neural network with parameters θA or θB .

2.2 UNIVERSAL BOB IN THE TABULAR SETTING

We now present a theoretical argument that shows for environments with finite states, tabular poli-
cies, and deterministic, Markovian transitions, we can interpret the self-play as training Bob to find
a policy that can get from any state to any other in the least expected number of steps.

Preliminaries: Note that, as discussed above, the policy table for Bob is indexed by (st, s
∗), not

just by st. In particular, with the assumptions above, this means that there is a fast policy πfast such
that πfast(st, s

∗) has the smallest expected number of steps to transition from st to s∗. It is clear that
πfast is a universal policy for Bob, such that πB = πfast is optimal with respect to any Alice’s policy
πA. In a reset game, πfast nets Alice a return of 0, and in the reverse game, the return of πfast against
an optimal Alice can be considered a measure of the reversibility of the environment. However, in
what follows let us assume that either the reset game or the reverse game in a perfectly reversible
environment is used. Also, let assume the initial states are randomized and its distribution covers
the entire state space.

Claim: If πA and πB are policies of Alice and Bob that are in equilibrium (i.e., Alice cannot be
made better without changing Bob, and vice-versa), then πB is a fast policy.

Argument: Let us first show that Alice will always get zero reward in equilibrium. If Alice is
getting positive reward on some challenge, that means Bob is taking longer than Alice on that chal-
lenge. Then Bob can be improved to use πfast at that challenge, which contradicts the equilibrium
assumption.

Now let us prove πB is a fast policy by contradiction. If πB is not fast, then there must exist
a challenge (st, s

∗) where πB will take longer than πfast. Therefore Bob can get more reward
by using πfast if Alice does propose that challenge with non-zero probability. Since we assumed
equilibrium and πB cannot be improved while πA fixed, the only possibility is that Alice is never
proposing that challenge. If that is true, Alice can get positive reward by proposing that task using
the same actions as πfast, so taking fewer steps than πB . However this contradicts with the proof
that Alice always gets zero reward, making our initial assumption “πB is not fast” wrong.

1Note that Bob can be used in multi-task learning by feeding the task description into πB

3



Published as a conference paper at ICLR 2018

3 RELATED WORK

Self-play arises naturally in reinforcement learning, and has been well studied. For example, for
playing checkers (Samuel, 1959), backgammon (Tesauro, 1995), and Go, (Silver et al., 2016), and
in multi-agent games such as RoboSoccer (Riedmiller et al., 2009). Here, the agents or teams
of agents compete for external reward. This differs from our scheme where the reward is purely
internal and the self-play is a way of motivating an agent to learn about its environment to augment
sparse rewards from separate target tasks.

Our approach has some relationships with generative adversarial networks (GANs) (Goodfellow
et al., 2014), which train a generative neural net by having it try to fool a discriminator network
which tries to differentiate samples from the training examples. Li et al. (2017) introduce an adver-
sarial approach to dialogue generation, where a generator model is subjected to a form of “Turing
test” by a discriminator network. Mescheder et al. (2017) demonstrate how adversarial loss terms
can be combined with variational auto-encoders to permit more accurate density modeling. While
GAN’s are often thought of as methods for training a generator, the generator can be thought of as
a method for generating hard negatives for the discriminator. From this viewpoint, in our approach,
Alice acts as a “generator”, finding “negatives” for Bob. However, Bob’s jobs is to complete the
generated challenge, not to discriminate it.

There is a large body of work on intrinsic motivation (Barto, 2013; Singh et al., 2004; Klyubin
et al., 2005; Schmidhuber, 1991) for self-supervised learning agents. These works propose methods
for training an agent to explore and become proficient at manipulating its environment without
necessarily having a specific target task, and without a source of extrinsic supervision. One line in
this direction is curiosity-driven exploration (Schmidhuber, 1991). These techniques can be applied
in encouraging exploration in the context of reinforcement learning, for example (Bellemare et al.,
2016; Strehl & Littman, 2008; Lopes et al., 2012; Tang et al., 2016; Pathak et al., 2017); Roughly,
these use some notion of the novelty of a state to give a reward. In the simplest setting, novelty can
be just the number of times a state has been visited; in more complex scenarios, the agent can build
a model of the world, and the novelty is the difficulty in placing the current state into the model. In
our work, there is no explicit notion of novelty. Even if Bob has seen a state many times, if he has
trouble getting to it, Alice should force him towards that state. Another line of work on intrinsic
motivation is a formalization of the notion of empowerment (Klyubin et al., 2005), or how much
control the agent has over its environment. Our work is related in the sense that it is in both Alice’s
and Bob’s interests to have more control over the environment; but we do not explicitly measure that
control except in relation to the tasks that Alice sets.

Curriculum learning (Bengio et al., 2009) is widely used in many machine learning approaches.
Typically however, the curriculum requires at least some manual specification. A key point about
our work is that Alice and Bob devise their own curriculum entirely automatically. Previous auto-
matic approaches, such as Kumar et al. (2010), rely on monitoring training error. But since ours is
unsupervised, no training labels are required either.

Our basic paradigm of “Alice proposing a task, and Bob doing it” is related to the Horde architecture
(Sutton et al., 2011) and (Schaul et al., 2015). In those works, instead of using a value function
V = V (s) that depends on the current state, a value function that explicitly depends on state and
goal V = V (s, g) is used. In our experiments, our models will be parameterized in a similar fashion.
The novelty in this work is in how Alice defines the goal for Bob.

The closest work to ours is that of Baranes & Oudeyer (2013), who also have one part of the model
that proposes tasks, while another part learns to complete them. As in this work, the policies and
cost are parameterized as functions of both state and goal. However, our approach differs in the way
tasks are proposed and communicated. In particular, in Baranes & Oudeyer (2013), the goal space
has to be presented in a way that allows explicit partitioning and sampling, whereas in our work, the
goals are sampled through Alice’s actions. On the other hand, we pay for not having to have such a
representation by requiring the environment to be either reversible or resettable.

Several concurrent works are related: Andrychowicz et al. (2017) form an implicit curriculum by
using internal states as a target. Florensa et al. (2017) automatically generate a series of increasingly
distant start states from a goal. Pinto et al. (2017) use an adversarial framework to perturb the
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environment, inducing improved robustness of the agent. Held et al. (2017) propose a scheme
related to our “random Alice” strategy2.

4 EXPERIMENTS

The following experiments explore our self-play approach on a variety of tasks, both continuous
and discrete, from the Mazebase (Sukhbaatar et al., 2015), RLLab (Duan et al., 2016), and Star-
Craft (Synnaeve et al., 2016) environments. The same protocol is used in all settings: self-play and
target task episodes are mixed together and used to train the agent via discrete policy gradient. We
evaluate both the reverse and repeat versions of self-play. We demonstrate that the self-play episodes
help training, in terms of number of target task episodes needed to learn the task. Note that we as-
sume the self-play episodes to be “free”, since they make no use of environmental reward. This is
consistent with traditional semi-supervised learning, where evaluations typically are based only on
the number of labeled points (not unlabeled ones too).

In all the experiments we use policy gradient (Williams, 1992) with a baseline for optimizing the
policies. In the tabular task below, we use a constant baseline; in all the other tasks we use a policy
parameterized by a neural network, and a baseline that depends on the state. We denote the states in
an episode by s1, ..., sT , and the actions taken at each of those states as a1, ..., aT , where T is the
length of the episode. The baseline is a scalar function of the states b(s, θ), computed via an extra
head on the network producing the action probabilities. Besides maximizing the expected reward
with policy gradient, the models are also trained to minimize the distance between the baseline value
and actual reward. Thus after finishing an episode, we update the model parameters θ by

∆θ =

T∑
t=1

[
∂ log f(at|st, θ)

∂θ

(
T∑
i=t

ri − b(st, θ)

)
−λ ∂

∂θ

(
T∑
i=t

ri − b(st, θ)

)2
 .

Here rt is reward given at time t, and the hyperparameter λ is for balancing the reward and the
baseline objectives, which is set to 0.1 in all experiments.

For the policy neural networks, we use two-layer fully-connected networks with 50 hidden units in
each layer. The training uses RMSProp (Tieleman & Hinton, 2012). We always do 10 runs with
different random initializations and report their mean and standard deviation. See Appendix B for
all the hyperparameter values used in the experiments.

4.1 LONG HALLWAY

We first describe a simple toy environment designed to illustrate the function of the asymmetric self-
play. The environment consists of M states {s1, ..., sM} arranged in a chain. Both Alice and Bob
have three possible actions, “left”, “right”, or “stop”. If the agent is at si with i 6= 1, “left” takes it to
si−1; “right” analogously increases the state index, and “stop” transfers control to Bob when Alice
runs it and terminates the episode when Bob runs it. We use “return to initial state” as the self-play
task (i.e. Reverse in Algorithm 1 in Appendix A ). For the target task, we randomly pick a starting
state and target state, and the episode is considered successful if Bob moves to the target state and
executes the stop action before a fixed number of maximum steps.

In this case, the target task is essentially the same as the self-play task, and so running it is not
unsupervised learning (and in particular, on this toy example unlike the other examples below, we
do not mix self-play training with target task training). However, we see that the curriculum afforded
by the self-play is efficient at training the agent to do the target task at the beginning of the training,
and is effective at forcing exploration of the state space as Bob gets more competent.

In Fig. 2 (left) we plot the number of episodes vs rate of success at the target task with four different
methods. We set M = 25 and the maximum allowed steps for Alice and Bob to be 30. We use fully
tabular controllers; the table is of size M2 × 3, with a distribution over the three actions for each
possible (start, end pair).

The red curve corresponds to policy gradient, with a penalty of −1 given upon failure to complete
the task, and a penalty of−t/tMax for successfully completing the task in t steps. The magenta curve

2In their paper they analyzed our approach, suggesting it was inherently unstable. However, the analysis
relied on a sudden jump of Bob policy with respect to Alice’s, which is unlikely to happen in practice.
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corresponds to taking Alice to have a random policy (1/2 probability of moving left or right, and not
stopping till the maximum allowed steps). The green curve corresponds to policy gradient with an
exploration bonus similar to Strehl & Littman (2008). That is, we keep count of the number of times
Ns the agent has been in each state s, and the reward for s is adjusted by exploration bonus α/

√
Ns,

where α is a constant balancing the reward from completing the task with the exploration bonus.
We choose the weight α to maximize success at 0.2M episodes from the set {0, 0.1, 0.2, ..., 1}. The
blue curve corresponds to the asymmetric self-play training.

We can see that at the very beginning, a random policy for Alice gives some form of curriculum
but eventually is harmful, because Bob never gets to see any long treks. On the other hand, policy
gradient sees very few successes in the beginning, and so trains slowly. Using the self-play method,
Alice gives Bob easy problems at first (she starts from random), and then builds harder and harder
problems as the training progresses, finally matching the performance boost of the count based
exploration. Although not shown, similar patterns are observed for a wide range of learning rates.

4.2 MAZEBASE: LIGHT KEY

We now describe experiments using the MazeBase environment (Sukhbaatar et al., 2015), which
have discrete actions and states, but sufficient combinatorial complexity that tabular methods can-
not be used. The environment consist of various items placed on a finite 2D grid; and randomly
generated for each episode.

We use an environment where the maze contains a light switch (whose initial state is sampled ac-
cording to a predefined probability, p(Light off)), a key and a wall with a door (see Fig. 1). An agent
can open or close the door by toggling the key switch, and turn on or off light with the light switch.
When the light is off, the agent can only see the (glowing) light switch. In the target task, there is
also a goal flag item, and the objective of the game is reach to that goal flag.

In self-play, the environment is the same except there is no specific objective. An episode starts
with Alice in control, who can navigate through the maze and change the switch states until she
outputs the STOP action. Then, Bob takes control and tries to return everything to its original state
(restricted to visible items) in the reverse self-play. In the repeat version, the maze resets back to its
initial state when Bob takes the control, who tries to reach the final state of Alice.

In Fig. 2 (right), we set p(Light off)=0.5 during self-play3 and evaluate the repeat form of self-play,
alongside two baselines: (i) target task only training (i.e. no self-play) and (ii) self-play with a
random policy for Alice. With self-play, the agent succeeds quickly while target task-only training
takes much longer4. Fig. 3 shows details of a single training run, demonstrating how Alice and Bob
automatically build a curriculum between themselves though self-play.

4.3 RLLAB: MOUNTAIN CAR

We applied our approach to the Mountain Car task in RLLab. Here the agent controls a car trapped in
a 1-D valley. It must learn to build momentum by alternately moving to the left and right, climbing
higher up the valley walls until it is able to escape. Although the problem is presented as continuous,
we discretize the 1-D action space into 5 bins (uniformly sized) enabling us to use discrete policy
gradient, as above. We also added a secondary action head with binary actions to be used as STOP
action. An observation of state st consists of the location and speed of the car.

As in Houthooft et al. (2016); Tang et al. (2016), a reward of +1 is given only when the car succeeds
in climbing the hill. In self-play, Bob succeeds if ‖sb − sa‖ < 0.2, where sa and sb are the final
states (location and velocity of the car) of Alice and Bob respectively.

The nature of the environment makes it highly asymmetric from Alice and Bob’s point of view,
since it is far easier to coast down the hill to the starting point that it is to climb up it. Hence we
exclusively use the reset form of self-play. In Fig. 4 (left), we compare this to current state-of-the-art
methods, namely VIME (Houthooft et al., 2016) and SimHash (Tang et al., 2016). Our approach

3Changing p(Light off) adjusts the seperation between the self-play and target tasks. For a systematic
evaluation of this, please see Appendix C.1 .

4Training was stopped for all methods except target-only at 5× 106 episodes.
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Figure 2: Left: The hallway task from section 4.1. The y axis is fraction of successes on the target
task, and the x axis is the total number of training examples seen. Standard policy gradient (red)
learns slowly. Adding an explicit exploration bonus (Strehl & Littman, 2008) (green) helps signif-
icantly. Our self-play approach (blue) gives similar performance however. Using a random policy
for Alice (magenta) drastically impairs performance, showing the importance of self-play between
Alice and Bob. Right: Mazebase task, illustrated in Fig. 1, for p(Light off) = 0.5. Augmenting with
the repeat form of self-play enables significantly faster learning than training on the target task alone
and random Alice baselines.
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Figure 3: Inspection of a Mazebase learning run, using the environment shown in Fig. 1. (a): rate
at which Alice interacts with 1, 2 or 3 objects during an episode, illustrating the automatically
generated curriculum. Initially Alice touches no objects, but then starts to interact with one. But this
rate drops as Alice devises tasks that involve two and subsequently three objects. (b) by contrast, in
the random Alice baseline, she never utilizes more than a single object and even then at a much lower
rate. (c) plot of Alice and Bob’s reward, which strongly correlates with (a). (d) plot of ta as self-play
progresses. Alice takes an increasing amount of time before handing over to Bob, consistent with
tasks of increasing difficulty being set.

(blue) performs comparably to both of these. We also tried using policy gradient directly on the
target task samples, but it was unable to solve the problem.

4.4 RLLAB: SWIMMERGATHER

We also applied our approach to the SwimmerGather task in RLLab (which uses the Mu-
joco (Todorov et al., 2012) simulator), where the agent controls a worm with two flexible joints,
swimming in a 2D viscous fluid. In the target task, the agent gets reward +1 for eating green apples
and -1 for touching red bombs, which are not present during self-play. Thus the self-play task and
target tasks are different: in the former, the worm just swims around but in the latter it must learn to
swim towards green apples and away from the red bombs.

The observation state consists of a 13-dimensional vector describing location and joint angles of the
worm, and a 20 dimensional vector for sensing nearby objects. The worm takes two real values as
an action, each controlling one joint. We add a secondary action head to our models to handle the
2nd joint, and a third binary action head for STOP action. As in the mountain car, we discretize the
output space (each joint is given 9 uniformly sized bins) to allow the use of discrete policy gradients.

7



Published as a conference paper at ICLR 2018

Bob succeeds in a self-play episode when ‖lb − la‖ < 0.3 where la and lb are the final locations
of Alice and Bob respectively. Fig. 4 (right) shows the target task reward as a function of training
iteration for our approach alongside state-of-the-art exploration methods VIME (Houthooft et al.,
2016) and SimHash (Tang et al., 2016). We demonstrate the generality of the self-play approach by
applying it to Reinforce and also TRPO (Schulman et al., 2015) (see Appendix D for details). In
both cases, it enables them to gain reward significantly earlier than other methods, although both
converge to a similar final value to SimHash. A video of our worm performing the test task can be
found at https://goo.gl/Vsd8Js.
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Figure 4: Evaluation on MountainCar (left) and SwimmerGather (right) target tasks, comparing to
VIME Houthooft et al. (2016) and SimHash Tang et al. (2016) (figures adapted from Tang et al.
(2016)). With reversible self-play we are able to learn faster than the other approaches, although
it converges to a comparable reward. Training directly on the target task using Reinforce without
self-play resulted in total failure. Here 1 iteration = 5k (50k) target task steps in Mountain car
(SwimmerGather), excluding self-play steps.

4.5 STARCRAFT: TRAINING MARINES

Finally, we applied our self-play approach to the same setup as the beginning of a standard StarCraft:
Brood War game Synnaeve et al. (2016), where an agent controls multiple units to mine, construct
buildings, and train new units, but without enemies to fight. The environment starts with 4 workers
units (Terran SCVs), who can move around, mine nearby minerals and construct new buildings. In
addition, the agent controls the command center, which can train new workers. See Fig. 5 (left) for
relations between different units and their actions.

The target task is to build Marine units. To do this, an agent must follow a specific sequence of
operations: (i) mine minerals with workers; (ii) having accumulated sufficient mineral supply, build
a barracks and (iii) once the barracks are complete, train Marine units out of it. Optionally, an agent
can train a new worker for faster mining, or build a supply depot to accommodate more units. When
the episode ends after 200 steps (little over 3 minutes), the agent gets rewarded +1 for each Marine
it has built. Optimizing this task is highly complex due to several factors. First, the agent has to
find an optimal mining pattern (concentrating on a single mineral or mining a far away mineral is
inefficient). Then, it has to produce the optimal number of workers and barrack at the right timing.
In addition, a supply depot needs to be built when the number of units is close to the limit.

During self-play (repeat variant), Alice and Bob control the workers and can try any combination
of actions during the episode. Since exactly matching the game state is almost impossible, Bob’s
success is only based on the global state of the game, which includes the number of units of each
type (including buildings), and accumulated mineral resource. So Bob’s objective in self-play is
to make as many units and mineral as Alice in shortest possible time. Further details are given in
Appendix E. Fig. 5 (right) compares the Reinforce algorithm on the target task, with and without
self-play. An additional count-based exploration baseline similar to the hallway experiment is also
shown. It utilizes the same global game state as self-play.

5 DISCUSSION

In this work we described a novel method for intrinsically motivated learning which we call asym-
metric self-play. Despite the method’s conceptual simplicity, we have seen that it can be effective
in both discrete and continuous input settings with function approximation, for encouraging ex-
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Figure 5: Left: Different types of unit in the StarCraft environment. The arrows represent possible
actions (excluding movement actions) by the unit, and corresponding numbers shows (blue) amount
of minerals and (red) time steps needed to complete. The units under agent’s control are outlined by a
green border. Right: Plot of reward on the StarCraft sub-task of training marine units vs #target-task
episodes (self-play episodes are not included), with and without self-play. A count-based baseline
is also shown. Self-play greatly speeds up learning, and also surpasses the count-based approach at
convergence.

ploration and automatically generating curriculums. On the challenging benchmarks we consider,
our approach is at least as good as state-of-the-art RL methods that incorporate an incentive for
exploration, despite being based on very different principles. Furthermore, it is possible show the-
oretically that in simple environments, using asymmetric self-play with reward functions from (1)
and (2), optimal agents can transit between any pair of reachable states as efficiently as possible.
Code for our approach can be found at (link removed for anonymity).
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A PSEUDO CODE

Algorithm 1 and 2 are the pseudo codes for training an agent on self-play and target task episodes.

Algorithm 1 Pseudo code for training an agent on a self-play episode
function SELFPLAYEPISODE(REVERSE/REPEAT,tMAX, θA, θB )

tA ← 0
s0 ← env.observe()
s∗ ← s0
while True do

# Alice’s turn
tA ← tA + 1
s← env.observe()
a← πA(s, s0) = f(s, s0, θA)
if a = STOP or tA ≥ tMax then

s∗ ← s
env.reset()
break

env.act(a)
tB ← 0
while True do

# Bob’s turn
s← env.observe()
if s = s∗ or tA + tB ≥ tMax then

break
tB ← tB + 1
a← πB(s, s

∗) = f(s, s∗, θB)
env.act(a)

RA ← γmax(0, tB − tA)
RB ← −γtB
policy.update(RA, θA)
policy.update(RB , θB)
return

B HYPERPARAMETERS USED IN THE EXPERIMENTS

For the experiments with neural networks, all parameters are randomly initialized from N (0, 0.2).
The Hyperparameters of RMSProp are set to 0.97 and 1e−6. The other hyperparameter values used
in the experiments are shown in Table 1. In some cases, we used different parameters for self-play
and target task episodes. Entropy regularization is implemented as an additional cost maximizing
the entropy of the softmax layer. In the StarCraft, skipping 23 frames roughly matches to one action
per second.

5Experiments in VIME and SimHash papers skip 50 frames, but we matched the total number of frames in
an episode by reducing the number of steps.

11



Published as a conference paper at ICLR 2018

Algorithm 2 Pseudo code for training an agent on a target task episode
function TARGETTASKEPISODE(tMAX, θB )

t← 0
R← 0
while True do

t← t+ 1
s← env.observe()
a← πB(s, ∅) = f(s, ∅, θB)
if env.done() or t ≥ tMax then

break
env.act(a)
R = R+ env.reward()

policy.update(R, θB)
return

Hyperparameter Long Mazebase Mountain Swimmer StarCraft
name Hallway Car Gather
Learning rate 0.1 0.003 0.003 0.003 0.003
Batch size 16 256 128 256 32
Max steps of 30 80 500 TT: 166 200
episode (tmax) SP: 200
Entropy 0 0.003 0.003 TT: 0 TT: 0
regularization SP: 0.003 SP: 0.003
Self-play reward scale (γ) 0.033 0.1 0.01 0.01 0.01
Self-play percentage - 20% 1% 10% 10%
Self-play mode Reverse Both Repeat Reverse Repeat
Frame skip 0 0 0 150 5 23

Table 1: Hyperparameter values used in experiments. TT=target task, SP=self-play

C MAZEBASE

The agent has full visibility of the maze when the light is on. If light is off, the agent can only see
the light switch. In self-play, Bob does not need to worry about things that are invisible to him. For
example, if Alice started with light “off” in reverse self-play, Bob does not need to match the state
of the door, because it would be invisible to him when the light is off.

In the target task, the agent and the goal are always placed on opposite sides of the wall. Also, the
light and key switches are placed on the same side as the agent, but the light is always off and the
door is closed initially. Therefore, in order to succeed, the agent has to turn on the light, toggle the
key switch to open the door, pass through it, and reach the goal flag.

Both Alice and Bob’s policies are modeled by a fully-connected neural network with two hidden
layers each with 100 and 50 units (with tanh non-linearities) respectively. The encoder into each
of the networks takes a bag of words over (objects, locations); that is, there is a separate word in
the lookup table for each (object, location) pair. Action probabilities are output by a linear layer
followed by a softmax.

C.1 BIASING FOR OR AGAINST SELF-PLAY

The effectiveness of our approach depends in part on the similarity between the self-play and target
tasks. One way to explore this in our environment is to vary the probability of the light being off
initially during self-play episodes6. Note that the light is always off in the target task; if the light
is usually on at the start of Alice’s turn in reverse, for example, she will learn to turn it off, and
then Bob will be biased to turn it back on. On the other hand, if the light is usually off at the start
of Alice’s turn in reverse, Bob is strongly biased against turning the light on, and so the test task

6The initial state of the light should dramatically change the behavior of the agent: if it is on then agent can
directly proceed to the key.
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becomes especially hard. Thus changing this probability gives us some way to adjust the similarity
between the two tasks.

Fig. 6 (left) shows what happens when p(Light off)=0.3. Here reverse self-play works well, but
repeat self-play does poorly. As discussed above, this flipping, relative to the previous experiment,
can be explained as follows: low p(Light off) means that Bob’s task in reverse self-play will typically
involve returning the light to the on position (irrespective of how Alice left it), the same function
that must be performed in the target task. The opposite situation applies for repeat self-play, where
Bob needs to encounter the light typically in the off position to help him with the test task.

In Fig. 6 (right) we systematically vary p(Light off) between 0.1 and 0.9. The y-axis shows the
speed-up (reduction in target task episodes) relative to training purely on the target-task for runs
where the reward goes above -2. Unsuccessful runs are given a unity speed-up factor. The curves
show that when the self-play task is not biased against the target task it can help significantly.
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Figure 6: Left: The performance of self-play when p(Light off) set to 0.3. Here the reverse form
of self-play works well (more details in the text). Right: Reduction in target task episodes relative
to training purely on the target-task as the distance between self-play and the target task varies (for
runs where the reward goes above -2 on the Mazebase task – unsuccessful runs are given a unity
speed-up factor). The y axis is the speedup, and x axis is p(Light off). For reverse self-play, the
low p(Light off) corresponds to having self-play and target tasks be similar to one another, while
the opposite applies to repeat self-play. For both forms, significant speedups are achieved when
self-play is similar to the target tasks, but the effect diminishes when self-play is biased against the
target task.

D SWIMMERGATHER EXPERIMENT

In Fig. 7 shows details of a single training run. The changes in Alice’s behavior, observed in Fig. 7(c)
and (d), correlate with Alice and Bob’s reward (Fig. 7(b)) and, initially at least, to the reward on the
test target (Fig. 7(a)). In Fig. 8 we visualize for a single training run the locations where Alice hands
over to Bob at different stages of training, showing how the distribution varies.
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Figure 7: A single SwimmerGather training run. (a): Rewards on target task. (b): Rewards from
reversible self-play. (c): The number of actions taken by Alice. (d): Distance that Alice travels
before switching to Bob.

In the TRPO experiment, we used step size 0.01 and damping coefficient 0.1. The batch consists
of 50,000 steps, of which 25% comes from target task episodes, while the remaining 75% is from
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Figure 8: Plot of Alice’s location at time of STOP action for the SwimmerGather training run
shown in Fig. 7, for different stages of training. Note how Alice’s distribution changes as Bob learns
to solve her tasks.

self-play. The self-play reward scale γ set to 0.005. We used two separate network for actor and
critic, and the critic network has L2 weight regularization with coefficient of 1e− 5.

E STARCRAFT EXPERIMENT

We call units that perform action as active unit. This includes worker units (SCVs), the command
center, and barrack. The agent controls multiple active units in parallel. At each time step, an action
of i’th unit is output by

ait = π(sit, ŝt),

where sit is a unit specific local observation, and ŝt is an global observation. With sit, a unit can see
the 64x64 area around it with a resolution of 4 (unit’s type is also visible). The global observation
contains the number of units and accumulated minerals in the game

ŝt = {bNore/25c, NSCV, NBarrack, NSupplyDepot, NMarines}.

In self-play, Bob perceives only the global observation of his target state

πB(sit, ŝt, ŝ
∗),

where ŝ∗ is the final global observation of Alice. Bob will succeed only if

∀i ŝt[i] ≥ ŝ∗[i].

Table 2 shows the action space of different unit types controlled by the agent. The number of
possible action is the same for all units since they controlled by a single model (unit type is encoded
in the observation), but the meaning of actions differ according to unit type. An empty cell mean
that the unit does nothing (nothing is sent to StarCraft, so the previous action persists).

The more complexes actions “mine minerals”, “build a barracks”, “build a supply depot” have the
following semantics, respectively: mine the mineral closest to the current unit, build a barracks at
the position of the current unit, build a supply depot on the position of the current unit.

Some actions are ignored under certain conditions: “mining” action is ignored if the distance to the
closest mineral is greater than 12; “switch to Bob” is ignored if Bob is already in control; “building”
and “training” actions are ignored if there is not enough resources; the actions that create a new
SCV or a barracks are ignored if the number of active units is reached the limit of 10. Also “build”
actions will be ignored if there is not enough room to build at the unit’s location.

For the count-based exploration, we gave an extra reward of α/
√
N(ŝt) at every step, where N is

the visit count function and ŝt is a global observation. We found α = 0.1 to be works the best.

In Fig. 9 we show the result of an additional experiment where we extended the length of the episode
from 200 to 300, giving more time to the agent for development. The self-play still outperforms
baselines methods. Note that to make more than 6 marines, an agent has to build a supply depot as
well as a barracks.
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Action ID SCV Command center Barraks
1 move to right train SCV train a marine
2 move to left switch to Bob
3 move to top
4 move to bottom
5 mine minerals
6 build a barracks
7 build a supply depot

Table 2: Action space of different unit types in StarCraft.

Figure 9: Plot of reward on the StarCraft sub-task of training where episode length tMax is increased
to 300.

F FURTHER DISCUSSION

F.1 META-EXPLORATION FOR ALICE

We want Alice and Bob to explore the state (or state-action) space, and we would like Bob to
be exposed to many different tasks. Because of the form of the standard reinforcement learning
objective (expectation over rewards), Alice only wants to find the single hardest thing for Bob, and
is not interested in the space of things that are hard for Bob. In the fully tabular setting, with fully
reversible dynamics or with resetting, and without the constraints of realistic optimization strategies,
we saw in section 2.2 that this ends up forcing Bob and Alice to learn to make any state transition
as efficiently as possible. However, with more realistic optimization methods or environments, and
with function approximation, Bob and Alice can get stuck in sub-optimal minima.

For example, let us follow the argument in the third paragraph of Sec. 2.2, and assume that Bob and
Alice are at an equilibrium (and that we are in the tabular, finite, Markovian setting), but now we
can only update Bob’s and Alice’s policy locally. By this we mean that in our search for a better
policy for Bob or Alice, we can only make small perturbations, as in policy gradient algorithms. In
this case, we can only guarantee that Bob runs a fast policy on challenges that Alice has non-zero
probability of giving; but there is no guarantee that Alice will cover all possible challenges. With
function approximation instead of tabular policies, we cannot make any guarantees at all.

Another example with a similar outcome but different mechanism can occur using the reverse game
in an environment without fully reversible dynamics. In that case, it could be that the shortest
expected number of steps to complete a challenge (s0, sT ) is longer than the reverse, and indeed, so
much longer that Alice should concentrate all her energy on this challenge to maximize her rewards.
Thus there could be equilibria with Bob matching the fast policy only for a subset of challenges even
if we allow non-local optimization.

The result is that Alice can end up in a policy that is not ideal for our purposes. In figure 8 we show
the distributions of where Alice cedes control to Bob in the swimmer task. We can see that Alice has
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a preferred direction. Ideally, in this environment, Alice would be teaching Bob how to get from any
state to any other efficiently; but instead, she is mostly teaching him how to move in one direction.

One possible approach to correcting this is to have multiple Alices, regularized so that they do not
implement the same policy. More generally, we can investigate objectives for Alice that encourage
her to cover a wider distribution of behaviors.

F.2 COMMUNICATING VIA ACTIONS

In this work we have limited Alice to propose tasks for Bob by doing them. This limitation is
practical and effective in restricted environments that allow resetting or are (nearly) reversible. It
allows a solution to three of the key difficulties of implementing the basic idea of “Alice proposes
tasks, Bob does them”: parameterizing the sampling of tasks, representing and communicating the
tasks, and ensuring the appropriate level of difficulty of the tasks. Each of these is interesting in more
general contexts. In this work, the tasks have incentivized efficient transitions. One can imagine
other reward functions and task representations that incentivize discovering statistics of the states
and state-transitions, for example models of their causality or temporal ordering, cluster structure.
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