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Abstract

Automatically detecting acoustic shadows is of great importance for automatic 2D
ultrasound analysis ranging from anatomy segmentation to landmark detection.
However, variation in shape and similarity in intensity to other structures in the
image make shadow detection a very challenging task. In this paper, we propose
an automatic shadow detection method to generate a pixel-wise shadow confidence
map from weakly labelled annotations. Our method jointly uses; (1) a feature
attribution map from a Wasserstein GAN and (2) an intensity saliency map from a
graph cut model. The proposed method accurately highlights the shadow areas in
two 2D ultrasound datasets comprising standard view planes as acquired during
fetal screening. Moreover, the proposed method outperforms the state-of-the-art
quantitatively and improves failure cases for automatic biometric measurement.

1 Introduction

2D ultrasound (US) is a popular medical imaging modality, well known for its portability, low cost,
and high temporal resolution. However, acoustic shadows that caused by sound-opaque occluders
potentially omit vital anatomical information in 2D US and thus can be a big burden for automatic
medical image analysis. Although, these shadow artefacts have been well studied in the clinical
literature [1, 2], automatic shadow detection has rarely been focused. [3] and [4] have developed
different shadow awareness techniques but either of these techniques are application specific or
sensitive to US transducer settings. Recently, deep learning methods have paved the way to fully
automatic semantic real-time image understanding. Inspired by [5], we propose a novel shadow
detection model to predict a dense, anatomically agnostic shadow-confidence map using only weak
annotations. In this model, we jointly use a feature attribution map from a Wasserstein GAN (WGAN)
model and an intensity confidence map from a graph cut model. To our knowledge, this is the first
shadow detection model for ultrasound images that generates a dense, shadow-focused confidence
map. Fig. 1 shows an overview over our method.

2 Method

(1) Shadow image discrimination: We use a fully convolutional neural network (FCN) to classify
shadow images (l = 1) and clear images (l = 0). The classifier we use has a similar architecture to
SonoNet-32 [6], which performs well for 2D ultrasound fetal standard view classification and this
classifier provides soft predictions p(xi|l = 1) for image xi during testing.

(2) Saliency map generation: In the shadow class images, shadows have features such as a typical
direction and relatively low intensity. These features are highlighted in saliency map smi which is
generated by guided back-propagation [7] so that shadow pixel candidates are obtained.
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Figure 1: Overview of our anatomy agnostic shadow detection approach.

(3) Shadow attribution map: Inspired by VA-GAN [5], we develop a novel WGAN model in
which the generator directly produces a fake clear image of the original shadow image to learn
the visual feature attribution FAm between classes. The generator has a U-Net structure with
all convolution layers being replaced by residual-units while the discriminator is a FCN with-
out dense layers. The WGAN model is optimised with a combined L1-loss and L2-loss. Ĝ =
arg minG maxD(Eφ(ti)∼p(φ(ti)|l=0)[D(xi)] − Eφ(ti)∼p(φ(ti)|l=1)[D(G(φ(ti)))] + λ1L1 + λ2L2).
L1-loss is defined as L1 = ||G(φ(ti))− φ(ti)||1 to guarantee small changes of the feature attribution
map while L2-loss is defined as L2 = ||G(φ(ti)B − φ(ti)B ||2 to encourage changes to happen only
in potential shadow areas. Here, G(φ(ti)) is the fake clear image produced by the generator for each
tuple ti = (xi|li = 1, smi). φ(ti) = ψ(xi|li = 1, T (smi)) with T (·) being a threshold operation
producing a binary mask. The threshold is smi(0.02 ≤ smi ≤ 0.98) = 0 and is decided according
to the histogram of smi. ψ replaces pixels in xi(T (smi) = 1) with the mean intensity value of
xi(T (smi) = 0). Combining the difference between fake and clear images and the saliency map
from (1) yields an shadow attribution map SAm = |G(φ(ti))− xi|+ smi.

(4) Graph cut model: To integrate the intensity feature of the shadows, we build a graph cut model
using intensity information as weights to connect each pixel in the image to shadow class and
background class. The weights that connect pixels to the shadow class give an intensity saliency
map ICm. For a pixel xij with intensity Iij in the image x, the score of being a shadow pixel Fij
is given by Fij = − |Iij−IS |

|Iij−IS |+|Iij−IB | while the score of being a background pixel Bij is given by

Bij = − |Iij−IB |
|Iij−IS |+|Iij−IB | . IS and IB are shadow mean intensity and background mean intensity

respectively. The weight from xij to source (shadow class) is set as WFij =
Fij

Fij+Bij
and the weight

from xij to sink (background) is WBij
=

Bij

Fij+Bij
. We use a 4-connected neighbourhood to set

weights between pixels and all the weights between neighbourhood pixels are set to 0.5.

(5) Distance matrix: We propose a distance matrix D combining SAm from (3) with ICm from
(4) to produce a shadow confidence map SCm. The distance matrix D = Γ(ICm, SAm) · ICm.
Γ(ICm, SAm) = 1− Dis

max(Dis) computes the distance score between pixel ICmij in ICm(ICmij 6=
0) to potential shadow areas in SAm. Here, Disij = min

1≤v≤t
δ(ICmij , SAmv), SAmv is the center of

the vth connected component of all t connected components in SAm and δ(·) computes the distance
between two positions. When multiplying Γ(ICm, SAm) with ICm map, pixels with similar shadow
area intensity but far away from potential shadow areas achieve a lower score in SCm.

3 Evaluation and Results

We test the proposed model on two data sets. Data set A consists of 993 2D ultrasound images
sampled from 14 different anatomical standard planes and data set B comprises of 643 brain images.
48 non-brain images in data set A and whole data set B have been accurately manually segmented.
We have shown shadow detection in Fig.2 and evaluated DICE overlap in Table 1. Because shadows
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Table 1: Threshold ranges and DICE scores of different shadow detection methods: RW [4] vs.
intermediate results from our approach and the final shadow confidence map.

RW Sm FAm SAm SCm

Dataset B T<0.3 T < 0.01 ∪ T > 0.99 T < 0.01 ∪ T > 0.85 T < 0.01 ∪ T > 0.96 T>0.80
0.06 0.25 0.06 0.27 0.55

Dataset C T<0.3 T < 0.01 ∪ T > 0.99 T < 0.01 ∪ T > 0.80 T > 0.90 T>0.70
0.11 0.28 0.08 0.31 0.36

(a) Image (b) T (Sm) (c) T (SAm) (d) SCm (e) T (SCm) (f) GT

(g) Dataset C: Brain (h) w/o SCm (i) with SCm

Figure 2: Rows 1 shows an example for shadow detection on kidney. The key steps from Fig. 1 are
illustrated from (a), the input image to (f), the ground truth (GT) from manual segmentation. (g)
illustrates the importance of the WGAN model (input image – w/o WGAN – with WGAN). (h-i)
Improving automatic biometric measurements through applying SCm as additional channel to a
FCN [8] (yellow=GT, red=prediction, green=segmentation boundary).

can be harder to consistently annotate than anatomy, the DICE evaluation may seem low. However,
our final aim is to provide a confidence map, which cannot be compared quantitatively to a ground
truth. As such, we show the advantage of confidence maps via integration into an automatic method
to measure biometrics using a FCN (Fig.2).

Conclusion: We have presented an accurate method to generate shadow-focused, pixel-wise confi-
dence maps for ultrasound imaging. Such confidence maps can be used to identify less certain regions
in the images, which is important for fully automatic segmentation tasks or automatic, image-based
biometric measurements.
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