
Sparse Uncertainty Representation in Deep Learning
with Inducing Weights

Hippolyt Ritter1∗, Martin Kukla2, Cheng Zhang2 & Yingzhen Li3∗
1University College London 2Microsoft Research Cambridge, UK 3Imperial College London

j.ritter@cs.ucl.ac.uk, {Martin.Kukla,Cheng.Zhang}@microsoft.com,
yingzhen.li@imperial.ac.uk

Abstract

Bayesian Neural Networks and deep ensembles represent two modern paradigms of
uncertainty quantification in deep learning. Yet these approaches struggle to scale
mainly due to memory inefficiency, requiring parameter storage several times that
of their deterministic counterparts. To address this, we augment each weight matrix
with a small inducing weight matrix, projecting the uncertainty quantification into
a lower dimensional space. We further extend Matheron’s conditional Gaussian
sampling rule to enable fast weight sampling, which enables our inference method
to maintain reasonable run-time as compared with ensembles. Importantly, our
approach achieves competitive performance to the state-of-the-art in prediction and
uncertainty estimation tasks with fully connected neural networks and ResNets,
while reducing the parameter size to ≤ 24.3% of that of a single neural network.

1 Introduction

Deep learning models are becoming deeper and wider than ever before. From image recognition
models such as ResNet-101 (He et al., 2016a) and DenseNet (Huang et al., 2017) to BERT (Xu et al.,
2019) and GPT-3 (Brown et al., 2020) for language modelling, deep neural networks have found
consistent success in fitting large-scale data. As these models are increasingly deployed in real-world
applications, calibrated uncertainty estimates for their predictions become crucial, especially in
safety-critical areas such as healthcare. In this regard, Bayesian Neural Networks (BNNs) (MacKay,
1995; Blundell et al., 2015; Gal & Ghahramani, 2016; Zhang et al., 2020) and deep ensembles
(Lakshminarayanan et al., 2017) represent two popular paradigms for estimating uncertainty, which
have shown promising results in applications such as (medical) image processing (Kendall & Gal,
2017; Tanno et al., 2017) and out-of-distribution detection (Ovadia et al., 2019).

Though progress has been made, one major obstacle to scaling up BNNs and deep ensembles is
their high storage cost. Both approaches require the parameter counts to be several times higher
than their deterministic counterparts. Although recent efforts have improved memory efficiency
(Louizos & Welling, 2017; Świątkowski et al., 2020; Wen et al., 2020; Dusenberry et al., 2020), these
still use more parameters than a deterministic neural network. This is particularly problematic in
hardware-constrained edge devices, when on-device storage is required due to privacy regulations.

Meanwhile, an infinitely wide BNN becomes a Gaussian process (GP) that is known for good
uncertainty estimates (Neal, 1995; Matthews et al., 2018; Lee et al., 2018). But perhaps surprisingly,
this infinitely wide BNN is “parameter efficient”, as its “parameters” are effectively the datapoints,
which have a considerably smaller memory footprint than explicitly storing the network weights. In
addition, sparse posterior approximations store a smaller number of inducing points instead (Snelson
& Ghahramani, 2006; Titsias, 2009), making sparse GPs even more memory efficient.

∗Work done at Microsoft Research Cambridge.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

Can we bring the advantages of sparse approximations in GPs — which are infinitely-wide neural
networks — to finite width deep learning models? We provide an affirmative answer regarding
memory efficiency, by proposing an uncertainty quantification framework based on sparse uncertainty
representations. We present our approach in BNN context, but the proposed approach is also
applicable to deep ensembles. In detail, our contributions are as follows:

• We introduce inducing weights — an auxiliary variable method with lower dimensional
counterparts to the actual weight matrices — for variational inference in BNNs, as well as a
memory efficient parameterisation and an extension to ensemble methods (Section 3.1).

• We extend Matheron’s rule to facilitate efficient posterior sampling (Section 3.2).
• We provide an in-depth computation complexity analysis (Section 3.3), showing the signifi-

cant advantage in terms of parameter efficiency.
• We show the connection to sparse (deep) GPs, in that inducing weights can be viewed as

projected noisy inducing outputs in pre-activation output space (Section 5.1).
• We apply the proposed approach to BNNs and deep ensembles. Experiments in classification,

model robustness and out-of-distribution detection tasks show that our inducing weight
approaches achieve competitive performance to their counterparts in the original weight
space on modern deep architectures for image classification, while reducing the parameter
count to ≤ 24.3% of that of a single network.

We open-source our proposed inducing weight approach, together with baseline methods reported
in the experiments, as a PyTorch (Paszke et al., 2019) wrapper named bayesianize: https:
//github.com/microsoft/bayesianize. As demonstrated in Appendix I, our software makes
the conversion of a deterministic neural network to a Bayesian one with a few lines of code:
import bnn # our pytorch wrapper package
net = torchvision.models.resnet18() # construct a deterministic ResNet18
bnn.bayesianize_(net, inference="inducing") # convert it into a Bayesian one

2 Inducing variables for variational inference

Our work is built on variational inference and inducing variables for posterior approximations. Given
observations D = {X,Y} with X = [x1, ...,xN], Y = [y1, ...,yN], we would like to fit a neural
network p(y|x,W1:L) with weights W1:L to the data. BNNs posit a prior distribution p(W1:L) over
the weights, and construct an approximate posterior q(W1:L) to the exact posterior p(W1:L|D) ∝
p(D|W1:L)p(W1:L), where p(D|W1:L) = p(Y|X,W1:L) =

∏N
n=1 p(yn|xn,W1:L).

Variational inference Variational inference (Hinton & Van Camp, 1993; Jordan et al., 1999; Zhang
et al., 2018a) constructs an approximation q(θ) to the posterior p(θ|D) ∝ p(θ)p(D|θ) by maximising
a variational lower-bound:

log p(D) ≥ L(q(θ)) := Eq(θ) [log p(D|θ)]−KL [q(θ)||p(θ)] . (1)

For BNNs, θ = {W1:L}, and a simple choice of q is a Fully-factorized Gaussian (FFG):

q(W1:L) =
∏L

l=1

∏dl
out

i=1

∏dl
in

j=1N (m
(i,j)
l , v

(i,j)
l), withm(i,j)

l , v
(i,j)
l the mean and variance of W

(i,j)
l

and dlin, d
l
out the respective number of inputs and outputs to layer l. The variational parameters are

then φ = {m(i,j)
l , v

(i,j)
l }Ll=1. Gradients of L w.r.t. φ can be estimated with mini-batches of data

(Hoffman et al., 2013) and with Monte Carlo sampling from the q distribution (Titsias & Lázaro-
Gredilla, 2014; Kingma & Welling, 2014). By setting q to an BNN, a variational BNN can be trained
with similar computational requirements as a deterministic network (Blundell et al., 2015).

Improved posterior approximation with inducing variables Auxiliary variable approaches
(Agakov & Barber, 2004; Salimans et al., 2015; Ranganath et al., 2016) construct the q(θ) dis-
tribution with an auxiliary variable a: q(θ) =

∫
q(θ|a)q(a)da, with the hope that a potentially richer

mixture distribution q(θ) can achieve better approximations. As then q(θ) becomes intractable, an
auxiliary variational lower-bound is used to optimise q(θ,a) (see Appendix B):

log p(D) ≥ L(q(θ,a)) = Eq(θ,a)[log p(D|θ)] + Eq(θ,a)

[
log

p(θ)r(a|θ)

q(θ|a)q(a)

]
. (2)

2

https://github.com/microsoft/bayesianize
https://github.com/microsoft/bayesianize

Here r(a|θ) is an auxiliary distribution that needs to be specified, where existing approaches often
use a “reverse model” for r(a|θ). Instead, we define r(a|θ) in a generative manner: r(a|θ) is the
“posterior” of the following “generative model”, whose “evidence” is exactly the prior of θ:

r(a|θ) = p̃(a|θ) ∝ p̃(a)p̃(θ|a), such that p̃(θ) :=

∫
p̃(a)p̃(θ|a)da = p(θ). (3)

Plugging Eq. (3) into Eq. (2):

L(q(θ,a)) = Eq(θ)[log p(D|θ)]− Eq(a) [KL[q(θ|a)||p̃(θ|a)]]−KL[q(a)||p̃(a)]. (4)

This approach yields an efficient approximate inference algorithm, translating the complexity of
inference in θ to a. If dim(a) < dim(θ) and q(θ,a) = q(θ|a)q(a) has the following properties:

1. A “pseudo prior” p̃(a)p̃(θ|a) is defined such that
∫
p̃(a)p̃(θ|a)da = p(θ);

2. The conditionals q(θ|a) and p̃(θ|a) are in the same parametric family, so can share parameters;
3. Both sampling θ ∼ q(θ) and computing KL[q(θ|a)||p̃(θ|a)] can be done efficiently;
4. The designs of q(a) and p̃(a) can potentially provide extra advantages (in time and space

complexities and/or optimisation easiness).

We call a the inducing variable of θ, which is inspired by variationally sparse GP (SVGP) with
inducing points (Snelson & Ghahramani, 2006; Titsias, 2009). Indeed SVGP is a special case
(see Appendix C): θ = f , a = u, the GP prior is p(f |X) = GP(0,KXX), p(u) = GP(0,KZZ),
p̃(f ,u) = p(u)p(f |X,u), q(f |u) = p(f |X,u), q(f ,u) = p(f |X,u)q(u), and Z are the optimisable
inducing inputs. The variational lower-bound is L(q(f ,u)) = Eq(f)[log p(Y|f)]−KL[q(u)||p(u)],
and the variational parameters are φ = {Z, distribution parameters of q(u)}. SVGP satisfies the
marginalisation constraint Eq. (3) by definition, and it has KL[q(f |u)||p̃(f |u)] = 0. Also by using
small M = dim(u) and exploiting the q distribution design, SVGP reduces run-time from O(N3)
to O(NM2 + M3) where N is the number of inputs in X, meanwhile it also makes storing a
full Gaussian q(u) affordable. Lastly, u can be whitened, leading to the “pseudo prior” p̃(f ,v) =

p(f |X,u = K
1/2
ZZ v)p̃(v), p̃(v) = N (v; 0, I) which could bring potential benefits in optimisation.

We emphasise that the introduction of “pseudo prior” does not change the probabilistic model as long
as the marginalisation constraint Eq. (3) is satisfied. In the rest of the paper we assume the constraint
Eq. (3) holds and write p(θ,a) := p̃(θ,a). It might seem unclear how to design such p̃(θ,a) for an
arbitrary probabilistic model, however, for a Gaussian prior on θ the rules for computing conditional
Gaussian distributions can be used to construct p̃. In Section 3 we exploit these rules to develop an
efficient approximate inference method for Bayesian neural networks with inducing weights.

3 Sparse uncertainty representation with inducing weights

3.1 Inducing weights for neural network parameters

Following the above design principles, we introduce to each network layer l a smaller inducing weight
matrix Ul to assist approximate posterior inference in Wl. Therefore in our context, θ = W1:L and
a = U1:L. In the rest of the paper, we assume a factorised prior across layers p(W1:L) =

∏
l p(Wl),

and drop the l indices when the context is clear to ease notation.

Augmenting network layers with inducing weights Suppose the weight W ∈ Rdout×din has
a Gaussian prior p(W) = p(vec(W)) = N (0, σ2I) where vec(W) concatenates the columns
of the weight matrix into a vector. A first attempt to augment p(vec(W)) with an inducing
weight variable U ∈ RMout×Min may be to construct a multivariate Gaussian p(vec(W), vec(U)),
such that

∫
p(vec(W), vec(U))dU = N (0, σ2I). This means for the joint covariance matrix of

(vec(W), vec(U)), it requires the block corresponding to the covariance of vec(W) to match the
prior covariance σ2I . We are then free to parameterise the rest of the entries in the joint covariance
matrix, as long as this full matrix remains positive definite. Now the conditional distribution p(W|U)
is a function of these parameters, and the conditional sampling from p(W|U) is further discussed in
Appendix D.1. Unfortunately, as dim(vec(W)) is typically large (e.g. of the order of 107), using a
full covariance Gaussian for p(vec(W), vec(U)) becomes computationally intractable.

We address this issue with matrix normal distributions (Gupta & Nagar, 2018). The prior
p(vec(W)) = N (0, σ2I) has an equivalent matrix normal distribution form as p(W) =

3

MN (0, σ2
rI, σ

2
cI), with σr, σc > 0 the row and column standard deviations satisfying σ = σrσc.

Now we introduce the inducing variable U in matrix space, as well as two auxiliary variables
Ur ∈ RMout×din , Uc ∈ Rdout×Min , so that the full augmented prior is:(

W Uc

Ur U

)
∼ p(W,Uc,Ur,U) :=MN (0,Σr,Σc), (5)

with Lr =

(
σrI 0
Zr Dr

)
s.t. Σr = LrL

>
r =

(
σ2
rI σrZ

>
r

σrZr ZrZ
>
r +D2

r

)
and Lc =

(
σcI 0
Zc Dc

)
s.t. Σc = LcL

>
c =

(
σ2
cI σcZ

>
c

σcZc ZcZ
>
c +D2

c

)
.

See Fig. 1(a) for a visualisation of the augmentation. Matrix normal distributions have similar
marginalisation and conditioning rules as multivariate Gaussian distributions, for which we provide
further examples in Appendix D.2. Therefore the marginalisation constraint Eq. (3) is satisfied for
any Zc ∈ RMin×din ,Zr ∈ RMout×dout and diagonal matrices Dc,Dr. For the inducing weight
U we have p(U) = MN (0,Ψr,Ψc) with Ψr = ZrZ

>
r + D2

r and Ψc = ZcZ
>
c + D2

c . In the
experiments we use whitened inducing weights which transforms U so that p(U) =MN (0, I, I)
(Appendix H), but for clarity we continue with the above formulas in the main text.

The matrix normal parameterisation introduces two additional variables Ur,Uc without providing
additional expressiveness. Hence it is desirable to integrate them out, leading to a joint multivariate
normal with Khatri-Rao product structure for the covariance:

p(vec(W), vec(U)) = N
(

0,

(
σ2
cI ⊗ σ2

rI σcZ
>
c ⊗ σrZ>r

σcZc ⊗ σrZr Ψc ⊗Ψr

))
. (6)

As the dominating memory complexity here isO(doutMout+dinMin) which comes from storingZr

and Zc, we see that the matrix normal parameterisation of the augmented prior is memory efficient.

Posterior approximation in the joint space We construct a factorised posterior approximation
across the layers: q(W1:L,U1:L) =

∏
l q(Wl|Ul)q(Ul). Below we discuss options for q(W|U).

The simplest option is q(W|U) = p(vec(W)| vec(U)) = N (µW|U,ΣW|U), similar to sparse GPs.
A slightly more flexible variant adds a rescaling term λ2 to the covariance matrix, which allows
efficient KL computation (Appendix E):

q(W|U) = q(vec(W)| vec(U)) = N (µW|U, λ
2ΣW|U), (7)

R(λ) := KL [q(W|U)||p(W|U)] = dindout(0.5λ
2 − log λ− 0.5). (8)

Plugging θ = W1:L, a = U1:L and Eq. (8) into Eq. (4) returns the following variational lower-bound

L(q(W1:L,U1:L)) = Eq(W1:L)[log p(D|W1:L)] −
∑L

l=1
(R(λl) + KL[q(Ul)||p(Ul)]), (9)

with λl the associated scaling parameter for q(Wl|Ul). Again as the choices of Zc,Zr,Dc,Dr do
not change the marginal prior p(W), we are safe to optimise them as well. Therefore the variational
parameters are now φ = {Zc,Zr,Dc,Dr, λ, dist. params. of q(U)} for each layer.

Two choices of q(U) A simple choice is FFG q(vec(U)) = N (mu, diag(vu)), which performs
mean-field inference in U space (c.f. Blundell et al., 2015), and here KL[q(U)||p(U)] has a closed-
form solution. Another choice is a “mixture of delta measures” q(U) = 1

K

∑K
k=1 δ(U = U(k)),

i.e. we keep K distinct sets of parameters {U (k)
1:L}Kk=1 in inducing space that are projected back

into the original parameter space via the shared conditionals q(Wl|Ul) to obtain the weights. This
approach can be viewed as constructing “deep ensembles” in U space, and we follow ensemble
methods (e.g. Lakshminarayanan et al., 2017) to drop KL[q(U)||p(U)] in Eq. (9).

Often U is chosen to have significantly lower dimensions than W, i.e. Min << din and Mout <<
dout. As q(W|U) and p(W|U) only differ in the covariance scaling constant, U can be regarded as
a sparse representation of uncertainty for the network layer, as the major updates in (approximate)
posterior belief is quantified by q(U).

4

(a) inducing weight
augmentation

W

U

(b) Matheron's rule (for vectors)

+=| × ×

-1

()

(c) Extended Matheron's rule (for matrices)
(ours)

+

=

× × × ×

|

-1 -1
()

Figure 1: Visualisation of (a) the inducing weight augmentation, and compare (b) the original
Matheron’s rule to (c) our extended version. White blocks represent samples from the joint Gaussian.

3.2 Efficient sampling with extended Matheron’s rule

Computing the variational lower-bound Eq. (9) requires samples from q(W), which requires an
efficient sampling procedure for q(W|U). Unfortunately, q(W|U) derived from Eq. (6) & Eq. (7)
is not a matrix normal, so direct sampling is prohibitive. To address this challenge, we extend
Matheron’s rule (Journel & Huijbregts, 1978; Hoffman & Ribak, 1991; Doucet, 2010) to efficiently
sample from q(W|U), with derivations provided in Appendix F.

The original Matheron’s rule applies to multivariate Gaussian distributions. As a running example,
consider two vector-valued random variablesw, u with joint distribution p(w,u) = N (0,Σ). Then
the conditional distribution p(w|u) = N (µw|u,Σw|u) is also Gaussian, and direct sampling from it
requires decomposing the conditional covariance matrix Σw|u which can be costly. The main idea of
Matheron’s rule is that we can transform a sample from the joint Gaussian to obtain a sample from
the conditional distribution p(w|u) as follows:

w = w̄ + ΣwuΣ−1
uu(u− ū), w̄, ū ∼ N (0,Σ), Σ =

(
Σww Σwu
Σuw Σuu

)
. (10)

One can check the validity of Matheron’s rule by computing the mean and variance of w above:

Ew̄,ū[w] = ΣwuΣ−1
uuu = µw|u, Vw̄,ū[w] = Σww −ΣwuΣ−1

uuΣuw = Σw|u.

It might seem counter-intuitive at first sight in that this rule requires samples from a higher dimensional
space. However, in the case where decomposition/inversion of Σ and Σuu can be done efficiently,
sampling from the joint Gaussian p(w,u) can be significantly cheaper than directly sampling from
the conditional Gaussian p(w|u). This happens e.g. when Σ is directly parameterised by its Cholesky
decomposition and dim(u) << dim(w), so that sampling w̄, ū ∼ N (0,Σ) is straight-forward, and
computing Σ−1

uu is significantly cheaper than decomposing Σw|u.

Unfortunately, the original Matheron’s rule cannot be applied directly to sample from q(W|U). This
is because q(W|U) = q(vec(W)| vec(U)) differs from p(vec(W)| vec(U)) only in the variance
scaling λ, and for p(vec(W)| vec(U)), its joint distribution counter-part Eq. (6) does not have an
efficient representation for the covariance matrix. Therefore a naive application of Matheron’s rule
requires decomposing the covariance matrix of p(vec(W), vec(U)) which is even more expensive
than direct conditional sampling. However, notice that for the joint distribution p(W,Uc,Ur,U)
in an even higher dimensional space, the row and column covariance matrices Σr and Σc are
parameterised by their Cholesky decompositions, so that sampling from this joint distribution can be
done efficiently. This inspire us to extend the original Matheron’s rule for efficient sampling from
q(W|U) (details in Appendix F, when λ = 1 it also applies to sampling from p(W|U)):

W = λW̄ + σZ>r Ψ−1
r (U − λŪ)Ψ−1

c Zc; W̄, Ū ∼ p(W̄, Ūc, Ūr, Ū) =MN (0,Σr,Σc).
(11)

Here W̄, Ū ∼ p(W̄, Ūc, Ūr, Ū) means we first sample W̄, Ūc, Ūr, Ū from the joint then drop
Ūc, Ūr; in fact Ūc, Ūr are never computed, and the other samples W̄, Ū can be obtained by:

W̄ = σE1, Ū = ZrE1Z
>
c + L̂rẼ2Dc +DrẼ3L̂

>
c +DrE4Dc,

E1 ∼MN (0, Idout
, Idin

); Ẽ2, Ẽ3,E4 ∼MN (0, IMout
, IMin

), (12)

L̂r = chol(ZrZ
>
r), L̂c = chol(ZcZ

>
c).

The run-time cost isO(2M3
out+2M3

in+doutMoutMin+Mindoutdin) required by inverting Ψr,Ψc,
computing L̂r, L̂c, and the matrix products. The extended Matheron’s rule is visualised in Fig. 1

5

Table 1: Computational complexity per layer. We assume W ∈ Rdout×din , U ∈ RMout×Min , and K
forward passes for each of the N inputs. (∗ uses a parallel computing friendly vectorisation technique
(Wen et al., 2020) for further speed-up.)

Method Time complexity Storage complexity

Deterministic-W O(Ndindout) O(dindout)

FFG-W O(NKdindout) O(2dindout)
Ensemble-W O(NKdindout) O(Kdindout)

Matrix-normal-W O(NKdindout) O(dindout + din + dout)
k-tied FFG-W O(NKdindout) O(dindout + k(din + dout))

rank-1 BNN O(NKdindout)
∗ O(dindout + 2(din + dout))

FFG-U O(NKdindout + 2M3
in + 2M3

out O(dinMin + doutMout + 2MinMout)
+K(doutMoutMin +Mindoutdin))

Ensemble-U same as above O(dinMin + doutMout +KMinMout)

with a comparison to the original Matheron’s rule for sampling from q(vec(W)| vec(U)). Note that
the original rule requires joint sampling from Eq. (6) (i.e. sampling the white blocks in Fig. 1(b))
which has O((doutdin +MoutMin)3) cost. Therefore our recipe avoids inverting and multiplying
big matrices, resulting in a significant speed-up for conditional sampling.

3.3 Computational complexities

In Table 1 we report the complexity figures for two types of inducing weight approaches: FFG
q(U) (FFG-U) and Delta mixture q(U) (Ensemble-U). Baseline approaches include: Deterministic-
W, variational inference with FFG q(W) (FFG-W, Blundell et al., 2015), deep ensemble in W
(Ensemble-W, Lakshminarayanan et al., 2017), as well as parameter efficient approaches such as
matrix-normal q(W) (Matrix-normal-W, Louizos & Welling (2017)), variational inference with
k-tied FFG q(W) (k-tied FFG-W, Świątkowski et al. (2020)), and rank-1 BNN (Dusenberry et al.,
2020). The gain in memory is significant for the inducing weight approaches, in fact with Min < din
and Mout < dout the parameter storage requirement is smaller than a single deterministic neural
network. The major overhead in run-time comes from the extended Matheron’s rule for sampling
q(W|U). Some of the computations there are performed only once, and in our experiments we show
that by using a relatively low-dimensional U and large batch-sizes, the overhead is acceptable.

4 Experiments

We evaluate the inducing weight approaches on regression, classification and related uncertainty
estimation tasks. The goal is to demonstrate competitive performance to popular W-space uncertainty
estimation methods while using significantly fewer parameters. We acknowledge that existing
parameter efficient approaches for uncertainty estimation (e.g. k-tied or rank-1 BNNs) have achieved
close performance to deep ensembles. However, none of them reduces the parameter count to be
smaller than that of a single network. Therefore we decide not to include these baselines and instead
focus on comparing: (1) variational inference with FFG q(W) (FFG-W, Blundell et al., 2015)
v.s. FFG q(U) (FFG-U, ours); (2) deep ensemble in W space (Ensemble-W, Lakshminarayanan
et al., 2017) v.s. ensemble in U space (Ensemble-U, ours). Another baseline is training a deterministic
neural network with maximum likelihood. Details and additional results are in Appendices J and K.

4.1 Synthetic 1-D regression

The regression task follows Foong et al. (2019), which has two input clusters x1 ∼ U [−1,−0.7],
x2 ∼ U [0.5, 1], and targets y ∼ N (cos(4x+ 0.8), 0.01). For reference we show the exact posterior
results using the NUTS sampler (Hoffman & Gelman, 2014). The results are visualised in Fig. 2
with predictive mean in blue, and up to three standard deviations as shaded area. Similar to historical
results, FFG-W fails to represent the increased uncertainty away from the data and in between
clusters. While underestimating predictive uncertainty overall, FFG-U shows a small increase in
predictive uncertainty away from the data. In contrast, a per-layer Full-covariance Gaussian (FCG)
in both weight (FCG-W) and inducing space (FCG-U) as well as Ensemble-U better capture the
increased predictive variance, although the mean function is more similar to that of FFG-W.

6

2 0 2
1

0

1

(a) FFG-U
2 0 2

1

0

1

(b) FCG-U
2 0 2

1

0

1

(c) Ensemble-U
2 0 2

1

0

1

(d) FFG-W
2 0 2

1

0

1

(e) FCG-W
2 0 2

1

0

1

(f) NUTS

Figure 2: Toy regression results, with observations in red dots and the ground truth function in black.

Table 2: CIFAR in-distribution metrics (in %).

CIFAR10 CIFAR100
Method Acc. ↑ ECE ↓ Acc. ↑ ECE ↓
Deterministic 94.72 4.46 75.73 19.69
Ensemble-W 95.90 1.08 79.33 6.51
FFG-W 94.13 0.50 74.44 4.24
FFG-U 94.40 0.64 75.37 2.29
Ensemble-U 94.94 0.45 75.97 1.12

12 4 8 16 32
Number of samples

0

5

10

re
la

tiv
e

ru
n-

tim
e

Speed
FFG-U (M=128, R18)
FFG-U (M=128, R50)
FFG-U (M=64, R18)
FFG-U (M=64, R50)

FFG-W (R18)
FFG-W (R50)

3264 128 256
M

0

0.5

1

2

re
la

tiv
e

pa
ra

m
. c

ou
nt

deterministic

FFG-W

acc=94.4%
94.7%

FFG-U

Model size (R50)

Figure 3: Resnet run-times & model sizes.

4.2 Classification and in-distribution calibration

As the core empirical evaluation, we train Resnet-50 models (He et al., 2016b) on CIFAR-10 and
CIFAR-100 (Krizhevsky et al., 2009). To avoid underfitting issues with FFG-W, a useful trick is to
set an upper limit σ2

max on the variance of q(W) (Louizos & Welling, 2017). This trick is similarly
applied to the U-space methods, where we cap λ ≤ λmax for q(W|U), and for FFG-U we also
set σ2

max for the variance of q(U). In convolution layers, we treat the 4D weight tensor W of
shape (cout, cin, h, w) as a cout × cinhw matrix. We use U matrices of shape 64× 64 for all layers
(i.e. M = Min = Mout = 64), except that for CIFAR-10 we set Mout = 10 for the last layer.

In Table 2 we report test accuracy and test expected calibration error (ECE) (Guo et al., 2017) as a
first evaluation of the uncertainty estimates. Overall, Ensemble-W achieves the highest accuracy, but
is not as well-calibrated as variational methods. For the inducing weight approaches, Ensemble-U
outperforms FFG-U on both datasets; overall it performs the best on the more challenging CIFAR-100
dataset (close-to-Ensemble-W accuracy and lowest ECE). Tables 5 and 6 in Appendix K show that
increasing the U dimensions to M = 128 improves accuracy but leads to slightly worse calibration.

In Fig. 3 we show prediction run-times for batch-size = 500 on an NVIDIA Tesla V100 GPU, relative
to those of an ensemble of deterministic nets, as well as relative parameter sizes to a single ResNet-50.
The extra run-times for the inducing methods come from computing the extended Matheron’s rule.
However, as they can be calculated once and cached for drawing multiple samples, the overhead
reduces to a small factor when using larger number of samples K, especially for the bigger Resnet-50.
More importantly, when compared to a deterministic ResNet-50, the inducing weight models reduce
the parameter count by over 75% (5, 710, 902 vs. 23, 520, 842) for M = 64.

Hyper-parameter choices We visualise in Fig. 4 the accuracy and ECE results for computation-
ally lighter inducing weight ResNet-18 models with different hyper-parameters (see Appendix J).

Figure 4: Ablation study: average CIFAR-10 accuracy (↑) and ECE (↓) for the inducing weight
methods on ResNet-18. In the first two columns M = 128 for U dimensions. For λmax, σmax = 0
we use point estimates for U,W respectively.

7

0

50

100

Ac
cu

ra
cy

(%
) CIFAR10 CIFAR100

1 2 3 4 5
Skew intensity

0

20

40

EC
E(

%
)

1 2 3 4 5
Skew intensity

Ensemble-W FFG-W FFG-U Ensemble-U

Figure 5: Mean±two errs. for Acc↑ and ECE↓ on corrupted CIFAR (Hendrycks & Dietterich, 2019).

Table 3: OOD detection metrics for Resnet-50 trained on CIFAR10/100.
In-dist→ OOD C10→ C100 C10→ SVHN C100→ C10 C100→ SVHN
Method / Metric AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR

Deterministic .84±.00 .80±.00 .93±.01 .85±.01 .74±.00 .74±.00 .81±.01 .72±.02

Ensemble-W .89 .89 .95 .92 .78 .79 .86 .78
FFG-W .88±.00 .90±.00 .90±.01 .86±.01 .76±.00 .79±.00 .80±.01 .69±.01

FFG-U .89±.00 .91±.00 .94±.01 .91±.01 .77±.00 .79±.00 .83±.01 .74±.01

Ensemble-U .90±.00 .91±.00 .93±.00 .91±.00 .77±.00 .79±.00 .82±.01 .72±.02

Performance in both metrics improves as the U matrix size M is increased (right-most panels), and
the results for M = 64 and M = 128 are fairly similar. Also setting proper values for λmax, σmax is
key to the improved results. The left-most panels show that with fixed σmax values (or Ensemble-U),
the preferred conditional variance cap values λmax are fairly small (but still larger than 0 which
corresponds to a point estimate for W given U). For σmax which controls variance in U space, we
see from the top middle panel that the accuracy metric is fairly robust to σmax as long as λmax is not
too large. But for ECE, a careful selection of σmax is required (bottom middle panel).

4.3 Robustness, out-of-distribution detection and pruning

To investigate the models’ robustness to distribution shift, we compute predictions on corrupted
CIFAR datasets (Hendrycks & Dietterich, 2019) after training on clean data. Fig. 5 shows accuracy
and ECE results for the ResNet-50 models. Ensemble-W is the most accurate model across skew
intensities, while FFG-W, though performing well on clean data, returns the worst accuracy under
perturbation. The inducing weight methods perform competitively to Ensemble-W with Ensemble-U
being slightly more accurate than FFG-U as on the clean data. For ECE, FFG-U outperforms
Ensemble-U and Ensemble-W, which are similarly calibrated. Interestingly, while the accuracy of
FFG-W decays quickly as the data is perturbed more strongly, its ECE remains roughly constant.

Table 3 further presents the utility of the maximum predicted probability for out-of-distribution
(OOD) detection. The metrics are the area under the receiver operator characteristic (AUROC) and
the precision-recall curve (AUPR). The inducing-weight methods perform similarly to Ensemble-W;
all three outperform FFG-W and deterministic networks across the board.

65

70

75

Ac
cu

ra
cy

 (%
)

2 10 50 200
Parameter size (% det.)

0
4
8

12

EC
E

(%
)

FFG-U FFG-W

Figure 6: CIFAR100 pruning
accuracy(↑) & ECE(↓). Right-
most points are w/out pruning.

Parameter pruning We further investigate pruning as a pragmatic
alternative for more parameter-efficient inference. For FFG-U, we
prune entries of the Z matrices, which contribute the largest number
of parameters to the inducing methods, with the smallest magnitude.
For FFG-W we follow Graves (2011) in setting different fractions
of W to 0 depending on their variational mean-to-variance ratio and
repeat the previous experiments after fine-tuning the distributions on
the remaining variables. We stress that, unlike FFG-U, the FFG-W
pruning corresponds to a post-hoc change of the probabilistic model
and no longer performs inference in the original weight-space.

For FFG-W, pruning 90% of the parameters (leaving 20% of pa-
rameters as compared to its deterministic counterpart) worsens the
ECE, in particular on CIFAR100, see Fig. 6. Further pruning to 1%

8

worsens the accuracy and the OOD detection results as well. On the other hand, pruning 50% of the
Z matrices for FFG-U reduces the parameter count to 13.2% of a deterministic net, at the cost of
only slightly worse calibration. See Appendix K for the full results.

5 Discussions

5.1 A function-space perspective on inducing weights

Although the inducing weight approach performs approximate inference in weight space, we present
in Appendix G a function-space inference perspective of the proposed method, showing its deep
connections to sparse GPs. Our analysis considers the function-space behaviour of each network
layer’s output and discusses the corresponding interpretations of the U variables and Z parameters.

X

X X

X X

h1 h2

f2f1

U

ReLU

noisy
proj.

noisy
proj.

Zc
TZc

T

Zc
T

u1
c u2c

Figure 7: Visualising U vari-
ables in pre-activation spaces.

The interpretations are visualised in Fig. 7. Similar to sparse GPs, in
each layer, the Zc parameters can be viewed as the (transposed) in-
ducing input locations which lie in the same space as the layer’s input.
The Uc variables can also be viewed as the corresponding (noisy)
inducing outputs that lie in the pre-activation space. Given that the
output dimension dout can still be high (e.g. > 1000 in a fully con-
nected layer), our approach performs further dimension reduction
in a similar spirit as probabilistic PCA (Tipping & Bishop, 1999),
which projects the column vectors of Uc to a lower-dimensional
space. This returns the inducing weight variables U, and the projec-
tion parameters are {Zr,Dr}. Combining the two steps, it means
the column vectors of U can be viewed as collecting the “noisy
projected inducing outputs” whose corresponding “inducing inputs”
are row vectors of Zc (see the red bars in Fig. 7).

In Appendix G we further derive the resulting variational objective from the function-space view,
which is almost identical to Eq. (9), except for scaling coefficients on the R(λl) terms to account
for the change in dimensionality from weight space to function space. This result nicely connects
posterior inference in weight- and function-space.

5.2 Related work

Parameter-efficient uncertainty quantification methods Recent research has proposed Gaussian
posterior approximations for BNNs with efficient covariance structure (Ritter et al., 2018; Zhang
et al., 2018b; Mishkin et al., 2018). The inducing weight approach differs from these in introducing
structure via a hierarchical posterior with low-dimensional auxiliary variables. Another line of work
reduces the memory overhead via efficient parameter sharing (Louizos & Welling, 2017; Wen et al.,
2020; Świątkowski et al., 2020; Dusenberry et al., 2020). The third category of work considers a
hybrid approach, where only a selective part of the neural network receives Bayesian treatments, and
the other weights remain deterministic (Bradshaw et al., 2017; Daxberger et al., 2021). However,
both types of approaches maintain a “mean parameter” for the weights, making the memory footprint
at least that of storing a deterministic neural network. Instead, our approach shares parameters
via the augmented prior with efficient low-rank structure, reducing the memory use compared to a
deterministic network. In a similar spirit, Izmailov et al. (2019) perform inference in a d-dimensional
sub-space obtained from PCA on weights collected from an SGD trajectory. But this approach does
not leverage the layer-structure of neural networks and requires d× memory of a single network.

Network pruning in uncertainty estimation context There is a large amount of existing research
advocating network pruning approaches for parameter-efficient deep learning, e.g. see Han et al.
(2016); Frankle & Carbin (2018); Lee et al. (2019). In this regard, mean-field VI approaches have
also shown success in network pruning, but only in terms of maintaining a minimum accuracy level
(Graves, 2011; Louizos et al., 2017; Havasi et al., 2019). To the best of our knowledge, our empirical
study presents the first evaluation for VI-based pruning methods in maintaining uncertainty estimation
quality. Deng et al. (2019) considers pruning BNNs with stochastic gradient Langevin dynamics
(Welling & Teh, 2011) as the inference engine. The inducing weight approach is orthogonal to these
BNN pruning approaches, as it leaves the prior on the network parameters intact, while the pruning

9

approaches correspond to a post-hoc change of the probabilistic model to using a sparse weight prior.
Indeed our parameter pruning experiments showed that our approach can be combined with network
pruning to achieve further parameter efficiency improvements.

Sparse GP and function-space inference As BNNs and GPs are closely related (Neal, 1995;
Matthews et al., 2018; Lee et al., 2018), recent efforts have introduced GP-inspired techniques to
BNNs (Ma et al., 2019; Sun et al., 2019; Khan et al., 2019; Ober & Aitchison, 2021). Compared
to weight-space inference, function-space inference is appealing as its uncertainty is more directly
relevant for predictive uncertainty estimation. While the inducing weight approach performs com-
putations in weight-space, Section 5.1 establishes the connection to function-space posteriors. Our
approach is related to sparse deep GP methods with Uc having similar interpretations as inducing out-
puts in e.g. Salimbeni & Deisenroth (2017). The major difference is that U lies in a low-dimensional
space, projected from the pre-activation output space of a network layer.

The original Matheron’s rule (Journel & Huijbregts, 1978; Hoffman & Ribak, 1991; Doucet, 2010)
for sampling from conditional multivariate Gaussian distributions has recently been applied to
speed-up sparse GP inference (Wilson et al., 2020, 2021). As explained in Section 3.2, direct
application of the original rule to sampling W conditioned on U still incurs prohibitive cost as
p(vec(W), vec(U)) does not have a convenient factorisation form. Our extended Matheron’s rule
addresses this issue by exploiting the efficient factorisation structure of the joint matrix normal
distribution p(W,Uc,Ur,U), reducing the dominating factor of computation cost from cubic
(O(d3

outd
3
in)) to linear (O(doutdin)). We expect this new rule to be useful for a wide range of

models/applications beyond BNNs, such as matrix-variate Gaussian processes (Stegle et al., 2011).

Priors on neural network weights Hierarchical priors for weights has also been explored (Louizos
et al., 2017; Krueger et al., 2017; Atanov et al., 2019; Ghosh et al., 2019; Karaletsos & Bui, 2020).
However, we emphasise that p̃(W,U) is a pseudo prior that is constructed to assist posterior
inference rather than to improve model design. Indeed, parameters associated with the inducing
weights are optimisable for improving posterior approximations. Our approach can be adapted to
other priors, e.g. for a Horseshoe prior p(θ, ν) = p(θ|ν)p(ν) = N (θ; 0, ν2)C+(ν; 0, 1), the pseudo
prior can be defined as p̃(θ, ν, a) = p̃(θ|ν, a)p̃(a)p(ν) such that

∫
p̃(θ|ν, a)p̃(a)da = p(θ|ν). In

general, pseudo priors have found broader success in Bayesian computation (Carlin & Chib, 1995).

6 Conclusion

We have proposed a parameter-efficient uncertainty quantification framework for neural networks. It
augments each of the network layer weights with a small matrix of inducing weights, and by extending
Matheron’s rule to matrix-normal related distributions, maintains a relatively small run-time overhead
compared with ensemble methods. Critically, experiments on prediction and uncertainty estimation
tasks show the competence of the inducing weight methods to the state-of-the-art, while reducing the
parameter count to under a quarter of a deterministic ResNet-50 before pruning. This represents a
significant improvement over prior Bayesian and deep ensemble techniques, which so far have not
managed to go below this threshold despite various attempts of matching it closely.

Several directions are to be explored in the future. First, modelling correlations across layers might
further improve the inference quality. We outline an initial approach leveraging inducing variables
in Appendix H. Second, based on the function-space interpretation of inducing weights, better
initialisation techniques can be inspired from the sparse GP and dimension reduction literature.
Similarly, this interpretation might suggest other innovative pruning approaches for the inducing
weight method, thereby achieving further memory savings. Lastly, the run-time overhead of our
approach can be mitigated by a better design of the inducing weight structure as well as vectorisation
techniques amenable to parallelised computation. Designing hardware-specific implementations of
the inducing weight approach is also a viable alternative for such purposes.

References
Agakov, F. V. and Barber, D. An auxiliary variational method. In ICONIP, 2004.

Atanov, A., Ashukha, A., Struminsky, K., Vetrov, D., and Welling, M. The deep weight prior. In
ICLR, 2019.

10

Bingham, E., Chen, J. P., Jankowiak, M., Obermeyer, F., Pradhan, N., Karaletsos, T., Singh, R.,
Szerlip, P., Horsfall, P., and Goodman, N. D. Pyro: Deep universal probabilistic programming.
JMLR, 2019.

Blundell, C., Cornebise, J., Kavukcuoglu, K., and Wierstra, D. Weight uncertainty in neural networks.
In ICML, 2015.

Bradshaw, J., Matthews, A. G. d. G., and Ghahramani, Z. Adversarial examples, uncertainty, and trans-
fer testing robustness in Gaussian process hybrid deep networks. arXiv preprint arXiv:1707.02476,
2017.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam,
P., Sastry, G., Askell, A., et al. Language models are few-shot learners. In NeurIPS, 2020.

Carlin, B. P. and Chib, S. Bayesian model choice via Markov chain Monte Carlo methods. JRSS B,
1995.

Daxberger, E., Nalisnick, E., Allingham, J. U., Antorán, J., and Hernández-Lobato, J. M. Expressive
yet tractable Bayesian deep learning via subnetwork inference. In ICML, 2021.

Deng, W., Zhang, X., Liang, F., and Lin, G. An adaptive empirical bayesian method for sparse deep
learning. In NeurIPS, 2019.

Doucet, A. A note on efficient conditional simulation of Gaussian distributions. Technical report,
University of British Columbia, 2010.

Dusenberry, M. W., Jerfel, G., Wen, Y., Ma, Y.-a., Snoek, J., Heller, K., Lakshminarayanan, B., and
Tran, D. Efficient and scalable Bayesian neural nets with rank-1 factors. In ICML, 2020.

Foong, A. Y., Li, Y., Hernández-Lobato, J. M., and Turner, R. E. ’In-between’ uncertainty in Bayesian
neural networks. arXiv preprint arXiv:1906.11537, 2019.

Frankle, J. and Carbin, M. The lottery ticket hypothesis: Finding sparse, trainable neural networks.
In ICLR, 2018.

Gal, Y. and Ghahramani, Z. Dropout as a Bayesian approximation: Representing model uncertainty
in deep learning. In ICML, 2016.

Ghosh, S., Yao, J., and Doshi-Velez, F. Model selection in Bayesian neural networks via horseshoe
priors. JMLR, 2019.

Graves, A. Practical variational inference for neural networks. In NeurIPS, 2011.

Guo, C., Pleiss, G., Sun, Y., and Weinberger, K. Q. On calibration of modern neural networks. In
ICML, 2017.

Gupta, A. K. and Nagar, D. K. Matrix variate distributions. CRC Press, 2018.

Han, S., Mao, H., and Dally, W. J. Deep compression: Compressing deep neural networks with
pruning, trained quantization and huffman coding. In ICLR, 2016.

Havasi, M., Peharz, R., and Hernández-Lobato, J. M. Minimal random code learning: Getting bits
back from compressed model parameters. In ICLR, 2019.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recognition. In CVPR,
2016a.

He, K., Zhang, X., Ren, S., and Sun, J. Identity mappings in deep residual networks. In ECCV,
2016b.

Hendrycks, D. and Dietterich, T. Benchmarking neural network robustness to common corruptions
and perturbations. In ICLR, 2019.

Hinton, G. E. and Van Camp, D. Keeping the neural networks simple by minimizing the description
length of the weights. In COLT, 1993.

11

Hoffman, M. D. and Gelman, A. The No-U-Turn sampler: adaptively setting path lengths in
Hamiltonian Monte Carlo. JMLR, 2014.

Hoffman, M. D., Blei, D. M., Wang, C., and Paisley, J. Stochastic variational inference. JMLR, 2013.

Hoffman, Y. and Ribak, E. Constrained realizations of Gaussian fields-a simple algorithm. ApJ, 1991.

Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger, K. Q. Densely connected convolutional
networks. In CVPR, 2017.

Izmailov, P., Maddox, W. J., Kirichenko, P., Garipov, T., Vetrov, D., and Wilson, A. G. Subspace
inference for Bayesian deep learning. In UAI, 2019.

Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., and Saul, L. K. An introduction to variational methods
for graphical models. Machine Learning, 1999.

Journel, A. G. and Huijbregts, C. J. Mining geostatistics. Academic press London, 1978.

Karaletsos, T. and Bui, T. D. Hierarchical Gaussian process priors for Bayesian neural network
weights. In NeurIPS, 2020.

Kendall, A. and Gal, Y. What uncertainties do we need in Bayesian deep learning for computer
vision? In NeurIPS, 2017.

Khan, M. E. E., Immer, A., Abedi, E., and Korzepa, M. Approximate inference turns deep networks
into Gaussian processes. In NeurIPS, 2019.

Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization. In ICLR, 2015.

Kingma, D. P. and Welling, M. Auto-encoding variational Bayes. In ICLR, 2014.

Krizhevsky, A., Nair, V., and Hinton, G. CIFAR-10 and CIFAR-100 datasets. URL: https://www. cs.
toronto. edu/kriz/cifar. html, 2009.

Krueger, D., Huang, C.-W., Islam, R., Turner, R., Lacoste, A., and Courville, A. Bayesian hypernet-
works. arXiv preprint arXiv:1710.04759, 2017.

Lakshminarayanan, B., Pritzel, A., and Blundell, C. Simple and scalable predictive uncertainty
estimation using deep ensembles. In NeurIPS, 2017.

Lee, J., Sohl-Dickstein, J., Pennington, J., Novak, R., Schoenholz, S., and Bahri, Y. Deep neural
networks as Gaussian processes. In ICLR, 2018.

Lee, N., Ajanthan, T., and Torr, P. SNIP: Single-shot network pruning based on connection sensitivity.
In ICLR, 2019.

Leibfried, F., Dutordoir, V., John, S., and Durrande, N. A tutorial on sparse Gaussian processes and
variational inference. arXiv preprint arXiv:2012.13962, 2020.

Louizos, C. and Welling, M. Multiplicative normalizing flows for variational Bayesian neural
networks. In ICML, 2017.

Louizos, C., Ullrich, K., and Welling, M. Bayesian compression for deep learning. In NeurIPS, 2017.

Ma, C., Li, Y., and Hernández-Lobato, J. M. Variational implicit processes. In ICML, 2019.

MacKay, D. J. Bayesian neural networks and density networks. NIMPR A, 1995.

Matthews, A. G. d. G., Hron, J., Rowland, M., Turner, R. E., and Ghahramani, Z. Gaussian process
behaviour in wide deep neural networks. In ICLR, 2018.

Mishkin, A., Kunstner, F., Nielsen, D., Schmidt, M., and Khan, M. E. SLANG: Fast structured
covariance approximations for Bayesian deep learning with natural gradient. In NeurIPS, 2018.

Neal, R. M. Bayesian Learning for Neural Networks. PhD thesis, University of Toronto, 1995.

12

Ober, S. W. and Aitchison, L. Global inducing point variational posteriors for Bayesian neural
networks and deep Gaussian processes. In ICML, 2021.

Ovadia, Y., Fertig, E., Ren, J., Nado, Z., Sculley, D., Nowozin, S., Dillon, J., Lakshminarayanan, B.,
and Snoek, J. Can you trust your model’s uncertainty? evaluating predictive uncertainty under
dataset shift. In NeurIPS, 2019.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein,
N., Antiga, L., et al. PyTorch: An imperative style, high-performance deep learning library. In
NeurIPS, 2019.

Ranganath, R., Tran, D., and Blei, D. Hierarchical variational models. In ICML, 2016.

Ritter, H., Botev, A., and Barber, D. A scalable Laplace approximation for neural networks. In ICLR,
2018.

Salimans, T., Kingma, D., and Welling, M. Markov chain Monte Carlo and variational inference:
Bridging the gap. In ICML, 2015.

Salimbeni, H. and Deisenroth, M. Doubly stochastic variational inference for deep Gaussian processes.
In NeurIPS, 2017.

Snelson, E. and Ghahramani, Z. Sparse Gaussian processes using pseudo-inputs. In NeurIPS, 2006.

Stegle, O., Lippert, C., Mooij, J. M., Lawrence, N. D., and Borgwardt, K. Efficient inference in
matrix-variate gaussian models with iid observation noise. In NeurIPS, 2011.

Sun, S., Zhang, G., Shi, J., and Grosse, R. Functional variational Bayesian neural networks. In ICLR,
2019.

Świątkowski, J., Roth, K., Veeling, B. S., Tran, L., Dillon, J. V., Mandt, S., Snoek, J., Salimans, T.,
Jenatton, R., and Nowozin, S. The k-tied Normal distribution: A compact parameterization of
Gaussian mean field posteriors in Bayesian neural networks. In ICML, 2020.

Tanno, R., Worrall, D. E., Ghosh, A., Kaden, E., Sotiropoulos, S. N., Criminisi, A., and Alexander,
D. C. Bayesian image quality transfer with CNNs: exploring uncertainty in dMRI super-resolution.
In MICCAI, 2017.

Tipping, M. E. and Bishop, C. M. Probabilistic principal component analysis. JRSS B, 1999.

Titsias, M. Variational learning of inducing variables in sparse Gaussian processes. In AISTATS,
2009.

Titsias, M. and Lázaro-Gredilla, M. Doubly stochastic variational Bayes for non-conjugate inference.
In ICML, 2014.

Welling, M. and Teh, Y. W. Bayesian learning via stochastic gradient langevin dynamics. In ICML,
2011.

Wen, Y., Tran, D., and Ba, J. Batchensemble: an alternative approach to efficient ensemble and
lifelong learning. In ICLR, 2020.

Wilson, J. T., Borovitskiy, V., Terenin, A., Mostowsky, P., and Deisenroth, M. P. Efficiently sampling
functions from Gaussian process posteriors. In ICML, 2020.

Wilson, J. T., Borovitskiy, V., Terenin, A., Mostowsky, P., and Deisenroth, M. P. Pathwise conditioning
of Gaussian processes. JMLR, 2021.

Xu, H., Liu, B., Shu, L., and Yu, P. BERT post-training for review reading comprehension and
aspect-based sentiment analysis. In ACL, 2019.

Zhang, C., Bütepage, J., Kjellström, H., and Mandt, S. Advances in variational inference. TPAMI,
2018a.

Zhang, G., Sun, S., Duvenaud, D., and Grosse, R. Noisy natural gradient as variational inference. In
ICML, 2018b.

Zhang, R., Li, C., Zhang, J., Chen, C., and Wilson, A. G. Cyclical stochastic gradient MCMC for
Bayesian deep learning. In ICLR, 2020.

13

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [No] (Our work

considers reducing model parameter sizes for Bayesian neural networks.)
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] (this is for the
corrupted CIFAR dataset (Hendrycks & Dietterich, 2019).)

(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

14

