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ABSTRACT

We present a formal language with expressions denoting general symbol structures
and queries which access information in those structures. A sequence-to-sequence
network processing this language learns to encode symbol structures and query
them. The learned representation (approximately) shares a simple linearity prop-
erty with theoretical techniques for performing this task.

1 OVERVIEW: S-LANG, S-NET AND S-REP

Embedding words and sentences in vector spaces has brought many symbolic tasks (especially in
NLP) within the scope of deep neural network (DNN) models (Hinton, 1988; Palangi et al., 2016;
Pollack, 1990; Socher et al., 2010; Weston et al., 2015). In general, DNNs may be expected to
benefit if they can incorporate some of the power of symbolic computation without compromising
the power of deep learning. The problem of embedding general symbol structures in vector spaces,
and performing symbolic computation with these vectors, has been addressed theoretically, but these
methods can require very large embedding spaces — e.g., Tensor Product Representation, TPR (Lee
et al., 2016; Smolensky, 1990; Smolensky & Legendre, 2006) — or major error-correction/clean-up
processes — e.g., Holographic Reduced Representation, HRR (Crawford et al., 2016; Plate, 1993;
2002; 2003) (Sec. 4; see also Kanerva (2009); Touretzky (1990)). We show here (Sec. 3) that deep
learning can itself discover satisfactory methods of embedding general symbol structures, methods
that operate in relatively small vector spaces without need for clean-up processing.

We define a general formal language scheme in which expressions denote symbol structures. Such
a language will be called an S-LANG (Sec. 2). Information within these structures is accessed
by evaluating query expressions within the language. The model that learns to encode structure-
denoting expressions and to evaluate queries over these structures (Zaremba & Sutskever, 2014) is
a simple bidirectional encoder-decoder model that operates on symbols in the formal language one
at a time (Cho et al., 2014). We call such a model an S-NET (Sec. 3), and call the vector embedding
of an S-LANG learned by an S-NET an S-REP.

Our S-NET learns to evaluate S-LANG expressions with a high degree of accuracy (Sec. 3). Further-
more, upon analysis, the S-REP that S-NET learns turns out to exhibit a simple linearity property —
the Superposition Principle — that is crucial to both theoretical models, TPR and HRR (Sec. 4).

2 THE TASK: EMBEDDING GENERAL SYMBOLIC STRUCTURES IN VECTOR
SPACES AND ACCESSING THEIR CONTENTS

Symbol-structure-denoting expressions: Structural-role binding. In general, a symbol structure can
be characterized as a set of symbols each bound to a role that it plays in the structure (Newell,
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Table 1: Example input/output pairs of the S-NET model

Expression Value Type
as :U as :U binding
qf :N ? N qf unbind
qf :N ? X $ unbind (not found)
(ao :N & ax :F & wh :A ? F) :K ax :K 3-bind, unbind, rebind
((((sf :W & fr :V) :N) :R) :R) :Y ? Y ? R ? R ? N sf :W & fr :V 4-nested, unbind

Table 2: Performance and hyperparameters of the trained S-NET model

Accu- Test per- Train Mini- Batch Hidden Drop- Learn- Optim- Attention;
racy plexity loss batches size dimension out ing rate izer Beam

96.16 1.02 0.187 54K 128 128 0.2 0.001 Adam None

1980, 141). The method is applicable to any type of symbol structure, but we focus on binary trees
here. The simple binary tree T = [a [b c]] consists of the symbols a, b, c respectively bound to the
roles R0, R01, R11, where R01 is the role of left-child (‘0’) of right-child (‘1’) of root, etc. Symbolic
structural roles are typically recursive. The recursive character of binary tree roles can be seen by
viewing R01 as the symbol R0 bound to the role R1. In the simple formal language we develop
here, S-LANG, the tree T will be denoted by the expression a :L & b :L :R & c :R :R, where L, R
respectively abbreviate the roles R0, R1. The grammar of S-LANG is shown in Fig. 1.

Figure 1: Grammar of S-LANG: expressions denoting symbol structures and access queries.

Query-denoting expressions: Structural-role unbinding. A minimal requirement for a vector em-
bedding a symbol structure is that it be possible to extract, with vector computation, the (embedding
of) the symbol that is bound to any specified role. In S-LANG (see Fig. 1), the query denoted ? S
asks for the structure (possibly a single symbol), bound to the role denoted S; this is role-unbinding.
Thus the expression a :L & b :L :R & c :R :R ? L asks for the structure filling the role L in T , i.e., the
structure forming the left child of the root, which in T happens to be a single symbol, a. Similarly,
the expression a :L & b :L :R & c :R :R ? L :R asks for the left child of the right child of the root, and
so has the value b. Afn S-LANG query can return a structure rather than a single symbol. The
expression a :L & b :L :R & c :R :R ? R asks for the right child of the root of T , which is the structure
b :L & c :R, denoting T ’s right sub-tree, [b c].

Expressions combining querying and structure-building. The general expression in S-LANG allows
structure that is returned by queries to be used to build new structures. Table 1 provides examples
of expressions correctly evaluated by S-NET.

3 THE S-NET MODEL AND EXPERIMENTAL RESULTS

S-NET is a standard bidirectional encoder-decoder network where the output of the bidirectional
LSTM encoder is the S-REP embedding of the input S-LANG expression. The S-REP vector is then
fed as input to an LSTM decoder. Some implementation details are given in Table 2, which also
gives the results of training S-NET on randomly-selected input/output pairs.

4 ANALYSIS OF S-REP: THE SUPERPOSITION PRINCIPLE

The Superposition Principle in theoretical structure-embedding schemes. Theoretical solutions to
performing the task defined in Sec. 2 were proposed in the previous generation of neural network
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modeling. Two general solutions, TPR and HRR, were introduced in Sec. 1. The TPR embedding of
a symbol structure S with symbols {sk} respectively bound to roles {rk} is TPR(S) ≡

∑
k sk⊗rk,

where ⊗ denotes the tensor (generalized outer) product and {sk} and {rk} are embeddings of the
symbols and roles, with respective dimensions σ and ρ; the dimension of the TPR itself is then σρ.

If the role-embedding vectors {rk} are linearly independent, when collected together they form an
invertible matrix R; the rows of R−1 are the “unbinding” vectors {uk}: rk · uj = δkj so these
vectors can be used to unbind the roles in a TPR. The symbol that fills role rk in structure S is
exactly the symbol sk with embedding sk = TPR(S) · uk.

A crucial property of TPR is that the embedding of a structure is the sum over embeddings of its
symbols. This is TPR’s Superposition Principle. This is what enables extraction of symbols from
any binding: (

∑
k sk ⊗ rk) · uj =

∑
k sk ⊗ (rk · uj) = sj since rk · uj = δkj .

HRRs are essentially contracted TPRs (Smolensky & Legendre, 2006, 260). The equation defining
TPR(S) also defines HRR(S), provided ⊗ is reinterpreted to denote circular convolution: [a ⊗
b]µ =

∑
ν [a]ν [b]µ−ν . Assuming the elements of the {rk} are randomly (typically, normally)

distributed, each role-embedding vector rk can be used as its own unbinding vector. However the
HRR unbinding equation holds only approximately: sk = HRR(S) · uk + noise. This noise must
be eliminated by ‘clean-up’ processes. Note that, like TPR, HRR obeys the Superposition Principle.

Testing the Superposition Principle in the learned representation. As a test of whether the Superposi-
tion Principle holds of S-REP, let v(expr) denote the S-REP vector embedding of S-LANG expres-
sion expr), and consider expressions containing two symbol/role bindings, such as aa :A & bb :B.
Then if the Superposition Principle holds, we have1:

1. [v(aa :A & bb :B)− v(aa :A & cc :C)]− [v(dd :D & bb :B)− v(dd :D & cc :C)] = 0.

2. [v(aa :A & bb :B)− v(aa :A & cc :C)]− [v(xx :X & uu :U)− v(xx :X & vv :V)] 6= 0.

We examine the Euclidean length of vectors of the form given on the LHS of Eq. 1, which we
expect to not be exactly 0, but small — small, for example, relative to the LHS of Eq. 2. Fig. 2
shows that this is true: the AUC = 1.0 to within less than 10−16.

Figure 2: Distribution of lengths of vectors of the form of the LHS of Eqs. 1 and 2.

5 CONCLUSION

A standard bidirectional encoder-decoder model can generate vector embeddings of expressions de-
noting complex symbol structures and can successfully query the content of such representations.
Like theoretical techniques for accomplishing this, the learned representation obeys the Superposi-
tion Principle (approximately; at least within the manifold of embeddings of two-binding expres-
sions).

1The simpler equation v(aa :A & bb :B) − [v(aa :A) + bb :B)] = 0 does not hold in S-REP; it appears
that the manifolds of one- and two-binding embeddings are distinct. Eq. 1 stays within the latter. Eq. 1 is
analogous to the famous equation [v(king) − v)(man)] − [v(queen) − v(woman)] ≈ 0 (Mikolov et al., 2013).
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