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ABSTRACT

Generative adversarial networks (GANs) evolved into one of the most success-
ful unsupervised techniques for generating realistic images. Even though it has
recently been shown that GAN training converges, GAN models often end up
in local Nash equilibria that are associated with mode collapse or otherwise fail
to model the target distribution. We introduce Coulomb GANs, which pose the
GAN learning problem as a potential field, where generated samples are attracted
to training set samples but repel each other. The discriminator learns a potential
field while the generator decreases the energy by moving its samples along the
vector (force) field determined by the gradient of the potential field. Through de-
creasing the energy, the GAN model learns to generate samples according to the
whole target distribution and does not only cover some of its modes. We prove
that Coulomb GANs possess only one Nash equilibrium which is optimal in the
sense that the model distribution equals the target distribution. We show the ef-
ficacy of Coulomb GANs on LSUN bedrooms, CelebA faces, CIFAR-10 and the
Google Billion Word text generation.

1 INTRODUCTION

Generative adversarial networks (GANs) (Goodfellow et al., 2014) excel at constructing realistic
images (Radford et al., 2016; Ledig et al., 2016; Isola et al., 2017; Arjovsky et al., 2017; Berthelot
et al., 2017) and text (Gulrajani et al., 2017). In GAN learning, a discriminator network guides the
learning of another, generative network. This procedure can be considered as a game between the
generator which constructs synthetic data and the discriminator which separates synthetic data from
training set data (Goodfellow, 2017). The generator’s goal is to construct data which the discrim-
inator cannot tell apart from training set data. GAN convergence points are local Nash equilibria.
At these local Nash equilibria neither the discriminator nor the generator can locally improve its
objective.

Despite their recent successes, GANs have several problems. First (I), until recently it was not clear
if in general gradient-based GAN learning could converge to one of the local Nash equilibria (Sal-
imans et al., 2016; Goodfellow, 2014; Goodfellow et al., 2014). It is even possible to construct
counterexamples (Goodfellow, 2017). Second (II), GANs suffer from “mode collapsing”, where the
model generates samples only in certain regions which are called modes. While these modes contain
realistic samples, the variety is low and only a few prototypes are generated. Mode collapsing is less
likely if the generator is trained with batch normalization, since the network is bound to create a
certain variance among its generated samples within one batch (Radford et al., 2016; Chintala et al.,
2016). However batch normalization introduces fluctuations of normalizing constants which can be
harmful (Klambauer et al., 2017; Goodfellow, 2017). To avoid mode collapsing without batch nor-
malization, several methods have been proposed (Che et al., 2017; Metz et al., 2016; Salimans et al.,
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2016). Third (III), GANs cannot assure that the density of training samples is correctly modeled by
the generator. The discriminator only tells the generator whether a region is more likely to contain
samples from the training set or synthetic samples. Therefore the discriminator can only distinguish
the support of the model distribution from the support of the target distribution. Beyond matching
the support of distributions, GANs with proper objectives may learn to locally align model and tar-
get densities via averaging over many training examples. On a global scale, however, GANs fail to
equalize model and target densities. The discriminator does not inform the generator globally where
probability mass is missing. Consequently, standard GANs are not assured to capture the global
sample density and are prone to neglect large parts of the target distribution. The next paragraph
gives an example of this. Fourth (IV), the discriminator of GANs may forget previous modeling
errors of the generator which then may reappear, a property that leads to oscillatory behavior instead
of convergence (Goodfellow, 2017).

Recently, problem (I) was solved by proving that GAN learning does indeed converge when dis-
criminator and generator are learned using a two time-scale learning rule (Heusel et al., 2017).
Convergence means that the expected SGD-gradient of both the discriminator objective and the gen-
erator objective are zero. Thus, neither the generator nor the discriminator can locally improve,
i.e., learning has reached a local Nash equilibrium. However, convergence alone does not guarantee
good generative performance. It is possible to converge to sub-optimal solutions which are local
Nash equilibria. Mode collapse is a special case of a local Nash equilibrium associated with sub-
optimal generative performance. For example, assume a two mode real world distribution where one
mode contains too few and the other mode too many generator samples. If no real world samples
are between these two distinct modes, then the discriminator penalizes to move generated samples
outside the modes. Therefore the generated samples cannot be correctly distributed over the modes.
Thus, standard GANs cannot capture the global sample density such that the resulting generators
are prone to neglect large parts of the real world distribution. A more detailed example is listed in
the Appendix in Section A.1.

In this paper, we introduce a novel GAN model, the Coulomb GAN, which has only one Nash equi-
librium. We are later going to show that this Nash equilibrium is optimal, i.e., the model distribution
matches the target distribution. We propose Coulomb GANs to avoid the GAN shortcoming (II) to
(IV) by using a potential field created by point charges analogously to the electric field in physics.
The next section will introduce the idea of learning in a potential field and prove that its only solution
is optimal. We will then show how learning the discriminator and generator works in a Coulomb
GAN and discuss the assumptions needed for our optimality proof. In Section 3 we will then see
that the Coulomb GAN does indeed work well in practice and that the samples it produces have very
large variability and appear to capture the original distribution very well.

Related Work. Several GAN approaches have been suggested for bringing the target and model
distributions in alignment using not just local discriminator information: Geometric GANs combine
samples via a linear support vector machine which uses the discriminator outputs as samples, there-
fore they are much more robust to mode collapsing (Lim & Ye, 2017). Energy-Based GANs (Zhao
et al., 2017) and their later improvement BEGANs (Berthelot et al., 2017) optimize an energy land-
scape based on auto-encoders. McGANs match mean and covariance of synthetic and target data,
therefore are more suited than standard GANs to approximate the target distribution (Mroueh et al.,
2017). In a similar fashion, Generative Moment Matching Networks (Li et al., 2015) and MMD
nets (Dziugaite et al., 2015) directly optimize a generator network to match a training distribution
by using a loss function based on the maximum mean discrepancy (MMD) criterion (Gretton et al.,
2012). These approaches were later expanded to include an MMD criterion with learnable kernels
and discriminators (Li et al., 2017). The MMD criterion that these later approaches optimize has
a form similar to the energy function that Coulomb GANs optimize (cf. Eq. (33)). However, all
MMD approaches end up using either Gaussian or Laplace kernels, which are not guaranteed to
find the optimal solution where the model distribution matches the target distribution. In contrast,
the Plummer kernel which is employed in this work has been shown to lead to the optimal solution
(Hochreiter & Obermayer, 2005). We show that even a simplified version of the Plummer kernel,
the low-dimensional Plummer kernel, ensures that gradient descent convergences to the optimal so-
lution as stated by Theorem 1. Furthermore, most MMD GAN approaches use the MMD directly
as loss function though the number of possible samples in a mini-batch is limited. Therefore MMD
approaches face a sampling problem in high-dimensional spaces. The Coulomb GAN instead learns
a discriminator network that gradually improves its approximation of the potential field via learning
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Figure 1: The vector field of a Coulomb GAN. The basic idea behind the Coulomb GAN: true
samples (blue) and generated samples (red) create a potential field (scalar field). Blue samples act as
sinks that attract the red samples, which repel each other. The superimposed vector field shows the
forces acting on the generator samples to equalize potential differences, and the background color
shows the potential at each position. Best viewed in color.

on many mini-batches. The discriminator network also tracks the slowly changing generator distri-
bution during learning. Most importantly however, our approach is, to the best of our knowledge,
the first one for which optimality, i.e., ability to perfectly learn a target distribution, can be proved.

The use of the Coulomb potential for learning is not new. Coulomb Potential Learning was pro-
posed to store arbitrary many patterns in a potential field with perfect recall and without spurious
patterns (Perrone & Cooper, 1995). Another related work is the Potential Support Vector Machine
(PSVM), which minimizes Coulomb potential differences (Hochreiter & Mozer, 2001; Hochreiter
et al., 2003). Hochreiter & Obermayer (2005) also used a potential function based on Plummer
kernels for optimal unsupervised learning, on which we base our work on Coulomb GANs.

2 COULOMB GANS

2.1 GENERAL CONSIDERATIONS ON GANS

We assume data samples a ∈ Rm for a model density px(.) and a target density py(.). The goal of
GAN learning is to modify the model in a way to obtain px(.) = py(.). We define the difference
of densities ρ(a) = py(a) − px(a) which should be pushed toward zero for all a ∈ Rm during
learning. In the GAN setting, the discriminator D(a) is a function D : Rm → R that learns to
discriminate between generated and target samples and predicts how likely it is that a is sampled
from the target distribution. In conventional GANs, D(a) is usually optimized to approximate the
probability of seeing a target sample, or ρ(a) or some similar function. The generator G(z) is a
continuous function G : Rn → Rm which maps some n-dimensional random variable z into the
space of target samples. z is typically sampled from a multivariate Gaussian or Uniform distribution.

In order to improve the generator, a GAN uses the gradient of the discriminator ∇aD(a) with re-
spect to the discriminator input a = G(z) for learning. The objective of the generator is a scalar
functionD(G(z)), therefore the gradient of the objective function is just a scaled version of the gra-
dient∇aD(a) which would then propagate further to the parameters of G. This gradient∇aD(a)
tells the generator in which direction ρ(a) becomes larger, i.e., in which direction the ratio of target
examples increases. The generator changes slightly so that z is now mapped to a new a′ = G′(z),
moving the sample generated by z a little bit towards the direction where ρ(a) was larger, i.e., where
target examples were more likely. However, ρ(a) and its derivative only take into account the local
neighborhood of a, since regions of the sample space that are distant from a do not have much
influence on ρ(a). Regions of data space that have strong support in py but not in px will not be
noticed by the generator via discriminator gradients. The restriction to local environments hampers
GAN learning significantly (Arjovsky & Bottou, 2017; Arjovsky et al., 2017).
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The theoretical analysis of GAN learning can be done at three different levels: (1) in the space
of distributions px and py regardless of the fact that px is realized by G and pz , (2) in the space
of functions G and D regardless of the fact that G and D are typically realized by a parametric
form, i.e., as neural networks, or (3) in the space of the parameters of G and D. Goodfellow
et al. (2014) use (1) to prove convergence of GAN learning in their Proposition 2 in a hypothetical
scenario where the learning algorithm operates by making small, local moves in px space. In order
to see that level (1) and (2) should both be understood as hypothetical scenarios, remember that
in all practical implementations, px can only be altered implicitly by making small changes to the
generator function G, which in turn can only be changed implicitly by small steps in its parameters.
Even if we assume that the mapping from a distribution px to the generator G that induced it exists
and is unique, this mapping from px to the space of G is not continuous. To see this, consider
changing a distribution p1x to a new distribution p2x by moving a small amount ε of its density to
an isolated region in space where p1x has no support. Let’s further assume this region has distance
d to any other regions of support of p1x. By letting ε → 0, the distance between p1x and p2x
becomes smaller, yet the distance between the inducing generator functions G1 and G2 (e.g. using
the supremum norm on bounded functions) will not tend to zero because for at least one function
input z we have: |G1(z)−G2(z)| > d. Because of this, we need to go further than the distribution
space when analyzing GAN learning. In practice, when learning GANs, we are restricted to small
steps in parameter space, which in turn lead to small steps in function space and finally to small
steps in distribution space. But not all small steps in distribution space can be realized this way
as shown in the example above. This causes local Nash equilibria in the function space, because
even though in distribution space it would be easy to escape by making small steps, such a step
would require very large changes in function space and is thus not realizable. In this paper we show
that Coulomb GANs do not exhibit any local Nash equilibria in the space of the functions G and
D. To the best of our knowledge, this is the first formulation of GAN learning that can guarantee
this property. Of course, Coulomb GANs are learned as parametrized neural networks, and as we
will discuss in Subsection 2.4.2, Coulomb GANs are not immune to the usual issues that arise from
parameter learning, such as over- and underfitting, which can cause local Nash Equilibria due to a
bad choice of parameters.

2.2 FROM CONVENTIONAL GANS TO POTENTIALS

If the density px(.) or py(.) approaches a Dirac delta-distribution, gradients vanish since the density
approaches zero except for the exact location of data points. Similarly, electric point charges are of-
ten represented by Dirac delta-distributions, however the electric potential created by a point charge
has influence everywhere in the space, not just locally. The electric potential (Coulomb potential)
created by the point charge Q is ΦC = 1

4πε0

Q
r , where r is the distance to the location of Q and ε0 is

the dielectric constant. Motivated by this electric potential, we introduce a similar concept for GAN
learning: Instead of the difference of densities ρ(a), we rather consider a potential function Φ(a)
defined as

Φ(a) =

∫
ρ(b) k(a, b) db , (1)

with some kernel k (a, b) which defines the influence of a point at b onto a point at a. The crucial
advantage of potentials Φ(a) is that each point can influence each other point in space if k is chosen
properly. If we minimize this potential Φ(a) we are at the same time minimizing the difference of
densities ρ(a): For all kernels k it holds that if ρ(b) = 0 for all b then Φ(a) = 0 for all a. We
must still show that (i) Φ(a) = 0 for all a then ρ(b) = 0 for all b, and even more importantly, (ii)
whether a gradient optimization of Φ(a) leads to Φ(a) = 0 for all a. This is not the case for every
kernel. Indeed only for particular kernels k gradient optimization of Φ(a) leads to ρ(b) = 0 for all
b, that is, px(b) = py(b) for all b (Hochreiter & Obermayer, 2005) (see also Theorem 1 below).
An example for such a kernel k is the one leading to the Coulomb potential ΦC from above, where
k (a, b) = 1

‖a−b‖ for m = 3. As we will see in the following, the ability to have samples that
influence each other over long distances, like charges in a Coulomb potential, will lead to GANs
with a single, optimal Nash equilibrium.
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2.3 GANS AS ELECTRICAL FIELDS

For Coulomb GANs, the generator objective is derived from electrical field dynamics: real and
generated samples generate a potential field, where samples of the same class (real vs. generated)
repel each other, but attract samples of the opposite class. However, real data points are fixed in
space, so the only samples that can move are the generated ones. In turn, the gradient of the potential
with respect to the input samples creates a vector field in the space of samples. The generator can
move its samples along the forces generated by this field. Such a field is depicted in Figure 1. The
discriminator learns to predict the potential function, in order to approximate the current potential
landscape of all samples, not just the ones in the current mini-batch. Meanwhile, the generator
learns to distribute its samples across the whole field in such a way that the energy is minimized,
thus naturally avoids mode collapse and covering the whole region of support of the data. The energy
is minimal and equal to zero only if all potential differences are zero and the model distribution is
equal to the target distribution.

Within an electrostatic field, the strength of the force on one particle depends on its distance to
other particles and their charges. If left to move freely, the particles will organize themselves into
a constellation where all forces equal out and no potential differences are present. For continuous
charge distributions, the potential field is constant without potential differences if charges no longer
move since forces are equaled out. If the potential field is constant, then the difference of densities
ρ is constant, too. Otherwise the potential field would have local bumps. The same behavior is
modeled within our Coulomb GAN, except that real and generated samples replace the positive
and negative particles, respectively, and that the real data points remain fixed. Only the generated
samples are allowed to move freely, in order to minimize ρ. The generated samples are attracted by
real samples, so they move towards them. At the same time, generated samples should repel each
other, so they do not clump together, which would lead to mode collapsing.

Analogously to electrostatics, the potential Φ(a) from Eq. (1) gives rise to a field E(a) =
−∇aΦ(a). and to an energy function F (ρ) = 1

2

∫
ρ(a)Φ(a)da. The field E(a) applies a force on

charges at a which pushes the charges toward lower energy constellations. Ultimately, the Coulomb
GAN aims to make the potential Φ zero everywhere via the field E(a), which is the negative gra-
dient of Φ. For proper kernels k, it can be shown that (i) Φ can be pushed to zero via its negative
gradient given by the field and (ii) that Φ(a) = 0 for all a implies ρ(a) = 0 for all a, therefore,
px(a) = py(a) for all a (Hochreiter & Obermayer, 2005) (see also Theorem 1 below).

2.3.1 LEARNING PROCESS

During learning we do not change Φ or ρ directly. Instead, the location a = G(z) to which the
random variable z is mapped changes to a new location a′ = G′(z). For the GAN optimization
dynamics, we assume that generator samples a = G(z) can move freely, which is ensured by a suf-
ficiently complex generator. Importantly, generator samples originating from random variables z do
neither disappear nor are they newly created but are conserved. This conservation is expressed by the
continuity equation (Schwartz, 1972) that describes how the difference between distributions ρ(a)
changes as the particles are moving along the field, i.e., how moving samples during the learning
process changes our densities:

ρ̇(a) = −∇ · (ρ(a) v(a)) (2)

for sample density difference ρ and unit charges that move with “velocity” v(a) = sign(ρ(a))E(a).
The continuity equation is crucial as it establishes the connection between moving samples and
changing the generator density and thereby ρ. The sign function of the velocity indicates whether
positive or negative charges are present at a. The divergence operator “∇·” determines whether
samples move toward or outward of a for a given field. Basically, the continuity equation says
that if the generator density increases, then generator samples must flow into the region and if the
generator density decreases, they flow outwards. We assume that differently charged particles cancel
each other. If generator samples are moved away from a location a then ρ(a) is increasing while
ρ(a) is decreasing when generator samples are moved toward a. The continuity equation is also
obtained as a first order ODE to move particles in a potential field (Dembo & Zeitouni, 1988),
therefore describes the dynamics how the densities are changing. We obtain

ρ̇(a) = − sign(ρ(a))∇ · (ρ(a) E(a)) = −∇ · (|ρ(a)| E(a)) . (3)
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The density difference ρ(a) indicates how many samples are locally available for being moved. At
each local minimum and local maximum a of ρ we obtain∇aρ(a) = 0. Using the product rule for
the divergence operator, at points a that are minima or maxima, Eq. (3) reduces to

ρ̇(a) = − sign(ρ(a)) ρ(a)∇ · E(a) . (4)

In order to ensure that ρ converges to zero, it is necessary and sufficient that sign(∇ · E(a)) =
sign(ρ(a)), where ÷aρ(a) = 0, as this condition ensures the uniform decrease of the maximal
absolute density differences |ρ(amax)|.

2.3.2 CHOICE OF KERNEL

As discussed before, the choice of kernel is crucial for Coulomb GANs. The m-dimensional
Coulomb kernel and the m-dimensional Plummer kernel lead to (i) Φ that is pushed to zero via the
field it creates and (ii) that Φ(a) = 0 for all a implies ρ(a) = 0 for all a, therefore, px(a) = py(a)
for all a (Hochreiter & Obermayer, 2005). Thus, gradient learning with these kernels has been
proved to converge to an optimal solution. However, both the m-dimensional Coulomb and the m-
dimensional Plummer kernel lead to numerical instabilities if m is large. Therefore the Coulomb
potential Φ(a) for the Coulomb GAN was constructed by a low-dimensional Plummer kernel k with
parameters d 6 m− 2 and ε:

Φ(a) =

∫
ρ(b) k (a, b) db , k(a, b) =

1

(
√
‖a− b‖2 + ε2)d

. (5)

The original Plummer kernel is obtained with d = m− 2. The resulting field and potential energy is

E(a) = −
∫
ρ(b)∇ak (a, b) db = −∇a Φ (a) , (6)

F (ρ) =
1

2

∫
ρ(a) Φ (a) da =

1

2

∫ ∫
ρ(a) ρ(b) k (a, b) db da . (7)

The next theorem states that for freely moving generated samples, ρ converges to zero, that is,
px(.) = py(.), when using this potential function Φ(a).
Theorem 1 (Convergence with low-dimensional Plummer kernel). For a, b ∈ Rm, d 6 m − 2,
and ε > 0 the densities px(.) and py(.) equalize over time when minimizing energy F with the
low-dimensional Plummer kernel by gradient descent. The convergence is faster for larger d.

Proof. See Section A.2.

2.4 DEFINITION OF THE COULOMB GAN

The Coulomb GAN minimizes the electric potential energy from Eq. (6) using a stochastic gradient
descent based approach using mini-batches. Appendix Section A.4 contains the equations for the
Coulomb potential, field, and energy in this case. Generator samples are obtained by drawing Nx
random numbers zi and transforming them into outputs xi = G(zi). Each mini-batch also includes
Ny real world samples yi. This gives rise to a mini-batch specific potential, where in Eq. (5) we use
ρ(a) = py(a)− px(a) and replace the expectations by empirical means using the drawn samples:

Φ̂(a) =
1

Ny

Ny∑
i=1

k (a,yi) −
1

Nx

Nx∑
i=1

k (a,xi) . (8)

It is tempting to have a generator network that directly minimizes this potential Φ̂ between gen-
erated and training set points. In fact, we show that Φ̂ is an unbiased estimate for Φ in Appendix
Section A.4. However, the estimate has very high variance: for example, if a mini-batch fails to sam-
ple training data from an existing mode, the field would drive all generated samples that have been
generated at this mode to move elsewhere. The high variance has to be counteracted by extremely
low learning rates, which makes learning infeasible in practice, as confirmed by initial experiments.
Our solution to this problem is to have a network that generalizes over the mini-batch specific po-
tentials: each mini-batch contains different generator samples X = xi for i = 1, . . . , Nx and real
world samples Y = yi for i = 1, . . . , Ny , they create a batch-specific potential Φ̂. The goal of the
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discriminator is to learn EX ,Y(Φ̂(a)) = Φ(a), i.e., the potential averaged over many mini-batches.
Thus the discriminator function D fulfills a similar role as other typical GAN discriminator func-
tions, i.e., it discriminates between real and generated data such that for any point in space a, D(a)
should be greater than zero if the py(a) > px(a) and smaller than zero otherwise. In particular
D(a) also indicates, via its gradient and its potential properties, directions toward regions where
training set samples are predominant and where generator samples are predominant.

The generator in turn tries to move all of its samples according to the vector field into areas where
generator samples are missing and training set samples are predominant. The generator minimizes
the approximated energy F as predicted by the discriminator. The loss LD for the discriminator and
LG for the generator are given by:

LD(D;G) =
1

2
Epa

(
(D(a) − Φ̂(a))2

)
(9)

LG(G;D) = − 1

2
Epz (D(G(z))) . (10)

Where p(a) = 1/2
∫
N (a;G(z), εI)pz(z)dz + 1/2

∫
N (a;y, εI)py(y)dy, i.e., a distribution

where each point of support both of the generator and the real world distribution is surrounded
with a Gaussian ball of width εI similar to Bishop et al. (1998), in order to overcome the problem
that the generator distribution is only a sub-manifold of Rm. These loss functions cause the approx-
imated potential values D(a) that are negative are pushed toward zero. Finally, the Coulomb GAN,
like all other GANs, consists of two parts: a generator to generate model samples, and a discrimina-
tor that provides its learning signal. Without a discriminator, our would be very similar to GMMNs
(Li et al., 2015), as can be seen in Eq. (33), but with an optimal Kernel specifically tailored to the
problem of estimating differences between probability distributions.

We use each mini-batch only for one update of the discriminator and the generator. It is important
to note that the discriminator uses each sample in the mini batch twice: once as a point to generate
the mini-batch specific potential Φ̂, and once as a point in space for the evaluation of the potential Φ̂
and its approximation D. Using each sample twice is done for performance reasons, but not strictly
necessary: the discriminator could learn the potential field by sampling points that lie between
generator and real samples as in Gulrajani et al. (2017), but we are mainly interested in correct
predictions in the vicinity of generator samples. Pseudocode for the learning algorithm is detailed
in Algorithm 1 in the appendix.

2.4.1 OPTIMALITY OF THE SOLUTION

Convergence of the GAN learning process was proved for a two time-scales update rule by Heusel
et al. (2017). A local Nash equilibrium is a pair of generator and discriminator (D∗, G∗) that fulfills
the two conditions

D∗ = arg min
D∈U(D∗)

LD(D;G∗) and G∗ = arg min
G∈U(G∗)

LG(G;D∗) .

for some neighborhoods U(D∗) and U(G∗). We show in the following Theorem 2 that for Coulomb
GANs every local Nash equilibrium necessarily is identical to the unique global Nash equilibrium.
In other words, any equilibrium point of the Coulomb GAN that is found to be local optimal has to
be the one global Nash equilibrium as the minimization of the energy F (ρ) in Eq. (33) leads to a
single, global optimum at py = px.
Theorem 2 (Optimal Solution). If the pair (D∗, G∗) is a local Nash equilibrium for the Coulomb
GAN objectives, then it is the global Nash equilibrium, and no other local Nash equilibria exist, and
G∗ has output distribution px = py .

Proof. See Appendix Section A.3.

2.4.2 COULOMB GANS IN PRACTICE

To implement GANs in practice, we need learnable models for G and D. We assume that our
models for G and D are continuously differentiable with respect to their parameters and inputs.
Toward this end, GANs are typically implemented as neural networks optimized by (some variant
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of) gradient descent. Thus we may not find the optimal G∗ or D∗, since neural networks may
suffer from capacity or optimization issues. Recent research indicates that the effect of local minima
in deep learning vanishes with increasing depth (Dauphin et al., 2014; Choromanska et al., 2015;
Kawaguchi, 2016), such that this limitation becomes less restrictive as our ability to train deep
networks grows thanks to hardware and optimization improvements.

The main problem with learning Coulomb GANs is to approximate the potential function Φ, which
is a complex function in a high-dimensional space, since the potential can be very non-linear and
non-smooth. When learning the discriminator, we must ensure that enough data is sampled and
averaged over. We already lessened the non-linear function problem by using a low-dimensional
Plummer kernel. But still, this kernel can introduce large non-linearities if samples are close to
each other. It is crucial that the discriminator learns slow enough to accurately estimate the potential
function which is induced by the current generator. The generator, in turn, must be even slower since
it must be tracked by the discriminator. These approximation problems are supposed to be tackled
by the research community in near future, which would enable optimal GAN learning.

The formulation of GAN learning as a potential field naturally solves the mode collapsing issue: the
example described in Section A.1, where a normal GAN cannot get out of a local Nash equilibria
is not a converged solution for the Coulomb GAN: If all probability mass of the generator lies in
one of the modes, then both attracting forces from real-world samples located at the other mode as
well as repelling forces from the over-represented generator mode will act upon the generator until
it generates samples at the other mode as well.

3 EXPERIMENTS

In all of our experiments, we used a low-dimensional Plummer Kernel of dimensionality d = 3. This
kernel both gave best computational performance and has low risk of running into numerical issues.
We used a batch size of 128. To evaluate the quality of a GAN, the FID metric as proposed by Heusel
et al. (2017) was calculated by using 50k samples drawn from the generator, while the training set
statistics were calculated using the whole training set. We compare to BEGAN (Berthelot et al.,
2017), DCGAN (Radford et al., 2016) and WGAN-GP (Gulrajani et al., 2017) both in their original
version as well as when using the two-timescale update-rule (TTUR), using the settings from Heusel
et al. (2017). We additionally compare to MMD-GAN (Li et al., 2017), which is conceptually very
similar to the Coulomb GAN, but uses a Gaussian Kernel instead of the Plummer Kernel. We use
the dataset-specific settings recommended in (Li et al., 2017) and report the highest FID score over
the course of training. All images shown in this paper were produced with a random seed and not
cherry picked. The implementation used for these experiments is available online1. The appendix
Section A.5 contains an additional toy example demonstrating that Coulomb GANs do not suffer
from mode collapse when fitting a simple Gaussian Mixture of 25 components.

3.1 IMAGE DATASETS

To demonstrate the ability of the Coulomb GAN to learn distributions in high dimensional spaces,
we trained a Coulomb GAN on several popular image data sets: The cropped and centered images
of celebrities from the Large-scale CelebFaces Attributes (“CelebA”) data set (Liu et al., 2015), the
LSUN bedrooms data set consists of over 3 million 64x64 pixel images of the bedrooms category of
the large scale image database LSUN (Yu et al., 2015) as well as the CIFAR-10 data set. For these
experiments, we used the DCGAN architecture (Radford et al., 2016) with a few modifications: our
convolutional kernels all have a kernel size of 5x5, our random seed that serves as input to the gener-
ator has fewer dimensions: 32 for CelebA and LSUN bedrooms, and 16 for CIFAR-10. Furthermore,
the discriminator uses twice as many feature channels in each layer as in the DCGAN architecture.
For the Plummer kernel, ε was set to 1. We used the Adam optimizer with a learning rate of 10−4

for the generator and 5 · 10−5 for the discriminator. To improve convergence performance, we used
the tanh output activation function (LeCun et al., 1998). For regularization we used an L2 weight
decay term with a weighting factor of 10−7. Learning was stopped by monitoring the FID metric
(Heusel et al., 2017). Once learning plateaus, we scaled the learning rate down by a factor of 10 and
let it continue once more until the FID plateaus. The results are reported in Table 1b, and generated

1 www.github.com/bioinf-jku/coulomb_gan
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images can be seen in Figure 2 and in the Appendix in Section A.7. Coulomb GANs tend to outper-
form standard GAN approaches like BEGAN and DCGAN, but are outperformed by the Improved
Wasserstein GAN. However it is important to note that the Improved Wasserstein GAN used a more
advanced network architecture based on ResNet blocks (Gulrajani et al., 2017), which we could not
replicate due to runtime constraints. Overall, the low FID of Coulomb GANs stem from the fact
that the images show a wide variety of different samples. E.g. on CelebA, Coulomb GAN exhibit
a very wide variety of faces, backgrounds, eye colors and orientations. To further investigate how

Figure 2: Images from a Coulomb GAN after training on CelebA (first row), LSUN bedrooms
(second row) and CIFAR 10 (last row). Further examples are located in the appendix in Section A.7

Figure 3: The most similar pairs found in batches of 1024 generated faces sampled from the
Coulomb GAN, and the nearest neighbor from the training data shown as third image. Distances
were calculated as Euclidean distances on pixel level.

much variation the samples generated by the Coulomb GAN contains, we followed the advice of
Arora and Zhang (Arora & Zhang, 2017) to estimate the support size of the generator’s distribution
by checking how large a sample from the generator must be before we start generating duplicates.
We were able to generate duplicates with a probability of around 50 % when using samples of size
1024, which indicates that the support size learned by the Coulomb GAN would be around 1M.
This is a strong indication that the Coulomb GAN was able to spread out its samples over the whole
target distribution. A depiction is included in Figure 3, which also shows the nearest neighbor in
the training set of the generated images, confirming that the Coulomb GAN does not just memorize
training images.

3.2 LANGUAGE MODELING

We repeated the experiments from Gulrajani et al. (2017), where Improved Wasserstein GANs
(WGAN-GP) were trained to produce text samples after being trained on the Google Billion Word
data set (Chelba et al., 2013), using the same network architecture as in the original publication. We
use the Jensen-Shannon-divergence on 4-grams and 6-grams as an evaluation criterion. The results
are summarized in Table 1a.
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data set WGAN-GP ours

4 grams 0.38 / 0.35 0.35
6 grams 0.77 / 0.74 0.74

(a) Normalized Jensen-Shanon-
Divergence for the Google Billion
Word data. Values for WGAN-
GP are without/with TTUR, taken
from Heusel et al. (2017).

data set BEGAN DCGAN WGAN-GP MMD ours

CelebA 29.2 / 28.5 21.4 / 12.5 4.8 / 4.2 63.2 9.3
LSUN 113 / 112 70.4 / 57.5 20.5 / 9.5 94.9 31.2
CIFAR10 - - 29.3 / 24.8 38.2 27.3

(b) Performance comparison in FID (lower is better) on differ-
ent data sets. Values for all methods except Coulomb GAN and
MMD-GAN are from without/with TTUR, taken from Heusel et al.
(2017).

4 CONCLUSION

The Coulomb GAN is a generative adversarial network with strong theoretical guarantees. Our theo-
retical results show that the Coulomb GAN will be able to approximate the real distribution perfectly
if the networks have sufficient capacity and training does not get stuck in local minima. Our results
show that the potential field used by the Coulomb GAN far outperforms MMD based approaches
due to its low-dimensional Plummer kernel, which is better suited for modeling probability density
functions, and is very effective at eliminating the mode collapse problem in GANs. This is because
our loss function forces the generated samples to occupy different regions of the learned distribu-
tion. In practice, we have found that Coulomb GANs are able to produce a wide range of different
samples. However, in our experience, this sometimes leads to a small number of generated samples
that are non-sensical interpolations of existing data modes. While these are sometimes also present
in other GAN models (Radford et al., 2016), we found that our model produces such images at a
slightly higher rate. This issue might be solved by finding better ways of learning the discrimina-
tor, as learning the correct potential field is crucial for the Coulomb GAN’s performance. We also
observed that increasing the capacity of the discriminator seems to always increase the generative
performance. We thus hypothesize that the largest issue in learning Coulomb GANs is that the dis-
criminator needs to approximate the potential field Φ very well in a high-dimensional space. In
summary, instead of directly optimizing a criterion based on local differences of densities which can
exhibit many local minima, Coulomb GANs are based on a potential field that has no local minima.
The potential field is created by point charges in an analogy to electric field in physics. We have
proved that if learning converges then it converges to the optimal solution if the samples can be
moved freely. We showed that Coulomb GANs avoid mode collapsing, model the target distribu-
tion more truthfully than standard GANs, and do not overlook high probability regions of the target
distribution.
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A APPENDIX

A.1 EXAMPLE OF CONVERGENCE TO MODE COLLAPSE IN CONVENTIONAL GANS

As an example of how a GAN can converge to a Nash Equilibrium that exhibits mode collapse,
consider a target distribution that consists of two distinct/non-overlapping regions of support C1

and C2 that are distant from each other, i.e., the target probability is zero outside of C1 and C2.
Further assume that 50 % of the probability mass is in C1 and 50 % in C2. Assume that the the
generator has mode-collapsed onto C1, which contains 100 % of the generator’s probability mass.
In this situation, the optimal discriminator classifies all points from C2 as ”real“ (pertaining to the
target distribution) by supplying an output of 1 for them (1 is the target for real samples and 0 the
target for generated samples). Within C1, the other region, the discriminator sees twice as many
generated data points as real ones, as 100 % of the probability mass of the generator’s distribution
is in C1, but only 50 % of the probability mass of the real data distribution. So one third of the
points seen by the discriminator in C1 are real, the other 2 thirds are generated. Thus, to minimize
its prediction error for a proper objective (squared or cross entropy), the discriminator has to output
1/3 for every point from C1. The optimal output is even independent of the exact form of the
real distribution in C1. The generator will match the shape of the target distribution locally. If
the shape is not matched, local gradients of the discriminator with respect to its input would be
present and the generator would improve locally. If local improvements of the generator are no
longer possible, the shape of the target distribution is matched and the discriminator output is locally
constant. In this situation, the expected gradient of the discriminator is the zero vector, because it
has reached an optimum. Since the discriminator output is constant in C1 (and C2), the generator’s
expected gradient is the zero vector, too. The situation is also stable even though we still have
random fluctuations from the ongoing stochastic gradient (SGD) learning: whenever the generator
produces data outside of (but close to) C1, the discriminator can easily detect this and push the
generator’s samples back. Inside C1, small deviations of the generator from the shape of the real
distribution are detected by the discriminator as well, by deviating slightly from 1/3. Subsequently,
the generator is pushed back to the original shape. If the discriminator deviates from its optimum,
it will also be forced back to its optimum. So overall, the GAN learning reached a local Nash
equilibrium and has converged in the sense that the parameters fluctuate around the attractor point
(fluctuations depend on learning rate, sample size, etc.). To achieve true mathematical convergence,
Heusel et al. (2017) assume decaying learning rates to anneal the random fluctuations, similar to
Robbins & Monro (1951) original convergence proof for SGD.

A.2 PROOF OF THEOREM 1

We first recall Theorem 1:

Theorem (Convergence with low-dimensional Plummer kernel). For a, b ∈ Rm, d 6 m − 2, and
ε > 0 the densities px(.) and py(.) equalize over time when minimizing energy F with the low-
dimensional Plummer kernel by gradient descent. The convergence is faster for larger d.

In a first step, we prove that for local maxima or local minima a of ρ, the expression sign(∇ ·
E(a)) = sign(ρ(a)) holds for ε small enough. For proving this equation, we apply the Laplace
operator for spherical coordinates to the low-dimensional Plummer kernel. Using the result, we see
that the integral∇ · E(a) = −

∫
ρ(b)∇2

ak (a, b) db is dominated by large negative values of∇2
ak

around a. These negative values can even be decreased by decreasing ε. Therefore we can ensure by
a small enough ε that at each local minimum and local maximum a of ρ sign(ρ̇(a)) = −sign(ρ(a)).
Thus, the maximal and minimal points of ρ move toward zero.

In a second step, we show that new maxima or minima cannot appear and that the movement of
Φ toward zero stops at zero and not earlier. Since ρ is continuously differentiable, all points in
environments of maxima and minima move toward zero. Therefore the largest |ρ(a)| moves toward
zero. We have to ensure that moving toward zero does not converge to a point apart from zero.
We derive that the movement toward zero is lower bounded by ρ̇(a) = −sign(ρ(a))λρ2(a). Thus,
the movement slows down at ρ(a) = 0. Solving the differential equation and applying it to the
maximum of the absolute value of ρ gives |ρ|max(t) = 1/(λt+ (|ρ|max(0))−1). Thus, ρ converges
to zero over time.
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Proof. For d = m− 2, we have∇2k(a, b) = δ(a−b), where the theorem has already been proved
for ε small enough (Hochreiter & Obermayer, 2005).

At each local minimum and local maximum a of ρ we have ∇aρ(a) = 0. Using the product rule
for the divergence operator, Eq. (3) reduces to

ρ̇(a) = − sign(ρ(a)) ρ(a)∇ · E(a) . (11)

The term∇ · E(a) can be expressed as

∇ · E(a) = −∇2
aΦ (a) = −

∫
ρ(b)∇2

ak (a, b) db . (12)

We next consider ∇2
ak (a, b) for the low-dimensional Plummer kernel. We define the spherical

Laplace operator in (m− 1) dimensions as∇2
Sm−1 , then the Laplace operator in spherical coordi-

nates is (Proposition 2.5 in Frye & Efthimiou (Efthimiou & Frye, 2014)):

∇2 =
∂2

∂r2
+

m− 1

r

∂

∂r
+

m− 1

r2
∇2
Sm−1 . (13)

Note that∇2
Sm−1 only has second order derivatives with respect to the angles of the spherical coor-

dinates.

With r = ‖a − b‖ we obtain for the Laplace operator applied to the low-dimensional Plummer
kernel:

∇2k(a, b) = d (− ε2 m + (2 + d − m) r2) (ε2 + r2)−2−d/2 . (14)

and in particular

∇2k(a,a) = −m dε−(d+2) . (15)

For d 6 m− 2 we have (2 + d−m) 6 0, and obtain

∇2k(a, b) < 0 , (16)

and
∂

∂r
∇2k(a, b) = d (2 + d) r (ε2 (2 +m) + (−2− d+m)r2) (ε2 + r2)−3−d/2 > 0 (17)

and
∂

∂ε
∇2k(a, b) = d (2 + d) ε (ε2m + (−4− d+m)r2) (ε2 + r2)−3−d/2 > 0 . (18)

Therefore, ∇2k(a, b) is negative with minimum −mdε−(d+2) at r = 0 and increasing with r and
increasing with ε for d 6 m − 4. For d = m − 3 we have to restrict in the following the sphere
Sτ (a) to τ <

√
mε and ensure increase of∇2k(a, b) with ε.

If ρ(b) 6= 0, then we define a sphere Sτ (a) with radius τ around a for which holds sign(ρ(b)) =
sign(ρ(a)) for each b ∈ Sτ (a). Note that∇2k(a, b) is continuous differentiable. We have

∇ · E(a) = −
∫
ρ(b)∇2

ak (a, b) db = (19)

−
∫
Sτ (a)

ρ(b)∇2
ak (a, b) db −

∫
T\Sτ (a)

ρ(b)∇2
ak (a, b) db .

We bound∇2k(a, b) by

0 > ∇2k(a, b) = d (− ε2 m + (2 + d − m) r2) (ε2 + r2)−2−d/2 > d (2 + d − m) r−2−d .
(20)

Using τ , we now bound
∣∣∣∫T\Sτ (a) ρ(b)∇2

ak (a, b) db
∣∣∣ independently from ε, since ρ is a difference

of distributions. For small enough ε we can ensure∣∣∣∣∣
∫
Sτ (a)

ρ(b)∇2
ak (a, b) db

∣∣∣∣∣ >
∣∣∣∣∣
∫
T\Sτ (a)

ρ(b)∇2
ak (a, b) db

∣∣∣∣∣ . (21)
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Therefore we have
sign(∇ · E(a)) = sign(ρ(a)) . (22)

Therefore we have at each local minimum and local maximum a of ρ
sign(ρ̇(a)) = − sign(ρ(a)) . (23)

Therefore the maximal and minimal points of ρ move toward zero. Since ρ is continuously differ-
entiable as is the field, also the points in an environment of the maximal and minimal points move
toward zero. Points that are not in an environment of the maximal or minimal points cannot become
maximal points in an infinitesimal time step.

Since the contribution of a environment Sτ (a) dominates the integral Eq. (19), for ε small enough
there exists a positive 0 < λ globally for all minima and maxima as well as for all time steps for
which holds:

|∇ · E(a)| > λ |ρ(a)| . (24)
The factor λ depends on k and on the initial ρ. λ is proportional to d. Larger d lead to larger
|∇·E(a)| since the maximum or minimum ρ(a) is upweighted. There might exist initial conditions
ρ for which λ → 0, e.g. for infinite many maxima and minima, but they are impossible in our
applications.

Therefore maximal or minimal points approach zero faster or equal than given by
ρ̇(a) = − sign(ρ(a)) λ ρ2(a) . (25)

In particular this differential equation dominates the global maximum |ρ|max of |ρ(.)|. Solving the
differential equation gives that at least

|ρ|max(t) =
1

λ t + (|ρ|max(0))
−1 . (26)

Thus d influences the worst case rate of convergence, where larger d with d 6 m− 2 leads to faster
worst case convergence.

Consequently, ρ converges to the zero function over time, that is, px(.) becomes equal to py(.).

A.3 PROOF OF THEOREM 2

We first recall Theorem 2:
Theorem (Optimal Solution). If the pair (D∗, G∗) is a local Nash equilibrium for the Coulomb
GAN objectives, then it is the global Nash equilibrium, and no other local Nash equilibria exist, and
G∗ has output distribution px = py .

Proof. (D∗, G∗) being in a local Nash equilibrium means that (D∗, G∗) fulfills the two conditions
D∗ = arg min

D∈U(D∗)

LD(D;G∗) and G∗ = arg min
G∈U(G∗)

LG(G;D∗) (27)

for some neighborhoods U(D∗) and U(G∗). For Coulomb GANs that means, D∗ has learned the
potential Φ induced by G∗ perfectly, because LD is convex in D, thus if D∗ is optimal within an
neighborhood U(D∗), it must be the global optimum. This means that G∗ is directly minimizing
LG(G;D) = − 1

2Epz (Φ(G(z))). The Coulomb potential energy is according to Eq. (7)

F (ρ) =
1

2

∫
ρ(a)Φ(a)da =

1

2

∫
py(a)Φ(a)da − 1

2

∫
px(a)Φ(a)da . (28)

Only the samples from px stem from the generator, where px(a) =
∫
δ(a−G(z))pz(z)dz. Here δ

is the δ-distribution centered at zero. The part of the energy which depends on the generator is

− 1

2

∫
px(a) Φ(a) da = − 1

2

∫ ∫
δ(a−G(z)) pz(z) dz Φ(a) da (29)

= − 1

2

∫ ( ∫
δ(a−G(z)) Φ(a) da

)
pz(z) dz

= − 1

2

∫
pz(z) Φ(G(z)) dz = −1

2
Epz (Φ(G(z))) .
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Theorem 1 guarantees that there are no other local minima except the global one when minimizing
F . F has one minimum, F = 0, which implies Φ(a) = 0 and ρ(a) = 0 for all a, therefore also
py = px according to Theorem 1. Each Φ(a) 6= 0 would mean there exist potential differences
which in turn would cause forces on generator samples that allow to further minimize the energy.
Since we assumed that the generator can reach the minimum py = px for any py , it will be reached
by local (stepwise) optimization of − 1

2Epz (Φ(G(z))) with respect to G. Since the pair (D∗, G∗) is
optimal within their neighborhood, the generator has reached this minimum as there is not other local
minimum than the global one. Therefore G∗ has model density px with py = px. The convergence
point is a global Nash equilibrium, because there is no approximation error and zero energy F = 0
is a global minimum for discriminator and generator, respectively. Theorem 1 ensures that other
local Nash equilibria are not possible.

A.4 COULOMB EQUATIONS IN THE CASE OF FINITE SAMPLES

GANs are sample-based, that is, samples are drawn from the model for learning (Hochreiter &
Obermayer, 2005; Gutmann & Hyvärinen, 2012). Typically this is done in mini-batches, where
each mini-batch consists of two sets of samples, the target samples Y = {yi|i = 1 . . . Ny}, and the
model samples X = {xi|i = 1 . . . Nx}.
For such finite samples, i.e. point charges, we have to use delta distributions to obtain unbiased
estimates of the the model distribution px(.) and the target distribution py(.):

p̂y(a;Y) =
1

Ny

Ny∑
i=1

δ (a− yi) , p̂x(a;X ) =
1

Nx

Nx∑
i=1

δ (a− xi) , ρ̂(a;X ,Y) = py(a;Y) − px(a;X ) ,

(30)

where δ is the Dirac δ-distribution centered at zero. These are unbiased estimates of the underlying
distribution, as can be seen by:

EX

(
1

Nx

Nx∑
i=1

δ(a− xi)

)
=

1

Nx

Nx∑
i=1

Exi (δ(a− xi)) =
1

Nx

Nx∑
i=1

px(a) = px(a) . (31)

In the rest of the paper, we will drop the explicit parameterization with X and Y for all estimates to
unclutter notation, and instead just use the hat sign to denote estimates. In the same fashion as for
the distributions, when we use fixed samples X and Y , we obtain the following unbiased estimates
for the potential, energy and field given by Eq. (5), Eq. (6), and Eq. (7):

Φ̂(a) =
1

Ny

Ny∑
i=1

k (a,yi) −
1

Nx

Nx∑
i=1

k (a,xi) , (32)

F̂ (ρ) =
1

2

 1

N2
y

Ny∑
i=1

Ny∑
j=1

k (yi,yj) −
2

NyNx

Ny∑
i=1

Nx∑
j=1

k (yi,xj) +
1

N2
x

Nx∑
i=1

Nx∑
j=1

k (xi,xj)

 (33)

=
1

2

 1

Ny

Ny∑
i=1

Φ̂ (yi) −
1

Nx

Nx∑
i=1

Φ̂ (xi)

 ,

Ê(a) = −∇a Φ̂(a) = − 1

Ny

Ny∑
i=1

∇ak (a,yi) +
1

Nx

Nx∑
i=1

∇ak (a,xi) (34)

Ê(yi) = − Ny ∇yi F̂ (ρ) , Ê(xi) = Nx ∇xi F̂ (ρ) .
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These are again unbiased, e.g.:

EX ,Y(Φ̂(a)) =
1

Ny

Ny∑
i=1

Eyi (k(a,yi)) −
1

Nx

Nx∑
i=1

Exi (k(a,xi)) (35)

=
1

Ny

Ny∑
i=1

∫
py(yi) k(a,yi) dyi −

1

Nx

Nx∑
i=1

∫
px(xi) k(a,xi) dxi

=

∫
py(y) k(a,y) dy −

∫
px(x) k(a,x) dx

=

∫
(py(x) − px(x)) k(a,x) dx =

∫
ρ(x) k(a,x) dx = Φ(a)

If we draw samples of infinite size, all these expressions for a fixed sample size lead to the equivalent
statements for densities. The sample-based formulation, that is, point charges in physical terms,
can only have local energy minima or maxima at locations of samples (Dembo & Zeitouni, 1988).
Furthermore the field lines originate and end at samples, therefore the field guides model samples x
toward real world samples y, as depicted in Figure 1. The factors Ny and Nx in the last equations
arise from the fact that −∇aF gives the force which is applied to a sample with charge. A sample
yi is positively charged with 1/Ny and follows −∇yiF while a sample xi is negatively charged
with −1/Nx and therefore follows −∇xiF , too. Thus, following the force induced on a sample by
the field is equivalent to gradient descent of the energy F with respect to samples yi and xi.

A.5 MIXTURE OF GAUSSIANS

We use the synthetic data set introduced by Lim & Ye (2017) to show that Coulomb GANs avoid
mode collapse and that all modes of the target distribution are captured by the generative model. This
data set comprises 100K data points drawn from a Gaussian mixture model of 25 components which
are spread out evenly in the range [−21, 21] × [−21, 21], with each component having a variance
of 1. To make results comparable with Lim & Ye (2017), the Coulomb GAN used a discriminator
network with 2 hidden layers of 128 units, however we avoided batch normalization by using the
ELU activation function (Clevert et al., 2016). We used the Plummer kernel in 3 dimensions (d = 3)
with an epsilon of 3 (ε = 3) and a learning rate of 0.01, both of which were exponentially decayed
during the 1M update steps of the Adam optimizer.

As can be seen in Figure 4, samples from the learned Coulomb GAN very well approximate the
target distribution. All components of the original distribution are present at the model distribu-
tion at approximately the correct ratio, as shown in Figure 5. Moreover, the generated samples
are distributed approximately according to the same spread for each component of the real world
distribution. Coulomb GANs outperform other compared methods, which either fail to learn the
distribution completely, ignore some of the modes, or do not capture the within-mode spread of a
Gaussian. The Coulomb GAN is the only GAN approach that manages to avoid a within-cluster
collapse leading to insufficient variance within a cluster.

17



Published as a conference paper at ICLR 2018

(a) True data (b) GAN (c) Geometric GAN (d) WGAN (e) meanGAN + proj.

(f) Coulomb GAN (g) GAN + WD (h) Geo. GAN + WD (i) WGAN + WD (j) meanGAN + WD

Figure 4: Scatter plots of generated samples from different GAN variants for the mixture of 25
Gaussians and the true data distribution. “WD” indicates weight decay and “proj.” means projection.
Results and images for all methods except the Coulomb GAN are taken from Lim & Ye (2017).

Figure 5: 2D histogram of the density of generated and the training st data for the mixture of 25
Gaussians. For constructing the histogram, 10k samples were drawn from the target and the model
distribution. The Coulomb GAN captures the underlying distribution well, does not miss any modes,
and places almost all probability mass on the modes. Only the Coulomb GAN captured the within-
mode spread of the Gaussians.
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A.6 PSEUDOCODE FOR COULOMB GANS

The following gives the pseudo code for training GANs. Note that when calculating the derivative
of Φ̂(ai;X ,Y), it is important to only derive with respect to a, and not wrt. X ,Y , even if it can
happen that e.g. a ∈ X . In frameworks that offer automatic differentiation such as Tensorflow or
Theano, this means stopping the possible gradient back-propagation through those parameters.

Algorithm 1 Minibatch stochastic gradient descent training of Coulomb GANs for updating the the discrim-
inator weightsw and the generator weights θ.

while Stopping criterion not met do
• Sample minibatch of Nx training samples {x1, . . . ,xNx} from training set
• Sample minibatch of Ny generator samples {y1, . . . ,yNy} from the generator
• Calculate the gradient for the discriminator weights:

dw ← ∇w

1

2

Nx∑
i=1

(
D(xi)− Φ̂(xi)

)2
+

1

2

Ny∑
i=1

(
D(yi)− Φ̂(yi)

)2
• Calculate the gradient for the generator weights:

dθ ← ∇θ

[
−1

2

1

Nx

Nx∑
i=1

D (xi)

]

• Update weights according to optimizer rule (e.g. Adam):

wn+1 = wn + ADAM(dw, n)

θn+1 = θn + ADAM(dθ, n)

end while
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A.7 MORE SAMPLES FROM COULOMB GANS

CELEBA

Images from a Coulomb GAN after training on CelebA data set. The low FID stems from the fact
that the images show a wide variety of different faces, backgrounds, eye colors and orientations.
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LSUN BEDROOMS

Images from a Coulomb GAN after training on the LSUN bedroom data set.

CIFAR 10

Images from a Coulomb GAN after training on the CIFAR 10 data set.
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