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Abstract

Two of the central factors believed to underpin
human sentence processing difficulty are ex-
pectations and retrieval from working memory.
A recent attempt to create a unified cognitive
model integrating these two factors relied on
the parallels between the self-attention mecha-
nism of transformer language models and cue-
based retrieval theories of working memory in
human sentence processing (Ryu and Lewis,
2021). While Ryu and Lewis show that at-
tention patterns in specialized attention heads
of GPT-2 are consistent with similarity-based
interference, a key prediction of cue-based re-
trieval models, their method requires identify-
ing syntactically specialized attention heads,
and makes the cognitively implausible assump-
tion that hundreds of memory retrieval oper-
ations take place in parallel. In the present
work, we develop a recurrent neural language
model with a single self-attention head, which
more closely parallels the memory system as-
sumed by cognitive theories. We show that our
model’s single attention head captures seman-
tic and syntactic interference effects observed
in human experiments.

1 Introduction

Theories of human sentence processing can be di-
vided into two broad categories. Expectation-based
theories like surprisal theory (Hale, 2001; Levy,
2008; Smith and Levy, 2013) ascribe processing
difficulty to a word’s predictability. Memory-based
theories, such as cue-based retrieval (Van Dyke
and Lewis, 2003; Lewis and Vasishth, 2005; Lewis
et al., 2006; Wagers et al., 2009; Vasishth and En-
gelmann, 2021), account for processing difficulty
incurred due to limitations on working memory en-
coding and retrieval. Integrating these approaches
has become a major goal of sentence processing
research (Demberg and Keller, 2009; Levy, 2013;
Campanelli et al., 2018; Futrell et al., 2020; Hahn
et al., 2022).

Figure 1: A demonstration of how the CBR-RNN can
model similarity-based interference at the verb “are”,
compared to cue-based retrieval theories. While cue-
based retrieval theories traditionally stipulate retrieval
cue features, the neural model learns cue and target
features through a next word and syntactic prediction
objective. The model retrieves a weighted sum of past
representations based on their similarity to the verb’s
cue/query feature vector. The retrieved representation is
used to predict the next word in the sequence.

Surprisal theory argues that the processing diffi-
culty associated with a word is linearly related to
its negative log probability, or surprisal, in context.
Surprisal theory is agnostic by design to the pre-
cise mechanisms underlying sentence processing;
models with drastically different representational
assumptions can be used to obtain surprisal esti-
mates (Levy, 2008, 2013). The advent of neural
network language models (NLMs), in particular,
has broadened surprisal theory’s empirical cover-
age to a wide range of phenomena (van Schijn-



del and Linzen, 2018; Arehalli and Linzen, 2020;
Wilcox et al., 2021). However, NLMs’ opaque
internal representations make it difficult to relate
them to theories of how language is represented
and retrieved from memory by humans (though see
Lakretz et al. 2019, 2021).

By contrast, cue-based retrieval theories make
explicit claims about how working memory is struc-
tured and accessed during language comprehen-
sion. According to these theories, humans have
a narrow attentional focus, and therefore must re-
trieve items from working memory to resolve long-
distance linguistic dependencies. Items in working
memory are accessed by matching a set of featu-
ral retrieval cues provided by the current word in
parallel against the features of all items in working
memory. The item which best matches the cue fea-
tures is retrieved and used to parse the current word.
The speed and accuracy of retrieval is affected by
the number of items in memory that match the re-
trieval cue features. The effect of similarity of the
target and distractor items on retrieval difficulty,
referred to as similarity-based interference, is a
key prediction of cue-based retrieval models, and
has been used to explain various phenomena in the
sentence processing literature (Vasishth and Engel-
mann, 2021).

Despite their empirical successes, implemented
models of cue-based retrieval traditionally employ
only a small set of hand-picked linguistic features,
such as [+/-subject] or [+/-singular]. This
limits model coverage, increases modeler degrees
of freedom and decreases theoretical parsimony
(Smith and Vasishth, 2020). By contrast, NLMs
learn all of their linguistic features implicitly as
they optimize a word prediction training objective.

Leveraging this ability of NLMs, Ryu and Lewis
(2021) propose a synthesis of surprisal and cue-
based retrieval theories. They note the parallels be-
tween cue-based retrieval and neural self-attention
in transformer NLMs (Vaswani et al., 2017). To
generate a contextualized representation of the cur-
rent word, self-attention heads score the represen-
tations of all context words against a query gener-
ated at the current word, and sum the context word
representations weighted by these attention scores.
Transformer NLMs, such as GPT-2 (Radford et al.,
2019), use many attention heads simultaneously,
arranged into multiple layers. Ryu and Lewis show
that attention patterns in a syntactically-specialized
head in GPT-2 are consistent with similarity-based

interference explanations of sentence processing
difficulty. Crucially, in their model, all of the fea-
tures used to compute attention scores were implic-
itly learned through the model’s next word predic-
tion training objective; no linguistic features need
to be hand-picked.

Despite some parallels between transformers
like GPT-2 and cue-based retrieval models, how-
ever, there are crucial differences in their working
memory limitations. The smallest GPT-2 model
has 144 attention heads. Under the view of self-
attention as cue-based retrieval, this would mean
that 144 distinct retrievals from working memory
take place at each timestep. By contrast, cue-based
retrieval theories argue that working memory is
highly constrained; a very limited number of items
can be retrieved from memory within the time it
takes to process a single word. If an NLM is to
truly integrate expectation and memory-based the-
ories, then it must be consistent with assumptions
about human working memory.

In this work, we present a recurrent NLM with
memory limitations that are more closely aligned
with cue-based retrieval theories. Figure 1 shows
how we conceptualize memory retrieval in our
model. We use self-attention to implement cue-
based memory retrieval, but employ only a single
attention head, limiting the model to a single re-
trieval operation per timestep. In contrast to prior
approaches, we do not need to rely on post-hoc
identification of syntactically specialized attention
heads.

In our first experiment, we confirm that our
model’s single attention head learns to track
subject-verb dependencies without direct supervi-
sion. In our main experiment, we show that mea-
sures of memory retrieval difficulty derived from
our model’s attention mechanism capture both se-
mantic and syntactic retrieval interference effects
from a human experiment (Laurinavichyute and
von der Malsburg, 2022), without the need to hand-
pick any linguistic features as in existing cue-based
retrieval theories.1

2 Background: Attraction and
Similarity-Based Interference

2.1 Agreement Attraction
In Mainstream English, the subject of a sentence
must agree with its corresponding verb in num-

1All model and analysis code is available at:
github.com/wtimkey/cue-based-retrieval-rnn

https://github.com/wtimkey/cue-based-retrieval-rnn


ber. For example, “The keys are on the table” is
grammatical, but “The key are on the table” is un-
grammatical. Although, grammatically speaking,
number marking on the verb should depend only
on the number of the subject noun phrase, real-time
production experiments have shown that humans
sometimes produce verb forms agreeing with a non-
subject noun, called an attractor, instead of the
true subject. For example, when prompted with
a preamble such as “the key to the cabinets...”,
which contains a singular subject and a plural at-
tractor noun, speakers often produce the plural verb
“are” rather than the grammatically correct singu-
lar form “is” (Bock and Miller, 1991). This phe-
nomenon is referred to as agreement attraction.

Similar phenomena have been observed in com-
prehension (Pearlmutter et al., 1999; Wagers et al.,
2009). In general, readers slow down upon en-
countering a verb which does not agree in number
with the subject, suggesting they are able to detect
the agreement error. However, this slowdown is
attenuated in the presence of an attractor, indicat-
ing the the attractor interferes with readers’ ability
to detect the agreement error. For example, the
verb “are” is read faster in sentences like (2) than
sentences like (1).

(1) The key to the cabinet are on the table.
(2) The key to the cabinets are on the table.

2.1.1 Similarity-based Interference
Agreement attraction in comprehension has been
taken as evidence for cue-based retrieval theories
of sentence processing (Wagers et al., 2009; Va-
sishth and Engelmann, 2021). These theories posit
that humans have a sharply limited attentional fo-
cus, and must resolve syntactic dependencies by
retrieving items from working memory. Retrieval
is carried out though a parallel feature-matching
process between items in memory and a set of cues
for retrieval provided by the current word. The item
which best matches the retrieval cues is retrieved
and used to parse the current word.

Memory retrieval in cue-based theories is an im-
perfect process. The speed and accuracy of retrieval
is affected by the number of items in memory that
provide a partial match to the retrieval cues. This is
referred to as similarity-based interference. If mul-
tiple items partially match the retrieval cues, then
retrieval will be faster, but may be erroneous. For
example, when a reader reaches the plural verb “are”
in (2) and (1), they use the cues [+subject] and

[+plural] to retrieve the subject. In (1), only one
item in memory, the “key” noun phrase, matches
any of the retrieval cues (specifically, [+subject]).
In (2), “key” matches one cue, [+subject], but
“cabinets” matches the other cue, [+plural]. In
this case, both items are possible candidates for
retrieval, leading to a speedup in processing (Fig-
ure 1).

There are several explanations for this speedup
(Wagers et al., 2009). We adopt the following ex-
planation: In trials where the subject is correctly
retrieved, the number-mismatch is detected, trig-
gering a costly reanalysis process. This is the only
expected outcome in (1). In (2), the non-subject,
number-matching attractor can be mistakenly re-
trieved. In these cases the number agreement er-
ror goes unnoticed, and the reanalysis process is
avoided.

2.2 Semantic Attraction
Attraction arises in the processing not only of syn-
tactic constraints like subject-verb agreement, but
also of semantic plausibility constraints (Cunnings
and Sturt, 2018; Laurinavichyute and von der Mals-
burg, 2022). For example, consider the following
pair of sentences:

(3) The drawer with the handle cut the bread.
(4) The drawer with the knife cut the bread.

Although both sentences involve a semantically
implausible scenario in which a drawer is cutting
bread, readers judge sentences like (4), which in-
cludes the attractor “knife”, as more plausible than
sentences like (3).

The cue responsible for agreement attrac-
tion is the same for any number-marked verb
([+/-plural]). Semantic retrieval cues, by con-
trast, can be lexically-specific. For example, the
verb “cut” in (3) and (4) uses the semantic cue
[+can_cut] when retrieving the subject (Lauri-
navichyute and von der Malsburg, 2022). In (4),
the attractor “knife” matches the [+can_cut] cue,
while the true subject “drawer” matches only the
[+subject] cue, resulting in retrieval interference.

While it is possible that an array of highly spe-
cific features are used to access items in working
memory, it is difficult to identify the right feature
inventory in a principled way. Motivated by this
problem, Smith and Vasishth (2020) showed that
a cue-based retrieval model augmented with dis-
tributed semantic features from static word em-
beddings were able to capture semantic attraction



effects. In contrast to their model, NLMs with self-
attention implicitly learn features to access past
representations which are optimal for predicting
upcoming words. In the present work, we evaluate
whether such a model is sensitive to both semantic
and syntactic interference.

3 Model

3.1 Motivation: Self-Attention as Cue-Based
Retrieval

As Ryu and Lewis (2021) point out, self-attention
(Luong et al., 2015; Vaswani et al., 2017) has key
similarities to working memory in cue-based re-
trieval models: The query vector resembles the set
of cue features in cue-based retrieval models in that
both are matched against items in memory to de-
termine what should be retrieved; the key vectors
correspond to the featural representation of mem-
ory items in cue-based theories; and the attention
score in self-attention and item activations in cue-
based theories are both computed based on featural
similarity.

There are key differences between cue-based re-
trieval theories and self-attention in transformers as
well. The difference which motivates the present
work is the number of retrieval operations that take
place at each word. Cue-based retrieval theories of
sentence processing are built upon independently-
motivated principles of human memory. One prin-
ciple is that humans can only keep one to three
items in their attentional focus a time (McElree,
2001). In order to bring another item into focus, it
must be retrieved from working memory, which is
costly and imperfect. Minimizing the number of
retrievals per word (to just one or two) is a guid-
ing principle of the retrieval model proposed in
(Lewis and Vasishth, 2005, p.412). The model Ryu
and Lewis (2021) investigate, GPT-2 small, has
144 self-attention heads. Under the view that each
head engages in cue-based retrieval, 144 distinct
retrieval operations will take place at each word.
In our single-headed model, exactly one retrieval
takes place at each word.

In addition to cognitive plausibility considera-
tions, it is unclear how a single measure of memory
interference should be derived from a model that
uses multiple specialized attention heads simultane-
ously. Ryu and Lewis (2021) identify and analyze
a small subset of heads whose attention patterns
correlated with subject-verb and reflexive depen-
dencies. Some syntactic dependency types may

Figure 2: A schematic of the CBR-RNN Cell.

not be specialized to any particular head at all, but
rather distributed across multiple interacting heads,
obscuring interference effects.

Even if multiple attention heads correlate with
some dependency type, each correlation could arise
for different reasons. For example, we might find
two heads whose attention patterns correlate with
subject-verb dependencies in typical cases where
the subject is semantically plausible and agrees in
number with the verb. But one of these heads might
identify the subject only by number marking, while
the other uses only semantic information. One head
would show only agreement interference, while the
other shows only semantic interference. In human
experiments, Laurinavichyute and von der Mals-
burg (2022) show that both types of interference
interact with one another, producing an additive
effect. It is not clear how the individual effects of
each heads could be combined into a general mea-
sure of processing difficulty (though see Oh and
Schuler 2022). Our single-headed model obviates
the need to identify or aggregate attention heads.

3.2 Model Architecture
Our model, which we refer to as a Cue-Based Re-
trieval/Recurrent Neural Network (CBR-RNN), is
a simple recurrent neural network (SRNN) lan-
guage model (Elman, 1990) augmented with self-
attention (Bahdanau et al., 2015). At each timestep,
the model retrieves a weighted sum of representa-



tions computed in previous timesteps. The weights
of this sum are determined through self-attention.
The model is similar to Single Head Attention
RNNs (SHA-RNNs; Merity 2019), with two differ-
ences motivated by cue-based retrieval theories.

First, in contrast with the SHA-RNN, which is
based on long short-term memory (LSTM) units
(Hochreiter and Schmidhuber, 1997), our model
is based on an SRNN. LSTMs have memory cells
designed explicitly to handle long-distance depen-
dencies; by using the simpler SRNN architecture,
which does not have this mechanism, we aim to
limit our model’s ability to encode information in
its hidden state over long distances, forcing it to
rely on self-attention. Second, in GPT-2 and SHA-
RNNs, attention spans over representations from
both the current and all previous timesteps. In our
model, only key and value vectors from previous
timesteps are accessed by the attention mechanism.
This is because in cue-based retrieval theories, the
current word is already active, so it does not need
to be retrieved. This also allows us to generate key
and value vectors for the current word that depend
on the result of the current attention step. Likewise,
in cue-based retrieval models, new items in work-
ing memory are not generated at the same time as
retrieval cues, but after the retrieval operations have
taken place.

Figure 2 provides a basic schematic of the model.
At each timestep i, the embedding of the current
word wi is concatenated with the previous hidden
state, hi−1. The result passes through a feedfor-
ward layer to produce an attention query vector
qi. Attention scores are generated by taking the
dot product of qi and key vectors from all previous
timesteps, K1...i−1, then applying the softmax to
produce attention weights. The result is the con-
text vector ai, an attention-weighted sum of value
vectors V1...i−1. Then, gi, wi, qi and vt are concate-
nated and passed through two feedforward layers.
The resulting vector is split into three smaller vec-
tors of equal size: the key and value vectors for
the current timestep (ki and vi, respectively) and
the hidden representation hi. We append ki and vi
to the key and value caches, K and V , for use in
future timesteps. We use hi for all predictions, and
pass it to the following timestep.

3.3 Model Training

We trained our model on two objectives. The first
is next-word prediction on a lowercased version

of the 103M token WikiText-103 corpus (Merity
et al., 2017). In contrast to many contemporary
language models that use subword tokenization,
we use a simpler word-level tokenization scheme,
with a vocabulary pruned to the most frequent 50k
word types from the training corpus.

The second objective is Combinatory Categor-
ical Grammar (CCG) supertagging (Steedman,
1987). Prior work has argued that humans weigh
syntactic factors more heavily than NLMs do when
making predictions (van Schijndel and Linzen,
2021; Arehalli et al., 2022). Since we are inter-
ested in modeling how humans use working mem-
ory when processing syntactic dependencies, we
aim to encourage our model to represent and use
syntactic information its attention mechanism. The
addition of a CCG supertagging objective has been
shown in prior work to induce richer syntactic rep-
resentations (Enguehard et al., 2017). We gener-
ated CCG supertags for the entire WikiText-103
corpus using a state-of-the-art CCG supertagger
(Tian et al., 2020).2 The global loss, L, is defined
as:

L = LLM + αLCCG (1)

where LLM is the language modeling loss, LCCG

is the CCG supertagging loss, and α is a scaling
factor. Of the 15 total random seeds of our model,
five were trained with α = 5, five were trained with
α = 1, and five random seeds were trained with
next-word prediction loss only (α = 0).

3.4 Language Modeling and CCG
Supertagging Performance

To test how well our model performs on its train-
ing objectives relative to existing architectures, we
trained LSTMs with a similar number of parame-
ters on the same data and objectives as the CBR-
RNN models. We found that CBR-RNN mod-
els have generally comparable, or even superior
language modeling and CCG supertagging perfor-
mance to the LSTMs.

To test whether the self-attention mechanism is
essential for the model’s language modeling and
CCG supertagging performance, we trained 15
CBR-RNN models with an ablated attention mech-
anism. The language modeling perplexity was sig-
nificantly higher in the ablated models. By contrast,
CCG supertagging accuracy did not significantly

2The accuracy of this tagger on the CCGBank corpus
(Hockenmaier and Steedman, 2007) is 96.1%.



Figure 3: Percentage of items in the subject-verb de-
pendency corpus in which the subject representation
has the largest attention weight upon encountering the
verb, plotted by dependency length (left) and number
of intervening nouns (right). Chance is given by dashed
lines. The darker dashed line is chance when picking
any left-context token at random, the lighter dashed line
is picking any noun within the span of the dependency
at random. α is the weight of the CCG supertagging
objective.

decrease in the ablated models. Detailed results for
both experiments are reported in Appendix B.

4 Experiments

We first examined whether the attention mechanism
in trained CBR-RNN models is sensitive to long-
distance subject-verb dependencies, even though it
does not receive direct supervision in training as to
the words that should be attended to. Then, in our
main experiment, we evaluated whether language
model surprisal and a measure of similarity-based
interference from our model’s attention mechanism
capture semantic and agreement attraction effects
using experimental stimuli from Laurinavichyute
and von der Malsburg (2022).

4.1 Does Self-Attention Track Subject-Verb
Dependencies?

Cue based retrieval models of sentence process-
ing assume that items are retrieved from working
memory to guide parsing and to form syntactic de-
pendencies. In this experiment, we verify that the
behavior of our models attention mechanism is gen-
erally consistent with this this goal. We investigate
whether attention patterns from our model reflect a
sensitivity to subject-verb dependencies of varying
lengths and number of intervening nouns.

We generated a dependency corpus from the test
and validation portions of our training corpus us-

ing the spaCy dependency parser from the spaCy
en_core_web_trf pipeline 3. We extracted all
examples of subject-verb dependencies (approx-
imately 17k in total) along with their length and
the number of nouns that intervened between the
subject and the verb.

We evaluate the percentage of examples where
the models assigns a greater attention weight to the
subject than to any other words upon encountering
the verb. We report this percentage as a function
of both dependency length and the number of inter-
vening nouns between the verb and its subject. We
compare these percentages to two baselines: ran-
domly selecting any context token, and randomly
selecting any noun within the dependency span.

4.1.1 Results
Models pay significantly more attention to the cur-
rent verb’s subject than chance would predict (Fig-
ure 3). Models trained with the additional CCG
supertagging objective attended to the subject more
often than models trained without it. This suggests
that the auxiliary syntactic objective is useful for
inducing syntax-sensitive behavior in the model’s
attention mechanism.

4.2 Do Models Capture Agreement Attraction
and Semantic Attraction?

In the following section, we evaluate whether our
model captures agreement and semantic attraction,
and their interaction with one another. We exam-
ine surprisal and a measure of similarity-based in-
terference from our model’s attention head. We
also evaluate the GPT-2 model used by Ryu and
Lewis on both measures, using the syntactically-
specialized heads the authors identify, referred to
by their location as head4_3, head3_6, head6_0,
and head2_9.

4.2.1 Materials
We evaluate our models on experimental stimuli
from Laurinavichyute and von der Malsburg (2022)
Experiment 3. We made some minor modifica-
tions to the stimuli to eliminate potential confounds
specific to our model (seeAppendix A for details).
Examples of each condition are given in Table 1.
All conditions violate either subject-verb agree-
ment (A, B), semantic plausibility (C, D) or both
constraints simultaneously (E–H). Each violation
type has a baseline condition with no attractor, and

3The accuracy of this parser on the Penn Treebank is
95.1%.



Condition Violation Attractor Prefix Verb

A. Agreement None The drawer with the handle really OPEN
B. Agreement Agreement The drawer with the handles really OPEN
C. Semantic None The drawer with the handle really CUTS
D. Semantic Semantic The drawer with the knife really CUTS
E. Double None The drawer with the handle really CUT
F. Double Double The drawer with the knives really CUT
G. Double Semantic The drawer with the knife really CUT
H. Double Agreement The drawer with the handles really CUT

Table 1: Example stimuli from Experiment 3 of Laurinavichyute and von der Malsburg (2022).

Figure 4: Simulation results for Experiment 3 of Laurinavichyute and von der Malsburg (2022). Human results (top
left) are the percentage of participants who (correctly) ruled the verb as an implausible continuation. Error bars
indicate 95% confidence intervals.

a condition with an attractor which matches the
verb in the violated feature(s). For example, in
the double-violation, no-attraction condition (D),
both the subject “drawer” and the attractor “handle”
are semantically implausible and do not match the
number marking of the verb “cut”. In the double-
violation, semantic-attraction condition (G), the
attractor “knife” is a semantically plausible subject
but does not match the number marking of the verb.
In the double-violation, double-attraction condi-
tion (F), the attractor “knives” is both semantically
plausible and matches the verb’s number marking.

Participants in Laurinavichyute and von der
Malsburg’s human study were asked to first memo-
rize the verb before seeing a preamble. They were
then asked to rate the plausibility of the verb as
a continuation of the preamble. If items with an
agreement attractor (B) are rated more plausible
than items without an agreement attractor (A), then
this is taken as evidence for agreement attraction. If
items with a semantic attractor (D) are rated more
plausible than items without a semantic attractor
(C), then this is evidence for semantic attraction. If

items with a simultaneous agreement and semantic
attractor (F) are rated more plausible than items
with a semantic or agreement-only attractor (G,H),
this is evidence that that semantic and agreement
attraction can occur simultaneously.

Laurinavichyute and von der Malsburg found
that participants were more likely to rate the con-
tinuation as plausible if a distractor agreed in a
semantic or number feature with the verb. Ad-
ditionally, the effects of agreement and semantic
attraction were generally additive in the case of
double violations. This provides evidence both for
the existence of semantic attraction effects, and for
cue-based retrieval models more generally, which
can account for both types of attraction and their
additive effects if semantic and agreement features
are used simultaneously as retrieval cues.

4.2.2 Linking Hypothesis for Plausibility
Ratings

At each word, our model calculates attention
weights between the current word and all past repre-
sentations. This is a measure of the relative strength



of association between the current word’s query
vector and past representations in working memory.
These weights sum to 1, and can be thought of as
modeling the distribution of retrieval probabilities
for items in working memory.

If the true subject has a high retrieval probability,
then it will be retrieved often, and participants will
be more likely to notice the semantic plausibility
or agreement violation. The higher the retrieval
probability of the non-subject noun, the more likely
the violation is to go unnoticed. We model the
probability of a human judging the sentence as
implausible as the attention weight assigned to the
subject, normalized by the total attention weight of
the subject and non-subject nouns:

RelAttn(v, s) =
Attn(v, s)

Attn(v, s) +Attn(v, n)
(2)

Where Attn(a, b) denotes the attention weight of b
in memory when word a is the query. The subject
is denoted as s, v denotes the subject’s verb, and
n denotes the non-subject noun. This linking hy-
pothesis differs from that of Laurinavichyute and
von der Malsburg (2022), which relates rating a sen-
tence as implausible to retrieval failure, in which
no item in memory receives sufficient activation
above some threshold. The retrieval threshold and
activation noise are hyperperameters that must be
fit to the experimental data. We chose our link-
ing hypotheses because it is simpler, requiring no
hyperparameter fitting.

We also report surprisal estimates from the CBR-
RNN models. Our linking hypothesis between sur-
prisal and plausibility ratings is simply that more
surprising continuations should be judged implausi-
ble more often than less surprising ones. We see the
goal of the present work as capturing the qualitative
direction of the effect, and leave the construction
of linking hypotheses with precise quantitative pre-
dictions of processing difficulty for future work.

4.2.3 Results
Results are summarized graphically in Figure 4.
All significance tests were conducted using linear
mixed-effects models with random intercepts for
model instances and experimental items, and are re-
ported in Appendix C. The qualitative pattern of at-
traction effects did not differ across the three CCG
supertagging loss weights (α = 0, α = 1, α = 5).
Therefore, we report results from all models to-
gether. Results from each training condition are
reported graphically in Appendix D.

Single Violation: Relative attention and surprisal
were significantly lower in both the agreement (B)
and semantic attractor (D) conditions than in the no
attraction conditions (A) and (C). Consistent with
the human pattern, this demonstrates both semantic
and syntactic attraction. In the human experiment,
there was no difference in the size of the attrac-
tion effect between the agreement and semantic
conditions. Surprisal from our model replicated
this finding but relative attention did not; when
computed using relative attention, the agreement
attraction effect was stronger than the semantic
attraction effect.

Double Violation: We found a significant attrac-
tion effect in each of the single-feature attraction
conditions in both relative target attention and sur-
prisal, consistent with the human data. There was
no significant difference in the size of agreement
and semantic attraction effects in the human data.
This was replicated in the surprisal estimates, but
was not replicated in relative attention. There was
no significant interaction between semantic and
agreement attraction (E-H = G-F) in either surprisal
or relative attention. In other words, the effect of
attraction was additive, which is consistent with
the human pattern.

GPT-2 Results: In both the single and double vi-
olation conditions, the GPT-2 surprisal pattern was
consistent both with the human data and surprisal
from our model. However, in relative attention, one
attention head, head4_3 exhibited an agreement at-
traction effect, but no semantic attraction effect,
while another attention head, head3_6 showed the
opposite pattern. These results show that different
attention heads can exhibit complementary inter-
ference effects for a single dependency type, high-
lighting the practical difficulty of deriving a single
attention-based measure of interference when a
model has multiple attention heads. Results from
the other two heads are reported in Appendix C.

5 Discussion

5.1 Discrepancies Between Model Predictions
and Human Behavior

While relative attention correctly predicted the di-
rection of both semantic and syntactic attraction in
subject-verb dependencies, there were a few quan-
titative discrepancies between the model and hu-
man results. First, human plausibility ratings in
the “no attractor” conditions were higher across



the board (75–90%) than relative attention would
predict (0.53–0.56). Even when there was no at-
tractor present, the attention weight of the subject
remained slightly above 50%. An inspection of
the attention weights showed that the models often
attend broadly to many past memory representa-
tions, rather than only attending to the subject and
attractor nouns. Our models retrieve a weighted
sum over past representations, rather than a single
item. Attending broadly may be the most useful
strategy for the prediction objective, and there is no
constraint preventing models from doing so. This
tendency may be counteracted by incorporating an
attention sparsity regularization term in training
(Zhang et al., 2019). This type of regularization
can be thought of as encouraging the model to be
more certain about which past representation will
be most useful for next word prediction.

Relative attention from our model also predicts
a smaller effect for semantic attraction than agree-
ment attraction, while no difference was observed
in the human study. This discrepancy appeared in
models trained with and without the syntactic aux-
iliary objective. One possibility is that semantic
attraction effects are better explained by expecta-
tion violation than retrieval interference. Surprisal
measures more closely matched the semantic at-
traction patterns. Evidence from agreement attrac-
tion studies suggests that memory retrieval may be
initiated as part of an error-driven repair process
when expectations are violated (Wagers et al., 2009;
Schlueter et al., 2019). Campanelli et al. (2018)
also show that retrieval interference is modulated
by the predictability of the word at the retrieval
site. Future work should explore how measures of
retrieval difficulty might be more explicitly aug-
mented by predictability.

5.2 Relationship to Resource-Rational Models

Our model can be related to resource rational theo-
ries of cognition (Lieder and Griffiths, 2020), and
especially the model of sentence processing pro-
posed by Hahn et al. (2022), who propose a unifi-
cation of expectation and memory-based theories
under the hypothesis that limited memory resources
are optimally allocated to maximize the predictabil-
ity of future material. Consistent with this account,
our model has the computational goal of maximiz-
ing predictability. The model accomplishes this
goal in part by utilizing its memory retrieval mech-
anism. Given that retrieval capacity is limited, the

model must learn to retrieve items from memory
which are optimal for prediction, and will learn a
set of latent features which enable this optimal re-
trieval. For example, when the model encounters a
verb, its subject may be the best item to retrieve in
order to predict the verb’s continuation. To reliably
retrieve subjects, the model would need to learn a
latent [+/-subject] feature.

The account proposed by Hahn et al. (2022) is a
computational level theory (Marr, 1982), meaning
it specifies the computational problem the human
parser is solving, but is agnostic to how the theory
is implemented in a model or the mind. A central
motivation of the present work is to combine the
computational goal outlined by resource-rational
models (updating one’s beliefs about a sentence by
making rational use of finite memory resources),
with a well-established, independently motivated
algorithmic level level theory of working memory
access.

6 Conclusion

In this work, we proposed a neural model which in-
corporates memory constraints from cue-based re-
trieval theories. We showed that the model’s atten-
tion mechanism tracks subject-verb dependencies
over long distances and with intervening distractor
nouns. Finally, we evaluated whether the model’s
attention component tracks similarity-based inter-
ference effects found in human attraction experi-
ments. We showed that both model surprisal esti-
mates and relative attention from our model’s self-
attention mechanism both predicted the presence
of semantic and agreement attraction, without the
need to explicitly stipulate any linguistic features
in the model. However, relative attention generally
under-predicted plausibility ratings and the rela-
tive size of the semantic attraction effect. Taken
together, we showed that mechanistic explanations
of processing difficulty rooted in memory retrieval
constraints can emerge as a by-product of minimiz-
ing the surprisal of upcoming words.
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Limitations

6.1 Dependency Types

In this work, we investigated interference effects in
subject-verb dependencies. We chose this depen-
dency type because it is one of the most widely
studied, but it is far from the only dependency
type. In future work, we aim to evaluate our model
on various dependency types, such as reflexive
anaphora (Dillon et al., 2013), and filler-gap de-
pendencies (McElree, 2001).

6.2 Assumptions About Working Memory

While our model address a major assumption of
cue-based retrieval models, limited retrieval capac-
ity, there remain several key differences between
the two. We describe some of these differences and
how they may be addressed in this section.

Cue-based retrieval theories typically assume
that items stored in working memory are individual
syntactic constituents (Lewis and Vasishth, 2005;
Lewis et al., 2006; Dotlačil, 2021), while our model
assumes items in working memory are representa-
tions of previous timesteps. One potential direction
for future work is forcing models to explicitly rep-
resent syntactic structure in short-term memory.
This could be achieved through a syntactic atten-
tion masking mechanism similar to that of Sartran
et al. (2022).

Some cue-based retrieval models assume that
items in working memory decay over time, making
retrieval of older material more difficult than newer
material. Decay effects can explain findings like
Van Dyke and Lewis (2003), in which the difficulty
of ambiguity resolution in garden path sentences
is modulated by the length of the ambiguous re-
gion. Recent work has also found that limiting
context length in neural language models improves
their fit to human reading data (Kuribayashi et al.,
2022). In future work, graded memory decay could
be incorporated into the model by applying a soft
attention mask to older material.

6.3 Interpretable Linguistic Features

While the CBR-RNN may capture similarity-based
interference effects, it is not clear if it accomplishes

this by implicitly learning features corresponding
to those posited in existing cue-based retrieval mod-
els like [+/-subject] or [+/-animate]. Causal
representational probing methods may prove use-
ful for determining whether our models implicitly
represent and use features which are consistent
with existing theories (Elazar et al., 2021; Ravfogel
et al., 2021).

6.4 Training Data Limitations
While we train our models on a developmentally-
plausible amount of text, our training corpus con-
sists entirely of articles from Wikipedia, which
is quite different from the data children receive
when acquiring language. Mueller and Linzen
(2023) show that training language models on child-
directed speech leads to more rapid humanlike gen-
eralization. Future work could investigate whether
training CBR-RNNs on more developmentally-
plausible corpora leads to more humanlike memory
retrieval behaviors.

Unlike humans, our model learn from text
alone. Lexical features implicated in seman-
tic attraction experiments, like [+/-can_cut] or
[+/-shatterable] are likely learned by humans
with the help of visual information and interaction
with the world, sources of information which are
not available to our model.
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Original Replacement

landscape(s) mountain(s)
highrise apartment
crackle warm
loft(s) balcony/ie(s)
dent(s) scratch(es)
glow(s) shine(s)
dribble drip
soothingly comfortably

Table 2: Replacement of out-of-vocabulary tokens with
synonyms.

Original Replacement

tram stop stop
wall calendar calendar
chocolate fountain fountain
winter garden garden
coffee shop cafe
towel hook mirror
light switch switch
license plate plate
walkie talkie(s) radio(s)

Table 3: Replacement of noun-noun compounds with
single nouns.

A Modification to Stimuli

We made some minor modifications to the ma-
terials of Laurinavichyute and von der Malsburg
(2022) to make them compatible with our model.
Firstly, some words in the stimuli were outside
of the model’s vocabulary. We replaced all such
words with synonyms. Additionally, we replaced
all noun-noun compounds with either a single-word
synonym just the head noun of the compound. This
was because our model often distributed attention
across both nouns in the compound, artificially de-
flating the level of attraction in certain conditions.
Synonym replacements are reported in Table 2,
noun-noun compound replacements are reported in
Table 3.

B Perplexity and CCG Supertagging
Performance

Baseline models are matched to the three syntac-
tic conditions (α = 0, α = 1, α = 5). For the
first baseline, we ablate the attention mechanism
from the CBR-RNN during training. For the sec-
ond baseline, we train a single-layer LSTM (with
no attention) whose hidden dimensionality (256)
matches that of the CBR-RNN models. For the
third baseline, we train a two-layer LSTM (with no
attention) whose parameter count (14.9M) approxi-
mately matches that of the CBR-RNN.

We evaluated the perplexity of all models on the
test portion of WikiText-103. Matched for auxiliary
objective weight, CBR-RNN models all achieved
lower perplexity than both the parameter-matched
and hidden dimensionality-matched LSTM models
(Table 4).

CCG supertagging accuracy was evaluated on
the test portion of the CCGBank dataset. All
models achieve relatively high accuracy in CCG
tagging, with similar accuracies across all condi-
tions. CBR-RNN models have generally compara-
ble, or even superior language modeling and CCG
supertagging performance to parameter-matched
LSTM language models (Table 5).

C Statistical Analysis

We conduct significance tests for agreement and
semantic attraction effects and their interaction in
each violation conditions, using both of our models
measures, surprisal and relative attention. We use
linear mixed effects models from the lmer package
in R. with random intercepts for items and model



Supertagging objective weight: α = 0 α = 1 α = 5

CBR-RNN (d = 256) 61.8 ±0.4 63.3 ±0.3 75.1 ±0.5

CBR-RNN (d = 256, no attention) 75.1 ±1.1 76.2 ±1.2 92.3 ±1.1
LSTM (d = 256, single-layer) 66.0 ±2.7 67.6 ±1.3 79.4 ±0.6
LSTM (d = 271, two-layer) 61.2 ±1.3 65.3 ±7.1 77.6 ±3.0

Table 4: Perplexity (with standard deviations) on the Wikitext-103 test set averaged across random seeds. Rows
2–4 are the three sets of baseline models.

Supertagging obj. weight: α = 1 α = 5

CBR-RNN (d = 256) 84.4 ±0.5 86.0 ±0.1

CBR-RNN (d=256, no attention) 83.9 ±1.5 85.1 ±1.2
LSTM (d=256,l=1) 84.5 ±0.7 85.7 ±0.9
LSTM (d=271,l=2) 85.1 ±3.3 86.2 ±2.6

Table 5: CCG supertagging accuracies (with standard deviations) on the test position of CCGBank averaged across
random seeds. The first row of results are the models under investigation in this study, rows 2-4 are the three sets of
baseline models.

Single Violation (A, B, C, D) Effect Surprisal Relative Target Attention

Agreement Attraction A - B β = −0.46, p < 0.001 ✓ β = −0.07, p < 0.001 ✓

Semantic Attraction C - D β = −0.40, p < 0.001 ✓ β = +0.03, p < 0.001 ✓

Interaction of Attraction Type (A - B) - (C - D) β = +0.06, p = 0.721 ✓ β = +0.04, p < 0.001 ✗

Double Violation (E, F, G, H)

Double Attraction E - F β = −0.88, p < 0.001 ✓ β = −0.11, p < 0.001 ✓

Agreement Attraction E - H β = −0.49, p < 0.001 ✓ β = −0.08, p < 0.001 ✓

Semantic Attraction E - G β = −0.35, p < 0.001 ✓ β = +0.05, p < 0.001 ✓

Interaction (E - G) - (H - F) β = −0.03, p = 0.645 ✓ β = +0.02, p = 0.053 ✓

Table 6: Linear mixed effects modeling results for all combined CBR-RNN models (α = 0, α = 1, α = 5) on
Experiment 3 of Laurinavichyute and von der Malsburg (2022). Results marked with a ✓ are consistent with the
human results, while results marked with a ✗ are inconsistent with the human results.

seeds. Results from linear mixed effects model-
ing of CBR-RNN results are reported in Table 6.
Results from GPT-2 are reported in Table 7. Re-
sults from additional GPT-2 heads are visualized
in Figure 6.

D Attraction Results by Syntactic
Objective Weight

In Figure 5, we visualize results from the attraction
experiments split across the three CCG supertag-
ging training conditions (alpha = 0, alpha = 1,
alpha = 5).



Single Violation (A, B, C, D) Effect Surprisal Relative Attention (head4_3) (head3_6)

Agreement Attraction A - B β = −0.77, p < 0.001 ✓ β = −0.09, p < 0.001 ✓ β = +0.00, p = 0.619 ✗

Semantic Attraction C - D β = −0.99, p < 0.001 ✓ β = +0.02, p = 0.672 ✗ β = −0.09, p = 0.018 ✓

Interaction of Attraction Type (A - B) - (C - D) β = −0.22, p = 0.729 ✓ β = +0.11, p = 0.076 ✓ β = +0.08, p = 0.069 ✓

Double Violation (E, F, G, H)

Double Attraction E - F β = −1.70, p < 0.001 ✓ β = −0.13, p = 0.024 ✓ β = −0.08, p = 0.015 ✓

Agreement Attraction E - H β = −0.61, p < 0.001 ✓ β = −0.11, p < 0.001 ✓ β = −0.01, p = 0.577 ✗

Semantic Attraction E - G β = −1.08, p < 0.001 ✓ β = +0.00, p = 0.914 ✗ β = −0.06, p = 0.072 ✗

Interaction (E - G) - (H - F) β = −0.01, p = 0.977 ✓ β = −0.02, p = 0.787 ✓ β = −0.01, p = 0.805 ✓

Single Violation (A, B, C, D) Effect (head6_0) (head2_9)

Agreement Attraction A - B β = −0.13, p < 0.001 ✓ β = −0.01, p = 0.034 ✓

Semantic Attraction C - D β = +0.01, p = 0.870 ✗ β = +0.00, p = 0.743 ✗

Interaction of Attraction Type (A - B) - (C - D) β = +0.14, p = 0.018 ✗ β = +0.00, p = 0.787 ✓

Double Violation (E, F, G, H)

Double Attraction E - F β = −0.14, p = 0.005 ✓ β = −0.03, p = 0.015 ✓

Agreement Attraction E - H β = −0.11, p < 0.001 ✓ β = −0.02, p < 0.001 ✓

Semantic Attraction E - G β = −0.01, p = 0.856 ✓ β = −0.01, p = 0.668 ✗

Interaction (E - G) - (H - F) β = −0.03, p = 0.516 ✓ β = −0.00, p = 0.603 ✓

Table 7: Linear mixed effects modeling results for surprisal and relative attention (by head) from GPT-2 on
Experiment 3 of Laurinavichyute and von der Malsburg (2022). Results marked with a ✓ are consistent with the
human results, while results marked with a ✗ are inconsistent with the human results.



Figure 5: Surprisal and relative attention results in each of the three CCG supertagging conditions.

Figure 6: Surprisal and relative attention results from two additional GPT-2 heads.


