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Abstract
In reinforcement learning, specifying reward func-
tions that capture the intended task can be very
challenging. Reward learning aims to address this
issue by learning the reward function. However, a
learned reward model may have a low error on the
data distribution, and yet subsequently produce
a policy with large regret. We say that such a
reward model has an error-regret mismatch. The
main source of an error-regret mismatch is the
distributional shift that commonly occurs during
policy optimization. In this paper, we mathemat-
ically show that a sufficiently low expected test
error of the reward model guarantees low worst-
case regret, but that for any fixed expected test
error, there exist realistic data distributions that
allow for error-regret mismatch to occur. We then
show that similar problems persist even when us-
ing policy regularization techniques, commonly
employed in methods such as RLHF. We hope
our results stimulate the theoretical and empiri-
cal study of improved methods to learn reward
models, and better ways to measure their quality
reliably.

1. Introduction
To solve a sequential decision problem with reinforcement
learning (RL), we must first formalize that decision problem
using a reward function (Sutton & Barto, 2018). However,
for complex tasks, reward functions are often hard to spec-
ify correctly (Krakovna, 2020). To solve this problem, it is
increasingly popular to learn reward functions with reward
learning algorithms, instead of specifying the reward func-
tions manually. There are many different reward learning
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Figure 1. Reward models (red function) are commonly trained by
supervised learning to approximate some latent, true reward (blue
function). Given enough data, one can hope that the reward model
is close to the true reward function on average over the training
data distribution (upper gray layer) — the expected error is low.
However, low expected error only guarantees a good approxima-
tion to the true reward function in areas with high coverage by
the data distribution! Optimizing an RL policy to maximize the
learned reward model then induces a distribution shift which can
lead the policy to exploit uncertainties of the learned reward model
in low-probability areas of the transition space (lower gray layer).
In the worst case, this can lead to high regret. We refer to this
phenomenon as error-regret mismatch.

algorithms (e.g. Ng & Russell (2000); Tung et al. (2018);
Brown & Niekum (2019); Palan et al. (2019)), with one of
the most popular being reinforcement learning from human
feedback (RLHF) (Christiano et al., 2017; Ibarz et al., 2018).

For any learning algorithm, it is a crucial question whether
or not that learning algorithm is guaranteed to converge to
a “good” solution. For example, in the case of supervised
learning for classification, it can be shown that a learning
algorithm that produces a model with a low empirical error
(i.e., training error) is likely to have a low expected error
(i.e., test error), given a sufficient amount of training data
and assuming that both the training data and the test data
is drawn i.i.d. from a single stationary distribution (Kearns
& Vazirani, 1994). In the case of supervised learning and
standard assumptions, we can therefore be confident that a
learning algorithm will converge to a good model, provided
that it is given a sufficient amount of training data.

Since reward models are also typically learned by supervised
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learning, we might assume that classical learning-theoretic
guarantees carry over. However, these guarantees only en-
sure that the reward model is approximately correct relative
to the training distribution. But after reward learning, we
optimize a policy to maximize the learned reward, which
effectively leads to a distributional shift. This raises the
worry that the trained policy can exploit regions of the state
space with abnormally high learned rewards if those regions
have a low data coverage during training. In this case, we
can have reward models that have both a low error on the
training distribution and an optimal policy with large regret,
a phenomenon we call error-regret mismatch. We visualize
this concern in Figure 1.

To illustrate this concern, imagine training a chatbot to
be helpful, honest, and harmless (Askell et al., 2021). We
know that the chatbot will face various unsafe queries during
deployment (e.g. “how to build a bomb”) and so on such
queries we train a reward model to penalize helpful answers
and highly reward refusals.

Unfortunately, all unsafe prompts can be answered in var-
ious distinct “styles” (e.g., different languages (Verma &
Bharadwaj, 2025)). Consequently, at least one specific harm-
ful answer will likely be very rare in the reward model’s
training data. The learned reward model can then erro-
neously assign a high reward to this rare, harmful answer
without a significant increase in its training error (as this
answer is infrequent in training). During policy optimiza-
tion, the policy may exploit this flaw, choosing the harmful
answer the reward model mistakenly prefers. This can result
in a harmful chatbot with high true regret, despite the reward
model having low error on the training data distribution, an
example of error-regret mismatch. We illustrate this concern
in detail in Appendix B.4.

To single out the issue of error-regret mismatch in our the-
oretical analysis, we take the goals of classical learning
theory as a given and show that they are not enough to en-
sure low regret. More precisely, in probably approximately
correct (PAC) learning (Kearns & Vazirani, 1994) the goal
is to derive a sample size that guarantees a certain likelihood
(“P”) of an approximately correct (“AC”) model on new data
points sampled from the training distribution. In our results,
we assume that we already have an approximately correct
reward model on a data distribution, and then investigate
what we can or can not conclude about the regret of policies
trained to maximize the modeled reward.

Our theoretical analysis shows that guarantees in policy
regret are very sensitive to the data distribution used to train
the reward model, leading to our notions of safe and unsafe
data distributions. Moreover, we find evidence that some
MDPs are in a certain sense “too large” to allow for safe
data distributions. We establish for general MDPs:

1. As the error of a learned reward model on a data distri-
bution goes to zero, the worst-case regret of optimizing
a policy according to that reward model also goes to
zero (Theorems 3.1 and 3.2).

2. However, for any ϵ > 0, whenever a data distribution
has sufficiently low coverage of some bad policy, it is
unsafe; in other words, there exists a reward model that
achieves an expected error of ϵ but has a high-regret
optimal policy (Theorem 3.3), a case of error-regret
mismatch.

3. As a consequence, when an MDP has a large number
of independent bad policies, every data distribution is
unsafe (Theorem 3.4).

4. More precisely, we derive a set of linear constraints
that precisely characterize the safe data distributions
for a given MDP (Theorem 3.5).

We then investigate the case of regularized policy optimiza-
tion (including KL-regularized policy optimization, which
is commonly used in methods such as RLHF). We derive
regularized versions of Theorems 3.1 and 3.3 in Theorem 4.1
and Theorem 4.2. This shows that regularization alone is no
principled solution to error-regret mismatch.

We then develop several generalizations of our results for
different types of data sources for reward model training,
such as preferences over trajectories and trajectory scoring
(Section 5). Lastly, motivated by the recent success of
large language models (OpenAI, 2022; Gemini Team, 2023;
Anthropic, 2023), we provide an analysis for the special
case of RLHF in the contextual bandit case where we prove
a stronger version (Theorem 6.1) of the failure mode already
discussed in Theorem 4.2 for general MDPs.

1.1. Related work

Note: We provide a more extensive related work section in
Appendix A

In offline reinforcement learning, we aim to learn low-regret
policies for an MDP ⟨S,A, τ, µ0, R, γ⟩ where the only in-
formation about the reward function R (and sometimes tran-
sition distribution τ (Wang et al., 2022b; Uehara & Sun,
2021)) stems from a dataset {(s, a, r)i}ni=1 sampled from
some data distribution D ∈ ∆(S×A). A key research ques-
tion is understanding which conditions on D allow learn-
ing a near-optimal policy (i.e., a policy with regret smaller
than some L ∈ [0, 1]) with an efficient sample complexity,
where sample-efficient usually means polynomial in L−1

and some other parameters of the MDP and D. Existing the-
oretical work primarily falls into two categories, covering
both MDPs (Foster et al., 2021; Wang et al., 2022b; 2020;
Amortila et al., 2020; Uehara & Sun, 2021; Uehara et al.,
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2021) and contextual bandits (Nika et al., 2024; Cen et al.,
2024):

Lower bound results prove that various data-coverage con-
ditions are insufficient for sample-efficient offline RL by
establishing a lower bound on the number of samples re-
quired to achieve low policy regret. In particular, research
in this area (Foster et al., 2021; Wang et al., 2022b; 2020;
Amortila et al., 2020; Nika et al., 2024) identifies adversarial
MDPs that satisfy specific data-coverage conditions and yet
for which achieving low regret is either computationally in-
tractable due to excessive sample requirements (Foster et al.,
2021; Wang et al., 2022b; 2020; Nika et al., 2024) or fun-
damentally impossible regardless of sample size (Amortila
et al., 2020).

Upper bound results, on the other hand, establish positive
guarantees under specific structural assumptions. Research
in this category (Wang et al., 2022b; 2020; Uehara & Sun,
2021; Nika et al., 2024; Cen et al., 2024; Song et al., 2024)
develops algorithms with provable upper-bounds on the
number of required samples to achieve low policy regret.
This is usually done by making structural assumptions about
the MDP, reward learning process, or policy optimization
approach.

In reward learning, compared to offline RL, one first learns a
reward model from a dataset, which is typically sampled via
various strategies from a data distribution D ∈ ∆(S×A)
(cf. Section 2.1). Intuitively, as in offline RL, the quality of
a reward model is influenced by two key factors: the dataset
size n and the dataset quality, specifically how well the data
distribution D covers the data space S×A. Indeed, prior
work confirms this intuition, with most works (see Nika et al.
(2024) for a recent example) showing that the regret is de-
pendent on a) the inverse dataset size 1

n , b) some measure of
the coverage of D, and c) some structural assumptions of the
specific approach. Such structural assumptions may include:
realizability of function classes (Wang et al., 2022b; Uehara
& Sun, 2021; Foster et al., 2021; Nika et al., 2024), linear
function approximation (Nika et al., 2024; Cen et al., 2024;
Wang et al., 2022b), and various constraints on reward- or
policy functions (Wang et al., 2020; Uehara & Sun, 2021;
Nika et al., 2024).

Our paper differs from these works in a key aspect: We
explicitly analyze how the reward modeling error is related
to the final policy regret, rather than focusing on the number
of samples. This also allows us to study adversarial guaran-
tees of low policy regret (given low reward modeling error),
whereas prior work considers probabilistic guarantees when
sampling from the data distribution. The most relevant work
studying a similar setup to ours is Song et al. (2024). Their
setup in section 3, combined with their Assumption 4.3,
perfectly recovers our safe distribution definition (see The-
orem 2.1) when applied to the special case of RLHF and

when using the mean squared error metric. Their Theorem
4.2 demonstrates that Regret ∈ O

(
Cov ·

√
ϵ
)
, where Cov

is some measure of coverage and ϵ the error in the reward
function, and where the square root emerges from using
the mean squared error during the reward learning step (see
Appendix B.3 for how this relates to our results).

While Song et al. (2024) focus on RLHF with mean-squared
error metric, we provide similar results for general classes
of regularized and unregularized policy optimization (for
both MDPs and contextual bandits), and show how these
regret guarantees automatically generalize to a wide range of
different error metrics for different reward learning methods.
For our initial guarantees (Theorems 3.1, 3.2 and 4.1) we
use the coverage condition min(s,a) D(s, a) > 0 and phrase
the required reward learning error ϵ in terms of this coverage.
Since we assume that all states of our MDPs are reachable,
this is equivalent to a full coverage condition (see Table
1 of Uehara & Sun (2021) for an overview of different
coverage conditions). We then show that for fixed ϵ, a too
small coverage leads to possibly high regret (Theorems 3.3,
4.2 and 6.1). Finally, we fully generalize our results from
Theorems 3.1 to 3.4 into a single theorem (Theorem 3.5)
which allows us to determine for arbitrary data distributions
whether they give rise to worst-case safety for fixed error ϵ
and required regret L. To the best of our knowledge, we are
the first work to achieve such fine-grained safety results.

Several approaches have been proposed to address the issue
of out-of-distribution robustness in reward learning, such
as ensembles of conservative reward models (Coste et al.,
2023), averaging weights of multiple reward models (Ramé
et al., 2024), iteratively updating training labels (Zhu et al.,
2024), on-policy reward learning (Lang et al., 2024a), and
distributionally robust planning (Zhan et al., 2023). Re-
cently, Kwa et al. (2024) show that RLHF and Conditioning
can be provably safe under fairly strong structural assump-
tions—such as deterministic transitions, light-tailed reward
errors, and independence between true and proxy rewards.
Furthermore, Laidlaw et al. (2024) consider a setting where
the learned and true reward functions are positively corre-
lated under a reference policy. They prove that maximizing
the proxy reward with a chi-squared divergence penalty
yields regret no worse than that of the reference policy. In
experiments, they approximate this regularized objective
and report favorable results.

2. Preliminaries
A Markov Decision Process (MDP) is a tuple
⟨S,A, τ, µ0, R, γ⟩ where S is a set of states, A is a
set of actions, τ : S×A → ∆(S) is a transition function,
µ0 ∈ ∆(S) is an initial state distribution, R : S×A → R
is a reward function, and γ ∈ (0, 1) is a discount rate. We
define the range of a reward function R as range R :=
max(s,a)∈S×A R(s, a)−min(s,a)∈S×A R(s, a).
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A policy is a function π : S → ∆(A). We denote the set
of all policies by Π. A trajectory ξ = ⟨s0, a0, s1, a1, ...⟩
is a possible path in an MDP. The return function G
gives the cumulative discounted reward of a trajectory,
G(ξ) =

∑∞
t=0 γ

tR(st, at), and the evaluation function J
gives the expected trajectory return given a policy, J(π) =
Eξ∼π [G(ξ)]. A policy maximizing J is an optimal policy.
We define the regret of a policy π with respect to reward
function R as

RegR (π) :=
maxπ′∈Π JR(π

′)− JR(π)

maxπ′∈Π JR(π′)−minπ′∈Π JR(π′)
∈ [0, 1].

Here, JR is the policy evaluation function for R. We choose
the regret RegR as our main performance metric of poli-
cies in this paper, which is justified by the fact that it is a
normalized version of the policy evaluation JR.

In this paper, we assume that S and A are finite, and that
all states are reachable under τ and µ0. We also assume
that max JR − min JR ̸= 0 (since the reward function
would otherwise be trivial). Note that this implies that
range R > 0, and that RegR (π) is well-defined.

The state-action occupancy measure is a function η :
Π → R|S×A| mapping each policy π ∈ Π to the cor-
responding "state-action occupancy measure", describing
the discounted frequency that each state-action tuple is
visited by a policy. Formally, η(π)(s, a) = ηπ(s, a) =∑∞

t=0 γ
t · P (st = s, at = a | ξ ∼ π). Note that by writing

the reward function R as a vector R⃗ ∈ R|S×A|, we can split
J into a function that is linear in R: J(π) = ηπ · R⃗. By
normalizing a state-action occupancy measure ηπ we obtain
a policy-induced distribution Dπ := (1− γ) · ηπ .

2.1. Problem formalization of RL with reward learning

In RL with reward learning, we assume that we have an
MDP ⟨S,A, τ, µ0, R, γ⟩ where the reward function R is
unknown. We may also assume that τ and µ0 are unknown,
as long as we can sample from them (though S, A, and γ
must generally be known, at least implicitly). We then first
learn a reward model R̂ that approximates the true reward
R and then optimize a policy π̂ to maximize R̂. The aim of
this two-step procedure is for π̂ to achieve low regret under
the true reward function R. We now formalize these aspects
in detail for our theoretical analysis, with a visualization
provided in Figure 2:

Reward learning We first learn a reward model R̂ from
data. There are many possible data sources for reward learn-
ing, like demonstrations (Ng & Russell, 2000), preferences
over trajectories (Christiano et al., 2017), or even the initial
environment state (Shah et al., 2019); a taxonomy can be
found in (Jeon et al., 2020). Since we are concerned with
problems that remain even when the reward model is already

approximately correct, we abstract away the data sources
and training procedures and assume that we learn a reward
model R̂ which satisfies

E(s,a)∼D

[
|R̂(s, a)−R(s, a)|

range R

]
≤ ϵ (1)

for some ϵ > 0 and stationary distribution D over transitions
S×A. Note that this is the true expectation under D, rather
than an estimate of this expectation based on some finite
sample. We divide by range R, since the absolute error ϵ is
only meaningful relative to the overall scale of the reward
R.

To be clear, most reward learning algorithms cannot guar-
antee a bound as in Equation (1) since most realistic data
sources do not determine the true reward function, even for
infinite data (Skalse et al., 2023). Instead, we choose Equa-
tion (1) because it serves as an upper bound to many com-
mon reward learning training objectives (see Appendix C.5).
Thus, when we show in later sections that high regret is
possible even when this inequality holds, then this prob-
lem can be expected to generalize to other data sources.
We make this generalization precise for some data sources
in Section 5. In particular, we will show that Equation (1)
implies a low cross-entropy error between the choice distri-
butions of the true reward function and the reward model, as
is commonly used for RLHF, e.g. in the context of language
models (Ziegler et al., 2019).

Policy optimization Given R̂, we then learn a policy π̂ by
solving the MDP ⟨S,A, τ, µ0, R̂, γ⟩. In the most straight-
forward case, we do this by simply finding a policy that
is optimal according to R̂. However, it is also common to
perform regularized optimization. In that case, we make use
of an additional regularization function ω : Π → R, with
ω(π) ≥ 0 for all π ∈ Π. Given R̂, a regularization function
ω, and a regularization weight λ ∈ [0,∞), we say that π̂ is
(λ, ω)-optimal if

π̂ ∈ argmax
π

JR̂(π)− λω(π). (2)

Typically, λ punishes large deviations from some reference
policy πref , e.g. with the regularization function given by
the KL-divergence ω(π) = DKL (π||πref). πref may also
be used to collect training data for the reward learning al-
gorithm, in which case we may assume D = Dπref in
Equation (1). However, most of our results do not depend
on these specific instantiations.

Regret minimization The aim of the previous two steps is
for the policy π̂ to have low regret RegR (π̂) under the true
reward function R. Our question is thus if and when it is
sufficient to ensure that R̂ satisfies Equation (1), in order to
guarantee that a policy π̂ optimal according to Equation (2)
has low regret RegR (π̂).
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Figure 2. An abstract model of the classical reward learning
pipeline. A reward model R̂ is trained to approximate the true
reward function R under some data distribution D. The train-
ing process converges when R̂ is similar to R in expectation (see
1 ). In the second step, a policy π̂ is trained to achieve high

learned reward, possibly involving a regularization (see 2 ). We
are interested in the question of when exactly this training process
guarantees that π̂ has low regret. More formally, we call a data
distribution D safe whenever the implication 1 =⇒ 3 holds for
all reward models R̂ that satisfy 1 .

2.2. Safe data distributions

We now make the elaborations from the previous subsec-
tions more concrete by providing a formal definition of a
safe data distribution. In particular, we say that a data dis-
tribution D is safe, whenever it holds that for every reward
model R̂ that satisfies Equation (1) for D, all optimal poli-
cies of R̂ have low regret. We provide a visualization of this
concept in Figure 2 and a formal definition in Theorem 2.1.

Definition 2.1 (Safe- and unsafe data distributions). For
a given MDP ⟨S,A, τ, µ0, R, γ⟩, let ϵ > 0, L ∈ [0, 1],
and λ ∈ [0,∞). Let ω be a continuous function with
ω(π) ≥ 0 for all π ∈ Π. Then the set of safe data dis-
tributions safe(R, ϵ, L, λ, ω) is the set of all distributions
D ∈ ∆(S×A) such that for all possible reward models
R̂ : S×A → R and policies π̂ : S → ∆(A) that satisfy the
following two properties:

1. Low expected error: R̂ is ϵ-close to R under D, i.e.,
E(s,a)∼D

[
|R̂(s,a)−R(s,a)|

range R

]
≤ ϵ.

2. Optimality: π̂ is (λ, ω)-optimal with respect to R̂, i.e.
π̂ ∈ argmaxπ JR̂(π)− λω(π).

we can guarantee that π̂ has regret smaller than L, i.e.:

3. Low regret: π̂ has a regret smaller than L with respect
to R, i.e., RegR (π̂) < L.

Similarly, we define the set of unsafe data distributions to
be the complement of safe(R, ϵ, L, λ, ω):

unsafe(R, ϵ, L, λ, ω) := ∆(S×A) \ safe(R, ϵ, L, λ, ω).

Thus, unsafe(R, ϵ, L, λ, ω) consists of the data distribu-
tions D for which there exists a reward model R̂ that is
ϵ-close to R and a policy π̂ that is (λ, π)-optimal with re-
spect to R̂, but such that π̂ has large regret RegR (π̂) ≥ L.
In this sense, we are operating under a worst-case frame-
work for the reward model and policy learned by our training
algorithms. Note that ϵ and L are free parameters in our
definition; they are a measure of how well we can approx-
imate the true reward function R, and what regret we find
acceptable, respectively.

Whenever we consider the unregularized case (λ = 0 or
ω = 0), we drop the λ and ω to ease the notation and just
use safe(R, ϵ, L) and unsafe(R, ϵ, L) instead. Lastly, we
mention that while we use the mean absolute error (MAE)
in condition 1, one could in principle also work with the
mean-squared error. All our results then have analogous
versions. We explain this in Appendix B.3.

Note: Throughout this paper, we will use the terminol-
ogy that a data distribution D “allows for error-regret
mismatch” as a colloquial term to express that D ∈
unsafe(R, ϵ, L, λ, ω).

3. Error-regret mismatch for unregularized
policy optimization

In this section, we investigate the case where no regulariza-
tion is used in the policy optimization stage. We seek to
determine if it is sufficient for a reward model to be close
to the true reward function on a data distribution in order to
ensure low regret for the learned policy.

In our first result, we show that under certain conditions,
a low expected error ϵ does indeed guarantee that policy
optimization will yield a policy with low regret.

Proposition 3.1. Let ⟨S,A, τ, µ0, R, γ⟩ be an arbitrary
MDP, let L ∈ (0, 1], and let D ∈ ∆(S×A) be a positive
data distribution (i.e., a distribution such that D(s, a) > 0
for all (s, a) ∈ S×A). Then there exists an ϵ > 0 such that
D ∈ safe(R, ϵ, L).

The proof of Theorem 3.1 can be found in Appendix D.1
(see Theorem D.7) and is based on an application of Berge’s
maximum theorem (Berge, 1963), and the fact that the ex-
pected distance between the true reward function and the
learned reward model under D is induced from a norm. See
Theorem D.15 for a similar result in which the expected
error in rewards is replaced by an expected error in choice
probabilities.

One might be inclined to conclude that the guarantee of
Theorem 3.1 allows one to practically achieve low regret
by ensuring a low error ϵ (as measured by Equation (1)).
However, in the following result we provide a more detailed
analysis that shows that low regret requires a prohibitively
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low ϵ:

Proposition 3.2. Let the setting be as in Theorem 3.1. If
ϵ > 0 satisfies

ϵ <
1− γ√

2
· range J

R

range R
· min
(s,a)∈S×A

D(s, a) · L

then D ∈ safe(R, ϵ, L).

The proof can be found in Theorems D.11 and D.12, Ap-
pendix D.2. Theorem D.14 shows that the bound on ϵ is
tight up to a factor of

√
2. This result is problematic in

practice due to the dependence on the minimum of D. Re-
alistic MDPs usually contain a massive amount of states
and actions, which necessarily requires D to give a very
small support to at least some transitions. The dependence
of the upper bound on D also shows that there is no ϵ for
which every distribution D is guaranteed to be safe, as
min(s,a)∈S×A D(s, a) can be arbitrarily small. We con-
cretize this intuition by showing that in every MDP and for
every ϵ > 0, there exist weak assumptions for which a data
distribution allows for a large error-regret mismatch.

Proposition 3.3. Let M = ⟨S,A, τ, µ0, R, γ⟩ be an MDP,
D ∈ ∆(S×A) a data distribution, ϵ > 0, and L ∈ [0, 1].
Assume there exists a policy π̂ with the property that
RegR (π̂) ≥ L and D(supp Dπ̂) < ϵ, where supp Dπ̂ is
defined as the set of state-action pairs (s, a) ∈ S×A such
that Dπ̂(s, a) > 0. In other words, there is a “bad” policy
for R that is not very supported by D. Then, D allows for
error-regret mismatch to occur, i.e., D ∈ unsafe(R, ϵ, L).

The proof of Theorem 3.3 can be found in Appendix C.2
(see Theorem C.5). The intuition is straightforward: There
exists a reward model R̂ that is very similar to the true re-
ward function R outside the support of Dπ̂ but has very
large rewards for the support of Dπ̂ . Because D(supp Dπ̂)
is very small, this still allows R̂ to have a very small ex-
pected error w.r.t. to D, while π̂, the optimal policy for R̂,
will have regret at least L. To avoid confusions, we show
in Theorem C.7 that the assumptions on ϵ in Theorem 3.2
and Theorem 3.3 cannot hold simultaneously. This is as ex-
pected since otherwise the conclusions of these propositions
would imply that a data distribution can be both safe and
unsafe.

Note that the conditions for unsafe data distributions in
Theorem 3.3 also cover positive data distributions (that we
showed to be eventually safe for small enough ϵ in Theo-
rem 3.1). Furthermore, especially in very large MDPs, it
is very likely that the data distribution will not sufficiently
cover large parts of the support of some policies, especially
since the number of (deterministic) policies grows exponen-
tially with the number of states. Sometimes, this can lead
to all data distributions being unsafe, as we show in the
following corollary:

Corollary 3.4. Let M = ⟨S,A, τ, µ0, R, γ⟩ be an MDP,
ϵ > 0, and L ∈ [0, 1]. Assume there exists a set of policies
ΠL with:

• RegR (π) ≥ L for all π ∈ ΠL;

• supp Dπ ∩ supp Dπ′
= ∅ for all π, π′ ∈ ΠL; and

• |ΠL| ≥ 1/ϵ.

Then unsafe(R, ϵ, L) = ∆(S × A), i.e.: all distributions
are unsafe.

The proof of Theorem 3.4 can be found in Appendix C.2
(see Theorem C.6).

Theorem 3.4 outlines sufficient conditions for a scenario
where all possible data distributions are unsafe for a given
MDP. This happens when there exist many different policies
with large regret and disjoint support, which requires there
to be a large action space. This could for example happen
in the case of a language model interacting with a user if
there are many mutually distinct styles to answer unsafe
queries. We illustrated this concern in slightly more detail
in the introduction, and in full detail in Appendix B.4. More
generally, we believe this intuition could be turned into a
concrete theoretical result for general MDPs by assuming
that for each state, there are many actions that are equally
bad under the true reward function but induce the same
transition-dynamics. This could be studied in the context of
MDPs with symmetries (van der Pol et al., 2021) and might
allow to prove the existence of the bad policy π̂ from The-
orem 3.3 or the set of bad policies ΠL from Theorem 3.4.
We leave such an investigation to future work.

We conclude by stating the main result of this section, which
unifies all previous results and derives the most general
conditions, i.e. necessary and sufficient conditions, for when
exactly a data distribution allows for error-regret mismatch
to occur:

Theorem 3.5. For all MDPs ⟨S,A, τ, µ0, R, γ⟩ and L ∈
[0, 1], there exists a matrix M such that for all ϵ > 0 and
D ∈ ∆(S×A) we have:

D ∈ safe(R, ϵ, L) ⇐⇒ M ·D > ϵ · rangeR ·1, (3)

where we use the vector notation of D, and 1 is a vector
containing all ones.

The proof of Theorem 3.5 can be found in Appendix C.3 (see
Theorem C.16) and largely relies on geometric arguments
that arise from comparing the set of unsafe reward models
and the set of reward models that are close to the true reward
function. Interestingly, this means that the set of safe data
distributions resembles a polytope, in the sense that it is
a convex set and is defined by the intersection of an open
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polyhedral set (defined by the system of strict inequalities
M ·D > ϵ · range R · 1), and the closed data distribution
simplex.

While Theorem 3.5 only proves the existence of such a
matrix M , we provide further results and analyses in the
appendix, namely:

1. In Appendix C.3.2 we derive closed-form expressions
of the rows of matrix M , and show that its entries
depend on multiple factors, such as the original reward
function R, the state transition distribution τ , and the
set of deterministic policies that achieve regret at least
L.

2. In Appendix C.3.3 we provide an algorithm to compute
matrix M .

3. In Appendix C.3.4 we provide a worked example of
computing and visualizing the set of safe distributions
for a toy example.

Lastly, we note that M does not depend on ϵ, and M only
contains non-negative entries (see Appendix C.3.2). This al-
lows us to recover Theorem 3.1, since by letting ϵ approach
zero, the set of data distributions that fulfill the conditions in
Equation (3) approaches the entire data distribution simplex.
On the other hand, the dependence of M on the true reward
function and the underlying MDP implies that computing M
is infeasible in practice since many of these components are
not known, restricting the use of M to theoretical analysis.

4. Error-regret mismatch for regularized
policy optimization

In this section, we investigate the error-regret mismatch for
regularized policy optimization.

First, we prove that for almost any reference policy πref that
achieves regret L and minimizes the regularization term ω,
there exists a sufficiently small ϵ such that reward learning
within ϵ of the true reward function preserves the regret
bound L.

Proposition 4.1. Let λ ∈ (0,∞), let ⟨S,A, τ, µ0, R, γ⟩ be
any MDP, and let D ∈ ∆(S×A) be any data distribution
that assigns positive probability to all transitions. Let ω :
Π→ R be a continuous regularization function that has a
reference policy πref as a minimum.1 Assume that πref is
not (λ, ω)-optimal for R and let L = RegR (πref). Then
there exists ϵ > 0 such that D ∈ safe(R, ϵ, L, λ, ω).

The proof of Theorem 4.1 can be found in Appendix D.4
(see Theorem D.22) and is again an application of Berge’s

1E.g., if πref(a | s) > 0 for all (s, a) ∈ S×A and ω(π) :=
DKL (π||πref), then the minimum is πref .

theorem (Berge, 1963). Note that the regret bound L is
defined as the regret of the reference policy. This intuitively
makes sense, as regularized policy optimization constrains
the policy under optimization π̂ to not deviate too strongly
from the reference policy πref , which will also constrain the
regret of π̂ to stay close to the regret of πref . Under the con-
ditions of Theorem 4.1, the regret of πref serves as an upper
regret bound because for small enough ϵ the learned reward
R̂ and the true reward R are so close that maximizing R̂
also improves reward with respect to R. Furthermore, we
note that it is also possible to derive a version in which the
expected error in rewards is replaced by a KL divergence of
choice probabilities, similar to Proposition D.15, by com-
bining the arguments in that proposition with the arguments
in Berge’s theorem — see Theorem D.23.

Similar to Theorem 3.1, Theorem 4.1 does not guarantee the
existence of a universal ϵ such that all data distributions D
are in safe(R, ϵ, L, λ, ω). In our next result, we show that
such an ϵ does not exist, since for each ϵ, there is a nontrivial
set of data distributions that allows for error-regret mismatch
to occur:

Theorem 4.2. LetM = ⟨S,A, τ, µ0, R, γ⟩ be an arbitrary
MDP, λ ∈ (0,∞), L ∈ (0, 1), and ω : Π → R be a regu-
larization function. Furthermore, let π∗ be a determinstic
worst-case policy for R, meaning that RegR (π∗) = 1. Let
C := C(M, π∗, L, λ, ω) < ∞ be the constant defined in
Equation (106) in the appendix. Let ϵ > 0. Then for all
data distributions D ∈ ∆(S×A) with

D(supp Dπ∗) ≤ ϵ

1 + C
, (4)

we have D ∈ unsafe(R, ϵ, L, λ, ω).

The proof of Theorem 4.2 can be found in Appendix C.5
(see Theorem C.38). The general idea is as follows: To
prove that D is unsafe, define R̂ to be equal to R outside of
supp Dπ∗ , and very large in supp Dπ∗ . If it is sufficiently
large in this region, then regularized optimization leads to
a policy π̂ with RegR (π̂) ≥ L. Finally, the condition that
D(supp Dπ∗) ≤ ϵ

1+C ensures that R̂ has a reward error
bounded by ϵ.

Note that Theorem 4.2 is very general and covers a
large class of different regularization methods. In Theo-
rem C.40 we provide a specialized result for the case of
KL-regularized policy optimization, and in Section 6 we
investigate error-regret mismatch in the RLHF framework.
At the end of our conceptual example described in the intro-
duction and in detail in Appendix B.4, we also discuss the
simple intuition that simply giving a low enough training
probability to some unsafe actions can be enough to lead to
unsafe reward inference and policy optimization even in the
regularized case. This is in accordance with Theorem 4.2.
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5. Generalization of the error measurement
Our results have so far expressed the error of the learned
reward R̂ in terms of Equation (1), i.e., in terms of the
expected error of individual transitions. In this section, we
show that many common reward learning training objectives
can be upper-bounded in terms of the expected error metric
defined in Equation (1). This in turn means that our negative
results generalize to reward learning algorithms that use
these other training objectives. We state all upper bounds for
MDPs with finite time horizon T (but note that these results
directly generalize to MDPs with infinite time horizon by
taking the limit of T →∞).

In the finite horizon setting, trajectories are defined as a
finite list of states and actions: ξ = s0, a0, s1, ..., aT−1. We
use Ξ for the set of all trajectories of length T . As in the
previous sections, G : Ξ→ R denotes the trajectory return
function, defined as G(ξ) =

∑T−1
t=0 γt ·R(st, at). We start

by showing that low expected error in transitions implies
low expected error in trajectory returns:

Proposition 5.1. Given an MDP ⟨S,A, τ, µ0, R, γ⟩, a data
sampling policy π : S → ∆(A) and its resulting data
distribution Dπ = 1−γ

1−γT · ηπ and a second reward function

R̂ : S×A → R, we can upper bound the expected difference
in trajectory evaluation as follows:

Eξ∼π

[
|GR(ξ)−GR̂(ξ)|

]
≤

1− γT

1− γ
· E(s,a)∼Dπ

[
|R(s, a)− R̂(s, a)|

]
.

The proof of Theorem 5.1 can be found in Appendix C.4.1
(see Theorem C.24). Furthermore, a low expected error of
trajectory returns implies a low expected error of choice
distributions (a distance metric commonly used as the loss
in RLHF (Christiano et al., 2017)). Namely, given a reward
function R, define the probability of trajectory ξ1 being
preferred over ξ2 to be:

pR(ξ1 ≻ ξ2) = σ(GR(ξ1)−GR(ξ2))

=
exp(GR(ξ1))

exp(GR(ξ1)) + exp(GR(ξ2))
.

We then have:

Proposition 5.2. Given an MDP ⟨S,A, τ, µ0, R, γ⟩, a data
sampling policy π : S → ∆(A) and a second reward
function R̂ : S×A → R, we can upper bound the expected
KL divergence over trajectory preference distributions as
follows:

Eξ1,ξ2∼π×π

[
DKL

(
pR(·|ξ1, ξ2)||pR̂(·|ξ1, ξ2)

)]
≤ 2 · Eξ∼π

[
|GR(ξ)−GR̂(ξ)|

]
.

The proof of Theorem 5.2 can be found in Appendix C.4.1
(see Theorem C.25).

Finally, in some RLHF scenarios, for example in RLHF
with prompt-response pairs, one prefers to only compare
trajectories with a common starting state. In the following
proposition, we upper bound the expected error of choice
distributions with trajectories that share a common start-
ing state by the expected error of choice distributions with
arbitrary trajectories:

Proposition 5.3. Given an MDP ⟨S,A, τ, µ0, R, γ⟩, a data
sampling policy π : S → ∆(A) and a second reward
function R̂ : S×A → R, we can upper bound the expected
KL divergence of preference distributions over trajectories
with a common starting state as follows:

E s0∼µ0,
ξ1,ξ2∼π(s0)

[
DKL

(
pR(·|ξ1, ξ2)||pR̂(·|ξ1, ξ2)

)]
≤

Eξ1,ξ2∼π×π

[
DKL

(
pR(·|ξ1, ξ2)||pR̂(·|ξ1, ξ2)

)]
mins′∈S,µ0(s′)>0 µ0(s′)

.

The proof of Theorem 5.3 can be found in Appendix C.4.1
(see Theorem C.26).

6. Error-regret mismatch in RLHF
In this section we extend our results to reinforcement learn-
ing from human feedback (RLHF). We provide more general
results for the class of KL-regularized policy optimization
methods in Appendix C.4.5.

RLHF, especially in the context of large language models,
is usually modeled in a contextual bandit setting (Ziegler
et al., 2019; Stiennon et al., 2020; Bai et al., 2022; Ouyang
et al., 2022; Rafailov et al., 2023). A contextual bandit
⟨S,A, µ0, R⟩ is defined by a set of states S, a set of ac-
tions A, a data distribution µ0 ∈ ∆(S), and a reward
function R : S×A → R. The goal is to learn a pol-
icy π : S → ∆(A) that maximizes the expected return
J(π) = Es∼µ0,a∼π(·|s) [R(s, a)]. In the context of language
models, S is usually called the set of prompts or contexts,
and A the set of responses.

We state the following theorem using a version of Theo-
rem 2.1 tailored to the RLHF setting. In particular, we re-
place the similarity metric (property 1 of Theorem 2.1) with
the expected similarity in choice probabilities. A precise
mathematical definition can be found in Appendix C.4.3.
We denote the resulting sets of safe- and unsafe data
distributions by safeRLHF

(
R, ϵ, L, λ,DKL (·||πref)

)
and

unsafeRLHF
(
R, ϵ, L, λ,DKL (·||πref)

)
.

By making use of the specifics of this setting, we can derive
more interpretable and stronger results. In particular, we
specify a set of reference distributions for which performing
KL-regularized policy optimization allows for error-regret
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mismatch to occur.

Theorem 6.1. Let ⟨S,A, µ0, R⟩ be a contextual bandit.
Given L ∈ [0, 1), we define for every state s ∈ S the
reward threshold:RL(s) := (1−L) ·maxa∈A R(s, a)+L ·
mina∈A R(s, a). Lastly, let πref : S → A be an arbitrary
reference policy for which it holds that for every (s, a) ∈
S×A, πref(a|s) > 0, and there exists at least one action
as ∈ A such that R(s, as) < RL(s) and πref(as|s) satisfies
the following inequality:

πref(as|s) ≤
(RL(s)−R(s, as)) · range R

L · exp
(
1
λ · range R

) · ϵ2

4 · λ2
.

Let Dref
µ (s, a) := µ(s) ·πref(a|s) for some µ ∈ ∆(S). Then

Dref
µ ∈ unsafeRLHF

(
R, ϵ, L, λ,DKL (·||πref)

)
Intuitively, the theorem shows that even if we learn a reward
model R̂ that induces ϵ-correct choice probabilities accord-
ing to the data distribution generated from a reference policy
πref , a policy that maximizes R̂ with KL-penalty can still
have regret ≥ L if πref gives sufficiently low probability
to bad actions. The proof of Theorem 6.1 can be found in
Appendix C.4.4 (see Theorem C.32). We expect the condi-
tions on the reference policy πref to likely hold in real-world
cases as the number of potential actions (or responses) is
usually very large, and language models typically assign a
large portion of their probability mass to only a tiny fraction
of all responses. Hence, for every state/prompt s, a large ma-
jority of actions/responses a have a very small probability
πref(a | s). See our conceptual example in the introduction
and Appendix B.4 to make this intuition concrete.

7. Discussion
In this paper, we contributed to the foundations of reward
learning theory by studying the relationship between the
training error of the learned reward function and the regret
of policies that then result from policy optimization. We
showed that as the expected error of a reward model R̂ goes
to zero, the regret of the resulting policy (with or without reg-
ularization) also goes to zero (Theorem 3.1) or is bounded
by the regret of a reference policy (Theorem 4.1). However,
in Theorem 3.2 we showed that the training error needed to
ensure a certain regret is proportional to the minimum of the
data distribution D. Consequently, there exists no training
error that can universally ensure low regret.

More specifically, low expected error of R̂ does not ensure
low regret for all realistic data distributions (Theorems 3.3,
4.2 and 6.1). We refer to this phenomenon as error-regret
mismatch. This is due to policy optimization involving a
distributional shift. Moreover, for some MDPs with very
large state-action spaces there does not exist any safe data
distribution relative to a reasonable reward model error and
desired regret bound (Theorem 3.4). We also showed that

our results generalize to other data sources, such as prefer-
ences over trajectories and trajectory scores (Theorems 5.1
to 5.3), supporting the conclusion that this issue is a funda-
mental problem of reward learning.

Lastly, for unregularized optimization, we derive necessary
and sufficient conditions that allow us to determine the set
of safe data distributions for arbitrary MDPs, thereby fully
answering when a data distribution is safe (Theorem 3.5).

7.1. Limitations and future work

Our work focuses on a worst-case setting regarding the
learned reward function and optimal policy. Future work
could account for the inductive biases of common optimiza-
tion procedures and consider non-optimal policies.

It is also important to theoretically analyze improved reward
learning and policy optimization procedures. Empirical
work has explored reward model ensembles (Coste et al.,
2023), weight-averaged reward models (Ramé et al., 2024),
and iterated data-smoothing for multi-armed bandits (Zhu
et al., 2024). Recent efforts address learning reward models
on online data to mitigate distribution shifts (Lang et al.,
2024a) and even provide theoretical insights for linear re-
ward functions (Song et al., 2024). We hope a careful the-
oretical analysis of these settings, in similar generality to
our work, can improve upon the “theoretical baseline” we
establish.

Another important direction to explore is whether optimiz-
ing an implicit reward model (as used by direct preference
optimization (Rafailov et al., 2023) and its many derivatives)
in place of an explicitly learned reward model improves the
robustness to error-regret mismatch.

Lastly, there are other ways to improve safety. For example,
one could research evaluation methods for learned reward
functions that go beyond looking at the training error, e.g.
by using interpretability methods (Michaud et al., 2020;
Jenner & Gleave, 2022) or finding better ways to quantify
reward function distance (Gleave et al., 2020; Skalse et al.,
2024).

Impact statement
Reward learning methods such as RLHF are widely used to
steer the behavior of frontier models. Thus, it is important
that reward models are robust and reliable. We point out
a theoretical challenge to the robustness of reward models
to policy optimization. We hope that this stimulates further
research in overcoming this challenge. Since our work
is purely theoretical, we do not foresee negative societal
consequences.
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APPENDIX
This appendix develops the theory outlined in the main paper in a self-contained and complete way, including all proofs.
In Appendix A we include an extended related work section. In Appendix B, we present the setup of all concepts and
the problem formulation, as was already contained in the main paper. In Appendix C, we present all “negative results”.
Conditional on an error threshold in the reward model, these results present conditions for the data distribution that allow
reward models to be learned that allow for error-regret mismatch. That section also contains Theorem C.16 which is
an equivalent condition for the absence of error-regret mismatch but could be considered a statement about error-regret
mismatch by negation. In Appendix D, we present sufficient conditions for safe optimization in several settings. Typically,
this boils down to showing that given a data distribution, a sufficiently small error in the reward model guarantees that its
optimal policies have low regret.
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A. Extended related work
Reward Learning Reward learning is a key concept in reinforcement learning that involves learning the reward function
for complex tasks with latent and difficult-to-specify reward functions. Many methods have been developed to incorporate
various types of human feedback into the reward learning process (Wirth et al., 2017; Ng et al., 2000; Bajcsy et al., 2017;
Jeon et al., 2020).

Challenges in Reward Learning Reward learning presents several challenges (Casper et al., 2023; Lang et al., 2024b;
Skalse & Abate, 2023; 2024), such as reward misgeneralization, where the reward model learns a different reward function
that performs well on in-distribution data but differs strongly on out-of-distribution data (Skalse et al., 2023). This can lead
to unintended consequences in real-world applications.

Reward misgeneralization can also result in reward hacking (Krakovna, 2020), a consequence of Goodhart’s law (Goodhart,
1984; Zhuang & Hadfield-Menell, 2020; Hennessy & Goodhart, 2023; Strathern, 1997; Karwowski et al., 2023). Reward
hacking has been extensively studied both theoretically (Skalse et al., 2022; 2024; Zhuang & Hadfield-Menell, 2020) and
empirically (Zhang et al., 2018; Farebrother et al., 2018; Cobbe et al., 2019; Krakovna, 2020; Gao et al., 2023; Tien et al.,
2022).

Offline RL In offline reinforcement learning, we aim to learn low-regret policies for an MDP ⟨S,A, τ, µ0, R, γ⟩ where
the reward function (and sometimes transition distribution (Wang et al., 2022b; Uehara & Sun, 2021)) is unknown and must
be learned from an offline dataset {(s, a, r)i}ni=1 sampled from a data distribution D ∈ ∆(S×A). A key research question
is understanding what data coverage conditions ensure learning a near-optimal policy with an efficient sample complexity.
Existing theoretical work primarily falls into two categories, covering both MDPs (Foster et al., 2021; Wang et al., 2022b;
2020; Amortila et al., 2020; Uehara & Sun, 2021; Uehara et al., 2021) and contextual bandits (Nika et al., 2024; Cen et al.,
2024):

Lower bound results prove that various data-coverage conditions are insufficient for sample-efficient offline RL by establish-
ing worst-case sample complexity bounds. Research in this area (Foster et al., 2021; Wang et al., 2022b; 2020; Amortila
et al., 2020; Nika et al., 2024) identifies adversarial MDPs that satisfy specific data-coverage conditions where achieving low
regret is either computationally intractable due to excessive sample requirements (Foster et al., 2021; Wang et al., 2022b;
2020; Nika et al., 2024) or fundamentally impossible regardless of sample size (Amortila et al., 2020).

Upper bound results, on the other hand, establish positive guarantees under specific structural assumptions. Works in this
category (Wang et al., 2022b; 2020; Uehara & Sun, 2021; Nika et al., 2024; Cen et al., 2024; Song et al., 2024) develop
algorithms with provable sample-efficiency bounds by making structural assumptions about the MDP structure, reward
learning process, or policy optimization approach.

Intuitively, the quality of a reward model that is being approximated from a finite dataset is influenced by two key factors: the
dataset size n and the dataset quality, specifically how well the data distribution D covers the data space S×A. Prior work
confirms this intuition, with most works deriving variants of the following template (see for example recent work (Nika et al.,
2024)): Regret ∈ O

(
poly

(
Cov·Struct

n

))
. Here, Cov represents some measure of the coverage of D, while Struct captures

the structural assumptions of the specific approach. Such structural assumptions may include: realizability of function
classes (Wang et al., 2022b; Uehara & Sun, 2021; Foster et al., 2021; Nika et al., 2024), linear function approximation (Nika
et al., 2024; Cen et al., 2024; Wang et al., 2022b), and various constraints on reward- or policy functions (Wang et al., 2020;
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Uehara & Sun, 2021; Nika et al., 2024).

Our paper differs from these works in two key aspects: a) we explicitly analyze how the reward modeling error ϵ affects
the final policy regret, rather than focusing on the number of samples (prior works only implicitly consider ϵ), and b) we
examine worst-case scenarios instead of probabilistic guarantees. The most relevant work in this area is (Song et al., 2024),
which analyzes RLHF specifically. Their setup in section 3, combined with their Assumption 3, perfectly recovers our safe
distribution definition (see Theorem 2.1) when applied to the special case of RLHF and when using the mean squared error
metric. Their Theorem 4.2 demonstrates that Regret ∈ O

(
Cov ·

√
ϵ
)
, where the square root emerges from using the mean

squared error during the reward learning step.

While Song et al. (2024) focus on RLHF with mean-squared error metric, we provide similar results for general classes
of regularized and unregularized policy optimization (for both MDPs and contextual bandits), as well as a wide range
of different error metrics. Similar to prior sample-complexity results, we investigate the influence of different coverage
constraints on regret guarantees. For our initial results (Theorems 3.1, 3.2 and 4.1) we use the condition min(s,a) D(s, a) > 0.
Since we assume that all states of our MDPs are reachable, this is equivalent to a full coverage condition (see Table 1 of
(Uehara & Sun, 2021) for an overview of different coverage conditions). We then relax the constraints to partial coverage
constraints and prove several negative results (Theorems 3.3, 4.2 and 6.1). Finally, we fully generalize our results from
Theorems 3.1 to 3.4 into a single theorem (Theorem 3.5) which allows us to determine the worst-case safety of arbitrary
data distributions. To the best of our knowledge, we are the first work to achieve such a level of generality.

Advancements in Addressing Distribution Shifts Several approaches have been proposed to address the issue of out-of-
distribution robustness in reward learning, such as ensembles of conservative reward models (Coste et al., 2023), averaging
weights of multiple reward models (Ramé et al., 2024), iteratively updating training labels (Zhu et al., 2024), on-policy
reward learning (Lang et al., 2024a), and distributionally robust planning (Zhan et al., 2023). Recently, Kwa et al. (2024)
show that RLHF and Conditioning can be provably safe under fairly strong structural assumptions—such as deterministic
transitions, light-tailed reward errors, and independence between true and proxy rewards. Furthermore, Laidlaw et al. (2024)
consider a setting where the learned and true reward functions are positively correlated under a reference policy. They prove
that maximizing the proxy reward with a chi-squared divergence penalty yields regret no worse than that of the reference
policy. In experiments, they approximate this regularized objective and report favorable results.

Our work further emphasizes the usefulness of exploring additional assumptions or methods to mitigate the perils of
distribution shift, as we show that without any additional assumptions, there are next to no guarantees. We therefore hope
that our work can serve as a theoretical baseline, that people can use to express and analyze their new assumptions or
methods.

In classical machine learning, research in out-of-distribution generalization has a long history, and a rich literature of
methods exists (Li et al., 2022; Zhou et al., 2022; Wang et al., 2022a; Liu et al., 2021; Li et al., 2023; Yoon et al., 2023).
These methods could potentially be adapted to address distribution shift challenges in reinforcement learning.

Contextual Bandits In Section 6 we work in the contextual bandit setting and derive variants of our results for RLHF.
Several theoretical results have been developed that investigate the challenge of RLHF (Xiong et al., 2024; Zhu et al., 2023;
Ji et al., 2023; Mehta et al., 2023) and reward learning in general, (Agarwal et al., 2012; Foster et al., 2020) in the contextual
bandit setting. In our Theorem 6.1 we show that in the worst-case setting, and without any additional assumptions, many
common data distributions are unsafe. On the other hand, these works develop safety guarantees in settings with more
structural assumptions such as various restrictions on the reward functions (Xiong et al., 2024; Zhu et al., 2023), focusing on
the probability and efficiency of safety guarantees (Zhu et al., 2023; Ji et al., 2023; Agarwal et al., 2012), and developing
active learning algorithms (Mehta et al., 2023).

Direct Preference Optimization Direct preference optimization (DPO) (Rafailov et al., 2023) is a recent technique that
allows to directly optimize a policy via an implicitly defined reward model which promises to mitigate some of the common
issues with classic reward model training like such as training stability. DPO’s empirical performance is promising and many
recent works are trying to further improve and extend upon the base idea. RPO (Liu et al., 2024) adds an imitation loss from
a baseline policy to regularize DPO and provably mitigate overoptimization. SimPO (Meng et al., 2024) simplifies DPO by
removing the need for a reference model and using the average log-likelihood of tokens as the reward. IPO (Garg et al.,
2025) avoids explicit external reward models by letting LLMs select samples for DPO themselves. Lastly, χPO replaces the
KL-regularization of DPO with χ2 regularization, thereby improving robustness against overoptimization and achieving
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sample efficiency guarantees.

Since our work explicitly analyzes the conditions under which a reward model might misgeneralize during training, our
work does not directly translate to this family of DPO algorithms. However, we do consider it important future work to
explore if and how DPO might be more robust to the issue of error-regret mismatch.

Alternative Formalizations of Reward and Utility We would like to note that throughout this work, we study the
classical MDP setting, where utility of a policy is measured by an expected value of a (potentially discounted) cumulative
sum of a scalar reward signal (see the definition of J in Section 2). This definition is based on the reward hypothesis (Sutton,
2004; Littman, 2019; Sutton & Barto, 2018) which states that:

That all of what we mean by goals and purposes can be well thought of as maximization of the expected value of
the cumulative sum of a received scalar signal (reward).

While this is the default setting, several works investigate if, or under which conditions this formalization is sufficient to
express the wide variety of goals and purposes that one might be interested in. Toward that end, Shakerinava & Ravanbakhsh
(2022) propose axioms that are necessary and sufficient for Markovian rewards to model preference relations. These axioms
are later generalized by Bowling et al. (2023) to accommodate more general settings such as discounted reward and episodic
settings. Pitis (2019) show how utility functions with fixed discount factors fail to model some types of preferences and then
argue for a state-action-dependent discount factor. Similarly, Abel et al. (2021) investigate the expressivity of Markovian
rewards and identify tasks that cannot be modeled with Markovian rewards.

B. Introduction
B.1. Preliminaries

A Markov Decision Process (MDP) is a tuple ⟨S,A, τ, µ0, R, γ⟩ where S is a set of states,A is a set of actions, τ : S×A →
∆(A) is a transition function, µ0 ∈ ∆(S) is an initial state distribution, R : S×A → R is a reward function, and γ ∈ (0, 1)
is a discount rate. A policy is a function π : S → ∆(A). A trajectory ξ = ⟨s0, a0, s1, a1, ...⟩ is a possible path in an MDP.
The return function G gives the cumulative discounted reward of a trajectory, G(ξ) =

∑∞
t=0 γ

tR(st, at, st+1), and the
evaluation function J gives the expected trajectory return given a policy, J(π) = Eξ∼π [G(ξ)]. A policy maximizing J is
an optimal policy. The state-action occupancy measure is a function η : Π→ R|S×A| which assigns each policy π ∈ Π a
vector of occupancy measure describing the discounted frequency that a policy takes each action in each state. Formally,
η(π)(s, a) = ηπ(s, a) =

∑∞
t=0 γ

t · P (st = s, at = a | ξ ∼ π). Note that by writing the reward function R as a vector
R⃗ ∈ R|S×A|, we can split J into a linear function of π: J(π) = ηπ · R⃗. The value function V of a policy encodes the
expected future discounted reward from each state when following that policy. We useR to refer to the set of all reward
functions. When talking about multiple rewards, we give each reward a subscript Ri, and use Ji, Gi, and V π

i , to denote Ri’s
evaluation function, return function, and π-value function.

B.2. Problem formalization

The standard RL process using reward learning works roughly like this:

1. You are given a dataset of transition-reward tuples {(si, ai, ri)}ni=0. Here, each (si, ai) ∈ S×A is a transition from
some (not necessarily known) MDP ⟨S,A, τ, µ0, R, γ⟩ that has been sampled using some distribution D ∈ ∆(S×A),
and ri = R(si, ai). The goal of the process is to find a policy π̂ which performs roughly optimally for the unknown
true reward function R. More formally: JR(π̂) ≈ maxπ∈Π JR(π).

2. Given some error tolerance ϵ ∈ R, a reward model R̂ : S×A → R is learned using the provided dataset. At the end of
the learning process R̂ satisfies some optimality criterion such as: E(s,a)∼D

[
|R̂(s, a)−R(s, a)|

]
< ϵ

3. The learned reward model R̂ is used to train a policy π̂ that fulfills the following optimality criterion: π̂ =
argmaxπ∈Π JR̂(π).

The problem is that training π̂ to optimize R̂ effectively leads to a distribution shift, as the transitions are no longer sampled
from the original data distribution D but some other distribution D̂ (induced by the policy π̂). Depending on the definition
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of D, this could mean that there are no guarantees about how close the expected error of R̂ to the true reward function R is
(i.e., E(s,a)∼D̂

[
|R̂(s, a)−R(s, a)|

]
could not be upper-bounded).

This means that we have no guarantee about the performance of π̂ with respect to the original reward function R, so it might
happen that π̂ performs arbitrarily bad under the true reward R: JR(π̂)≪ maxπ JR(π).

If for a given data distribution D there exists a reward model R̂ such that R̂ is close in expectation to the true reward function
R but it is possible to learn a policy that performs badly under JR despite being optimal for R̂, we say that D allows for
error-regret mismatch and that R̂ has an error-regret mismatch.

B.3. The mean-squared error as an alternative distance measure

In the main paper, particular in Theorem 2.1, we use the mean absolute error (MAE) as our error measure in the reward
function. In this appendix section, we explain what changes in the results if one were to use the mean-squared error (MSE)
instead.

We define the mean-squared error by

dMSE
D (R, R̂) := E(s,a)∼D

( R̂(s, a)−R(s, a)

range R

)2
 .

This is like the usual MSE, with the difference that we divide by range R since the distance is only meaningful relative to
the range of the true reward function R. In the main paper, we work with the following mean absolute error instead:

dMAE
D (R, R̂) = E(s,a)

[
|R̂(s, a)−R(s, a)|

range R

]
.

Then for any distance measure dX (with X = MSE or X = MAE) involving a data distribution D, we can define the
set of safe data distributions safeX(R, ϵ, L, λ, ω), slightly generalizing Theorem 2.1: safe(R, ϵ, L, λ, ω) is the set of all
distributions D such that for all R̂ that are ϵ-close to R according to dXD and all π̂ that are (λ, ω)-optimal with respect to R̂,
we have RegR (π̂) < L. The complement of this set is unsafeX(R, ϵ, L, λ, ω).

We now explain that for all of our results where in the main paper we talk about safeMAE, there is a corresponding result for
safeMSE, and the same for unsafeMAE and unsafeMSE.

B.3.1. TRANSFER OF POSITIVE RESULTS

Proposition B.1. If D ∈ safeMAE(R, ϵ, L, λ, ω), then D ∈ safeMSE(R, ϵ2, L, λ, ω).

Proof. Assume the condition. Let R̂, π̂ be such that dMSE
D (R, R̂) ≤ ϵ2 and π̂ is (λ, ω)-optimal with respect to R̂. Due to

Jensen’s inequality, we have

dMAE
D (R, R̂)2 = E(s,a)∼D

[
|R̂(s, a)−R(s, a)|

range R

]2

≤ E(s,a)∼D

( R̂(s, a)−R(s, a)

range R

)2


= dMSE
D (R, R̂)

≤ ϵ2.

It follows dMAE
D (R, R̂) < ϵ. By the definition of safeMAE(R, ϵ, L, λ, ω) and the assumption, this results in RegR (π̂) < L.

Since R̂, π̂ were arbitrary, this shows D ∈ safeMSE(R, ϵ2, L, λ, ω).

This proposition implies that our positive results (Theorem 3.1 and Theorem 4.1) transfer over from safeMAE to safeMSE.
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Theorem 3.2 transfers as well, with the condition on ϵ replaced by a square of the old condition:

ϵ <

(
1− γ√

2
· range J

R

range R
·min
(s,a)

D(s, a) · L
)2

.

B.3.2. TRANSFER OF THE REMAINING RESULTS

The negative results do not transfer automatically since we would need an inequality between dMAE and dMSE in the other
direction, which does not exist without further assumptions. Nevertheless, it is easily possible to modify most the proofs,
where appropriate, to obtain corresponding results. In particular:

• Theorem 3.3 and Theorem 3.4 hold verbatim with unsafeMSE instead of unsafeMAE. In the proof of Theorem 3.3, we
can use the same construction of R̂, and an almost identical derivation shows the bound in dMSE.

• On Theorem 3.5: Due to Theorem B.1 in this rebuttal the “if”-direction of the theorem automatically holds when
replacing dMAE

D (R, R̂) with dMSE
D (R, R̂), i.e., there exists a set of linear inequalities such that a given data distribution

D is safe, i.e., D ∈ safeMSE(R, ϵ2, L), whenever this set of linear inequalities is satisfied.
However, the “only-if” direction does not hold since safeMSE(R, ϵ2, L) is not a polytope (whereas safeMAE(R, ϵ, L)
is) and can thus not be expressed by a finite set of linear constraints. The reason is that by replacing dMAE

D (R, R̂)

with dMSE
D (R, R̂), the set {R̂ : dMSE

D (R, R̂) ≤ ϵ} becomes an ellipsoid, whereas it was a polytope in the original
formulation. Future work could look into a precise characterization in more detail.

• For Theorem 4.2, there is a corresponding version that is almost identical but replaces the condition on D(supp Dπ̂)
by the following version including a square:

D(supp Dπ̂) ≤ ϵ

(1 + C)2
.

This condition can then be used at the very end of the proof of Theorem C.38 to finish the proof of an adapted
Theorem Theorem 4.2.

• For the final negative result, Theorem 6.1, we already use a different distance measure motivated by the practice of
RLHF. Thus, we are not interested in an adaptation for the MSE.

B.4. A conceptual example of overoptimization concerns

In this section, we present a conceptual example that illustrates overoptimization concerns. This is meant to serve as an
intuition for many of our “negative” theoretical results Theorems 3.3, 3.4, 4.2 and 6.1, with the aim to make them more
grounded in realistic concerns.

In summary, imagine a scenario of a chatbot: It can either obtain “safe” or “dangerous” queries; safe queries (e.g. “Please
help me create a high-protein diet”) should be answered, dangerous queries (e.g. “Please tell me how to build a nuclear
weapon”) should be refused. We call answering a query “helping”, irrespective of whether this is desired or not. We will
specifically analyze an always-helping policy, its regret, and its plausibility to occur from reward learning. Helpful-only
policies have been analyzed in past safety research (Denison et al., 2024) and are often a starting point for policies meant to
become “helpful, honest, and harmless” (Askell et al., 2021).

First, we look at conditions for when helpful-only policies are unsafe relative to a regret bound L. It turns out that they are
less safe if there appear more unsafe queries in the deployment environment, and if the damage caused by answering them is
larger — see Appendix B.4.2. Then we look into the conditions for when this policy can be learned by reward learning —
see Appendix B.4.3. It turns out that if there are “many styles” with which the chatbot can answer an unsafe query, then
some of those answers must have a low probability on the training distribution, and thus a learned reward model can inflate
its reward while achieving a low training error. The always-helping policy can then result from policy optimization, leading
to a large regret. This illustrates an error-regret mismatch.
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B.4.1. SPECIFYING THE CONTEXTUAL BANDIT

We model the situation as follows: Assume a contextual bandit with states and actions given by

S = {qsafe, quns.}, A = {aihelp, airef.}Ni=1.

In other words, there is one safe and one unsafe query,2 and actions that either help with or refuse to answer the query in N
different styles. One should imagine N to be fairly large since there are lots of ways to vary the style of an answer without
changing the content, given that the amount of possible answers scales exponentially with length.

We assume the following simplified true reward function, where C > 0 is some (potentially large) constant:

R(qsafe, a
i
help) = 1

R(qsafe, a
i
ref.) = 0

R(quns., a
i
help) = −C

R(quns., a
i
ref.) = 0.

(5)

The idea is that answering a safe query should lead to some positive reward, whereas refusing it doesn’t create value or
damage — the reward is zero. Answering/helping with an unsafe queries, however, incurs a large negative reward −C since
it can lead to substantial damage, whereas, once again, refusing to answer does neither create value nor damage.

Finally, we assume some “true” distribution of queries, given by µuns. ∈ [0, 1] and µsafe = 1−µuns.. These can be imagined
to be the frequencies with which actual users in the deployment environment ask safe vs. unsafe queries. In total, we have
thus specified a contextual bandit (S,A, R, µ).

We now make a regret-analysis — analyzing when an always-helping policy is safe — followed by a reward learning
analysis — under which conditions can an always-helping policy result from reward learning?

B.4.2. REGRET ANALYSIS FOR ALWAYS-HELPING POLICY

For a policy π̂ with answer probabilities π̂(a | q), the policy evaluation (i.e., expected reward) is given by

JR(π̂) = µsafe ·
N∑
i=1

π̂(aihelp | qsafe)− (1− µsafe) · C ·
N∑
i=1

π̂(aihelp | quns.). (6)

This follows directly from (5). The idea is that under a safe query, which happens with probability µsafe, the reward is the
probability to help with the query. For an unsafe query, which happens with probability 1− µsafe, the reward is −C times
the probability that the model helps with that query.

Now, the highest expected reward JR can be achieved if π̂ always helps with a safe query and never helps with an unsafe
query. This is hard to achieve in practice since training the model to refuse unsafe queries often leads to “over-refusal” on
safe queries (Cui et al., 2024). In contrast, the lowest expected reward JR is achieved is π̂ never helps with a safe query and
always helps with an unsafe query. Thus, the maximum and minimum expected values are given by:

max
π̂

JR(π̂) = µsafe,

min
π̂

JR(π̂) = −(1− µsafe) · C.
(7)

Now, for purposes of illustration we look at one specific type of policy π̂: one that always helps. Let π̂ be such a policy.
There are several such policies since they can differ in their allocation of probabilities to answers of different styles, but the
defining property is that their action probabilities for helpful answers sum to 1:

N∑
i=1

π̂(aihelp | qsafe) = 1,

N∑
i=1

π̂(aihelp | quns.) = 1.

2Having a larger number of safe and unsafe queries does not change the mathematical picture much, but for illustration purposes we
chose this simplified setting.

21



The Perils of Optimizing Learned Reward Functions

0.0 0.2 0.4 0.6 0.8 1.0
L

0.0

0.2

0.4

0.6

0.8

1.0

_{
un

s.}
^C

(L
)

C=0.5
C=1
C=2

C=5
C=10
C=20

C=50
C=100
C=200

Figure 3. In our conceptual example, we analyze when an always-helping policy π̂ is unsafe. This depends on the probability of an unsafe
query µuns.. For a given damage C of answering such a query and a given regret bound L, π̂ has a regret of at least L if µuns. is larger
than the plotted µC

uns.(L) = L/[(1− L) · C + L]. µC
uns.(L) grows with growing L and shrinks with growing C.

Using (6), its expected value is given by:

JR(π̂) = µsafe − (1− µsafe) · C. (8)

Additionally using (7), the regret of this policy is:

RegR (π̂) =
maxπ JR(π)− JR(π̂)

maxπ JR(π)−minπ JR(π)

=
µsafe − µsafe + (1− µsafe) · C

µsafe + (1− µsafe) · C

=
(1− µsafe) · C

µsafe + (1− µsafe) · C

=
µuns. · C

1− µuns. + µuns. · C
.

(9)

Now, imagine our goal is to have a regret lower than the bound L ∈ [0, 1] — a threshold that we find “safe enough” for
deployment. Is π̂ unsafe? It depends on the value of µuns., i.e., the frequency of unsafe queries. Indeed, using (9), the
inequality RegR (π̂) ≥ L is equivalent to:

µuns. ≥
L

(1− L) · C + L
. (10)

In Figure 3 we analyze for several different values of the damage C the relationship between the regret bound L and the
smallest probability µC

uns.(L) := L/[(1− L) · C + L] of the unsafe query for which the policy π̂ would have a regret of at
least L. We observe the following:

• For each C, as the regret bound L gets larger, one needs a larger probability µuns. for π̂ to have regret at least L. This
makes sense: π̂ acts correctly on safe queries, and so only unsafe queries can contribute to the regret. Thus, the more
unsafe queries the policy encounters, the larger its regret becomes.
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• For each regret bound L, as the damage of helping with an unsafe query, C, gets larger, a smaller probability µuns. is
sufficient for π̂ to reach regret at least L. This makes sense since the policy’s overall performance is then more and
more dominated by its performance on unsafe queries.

Note that over time, language models are approaching more concerning “dangerous capabilities” (Phuong et al., 2024;
Anthropic, 2024), which means that the caused damage C for following through with unsafe requests can be imagined to go
up over time with increased capabilities. Positive value goes up, too, but plausibly in the near-term not as fast as the tailrisks.
Thus, we can reasonably think that even for large values of the regret bound L, a small probability µuns. of an unsafe query
would already cause the always-helping policy π̂ to have a regret of at least L, and thus to be unsafe.

Alternatively, instead of looking at regret, we could also think directly about the expected value JR(π̂) computed in (8).
Then we might say: the policy is unsafe if its expected value is negative, i.e., it causes more damage than it provides
value. With growing damage C for more capable models, the expected value eventually becomes negative, and so also this
viewpoint suggests that π̂ is not a safe policy.

B.4.3. REWARD LEARNING ANALYSIS

Now, lets assume that the relationship between L, C, and µuns. as per Equation (10) is such that an always-helping policy π̂
is unsafe, i.e., has regret at least L. Now the question becomes: Under what conditions could such a policy be learned by
reward learning followed by policy optimization? To be clear, there are also other policies that have regret at least L (e.g., a
policy that doesn’t help for safe queries and always helps for unsafe queries is even worse), but since we are operating under
a worst-case framework under the policy optimization, it is already bad if any always-helping policy π̂ can be learned. Thus,
we are searching for sufficient conditions for this to happen.

Thus, let R̂ be the learned reward function. For this to give rise to the policy π̂ under unregularized policy optimization, R̂
needs to favor at least one helpful answers over every refusing answer for both queries:

∃i∀j : R̂(qsafe, a
i
help) > R̂(qsafe, a

j
ref.),

∃i∀j : R̂(quns., a
i
help) > R̂(quns., a

j
ref.).

(11)

Again, since we are operating under a worst-case framework, it is enough if we find one specific learned reward function with
these conditions that can be learned in practice. Thus, for simplicity, we assume R̂(qsafe, a

i
help) = 1, R̂(qsafe, a

i
ref.) = 0

for all i. Also assume R̂(quns., a
i
ref.) = 0 for all i. Assume there exists a single i0 with B := R̂(quns., a

i0
help) > 0, and

that R̂(quns., a
i
help) = −C for all i ̸= i0. Then the conditions from (11) are met, and the learned reward function almost

everywhere agrees with the true reward function R from (5).

Now we want to determine the (mean absolute) training error of this reward model. For this, assume we train on some data
distribution D ∈ ∆(S ×A), given by D(q, a) = D(q) ·D(a | q).3 Since our reward model equals the true reward function
in every query-answer pair except (quns., ai0help), the training error becomes:

E(q,a)∼D

[
|R̂(q, a)−R(q, a)|

range R

]
= D(quns., a

i0
help) ·

B + C

1 + C
.

Assume we train until we have achieved a small but realistic training error ϵ. Then the question is under what conditions R̂
can “slip through” the training by leading to an error bounded above by ϵ. This is the case if:

D(quns., a
i0
help) <

(1 + C) · ϵ
B + C

. (12)

Thus, if there is some i0 for which this inequality holds, then R̂ can be learned, and the always-helping policy π̂ results.
Now, note that if the number of “styles” i = 1, . . . , N is very large relative to the inverse of ϵ, this is automatic. Namely, if

N >
D(quns.) · (B + C)

ϵ · (1 + C)
, (13)

3D(qsafe) is not necessarily equal to µsafe, the likelihood of safe queries in the deployment environment. This is intuitive: Before
deploying a chatbot in the real world, it may be hard to know what proportion of requests will be safe, and the proportion during training
may be different.
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then since the probabilities sum to 1 there is an i0 ∈ {1, . . . , N} with D(ai0help | quns.) ≤ 1/N , and we automatically obtain
the result, (12).

A note on regularized policy optimization: Regularization can prevent π̂ from being learned even if R̂ favors this policy.
However, if B = R̂(quns., a

i0
help) > 0 is very large, then this creates so much reward that the regularization effect with

constant regularization strength can be counteracted. Growing B just leads to the need for larger N in (13), and so we
can say: If the number of styles N is large enough (leading to a small training-probability of some bad action) and the
always-helping policy π̂ has regret larger then L, then supervised reward learning up to reasonable errors ϵ followed by
(un)regularized policy optimization can result in a policy with regret ≥ L. Thus, there is then an error-regret mismatch, and
the distribution D is unsafe, as per Theorem 2.1. That a large number of “bad options” or a small probability of some bad
option can lead to an error-regret mismatch is the core intuition behind our negative results Theorems 3.3, 3.4, 4.2 and 6.1.

C. Existence of error-regret mismatch
In this section, we answer the question under which circumstances error-regret mismatch could occur. We consider multiple
different settings, starting from very weak statements, and then steadily increasing the strength and generality.

C.1. Assumptions

For every MDP ⟨S,A, τ, µ0, R, γ⟩ that we will define in the following statements, we assume the following properties:

• Finiteness: Both the set of states S and the set of actions A are finite

• Reachability: Every state in the given MDP’s is reachable, i.e., for every state s ∈ S, there exists a path of transitions
from some initial state s0 (s.t. µ0(s0) > 0) to s, such that every transition (s, a, s) in this path has a non-zero probability,
i.e., τ(s′|s, a) > 0. Note that this doesn’t exclude the possibility of some transitions having zero probability in general.

C.2. Intuitive unregularized existence statement

Definition C.1 (Regret). We define the regret of a policy π with respect to reward function R as

RegR (π) :=
max JR − JR(π)

max JR −min JR
∈ [0, 1].

Here, J is the policy evaluation function corresponding to R.

Definition C.2 (Policy-Induced Distribution). Let π be a policy. Then we define the policy-induced distribution Dπ by

Dπ := (1− γ) · ηπ.

Definition C.3 (Range of Reward Function). Let R be a reward function. Its range is defined as

range R := maxR−minR.

Lemma C.4. for any policy π, Dπ is a distribution.

Proof. This is clear.

Proposition C.5. Let M = ⟨S,A, τ, µ0, R, γ⟩ be an MDP, D ∈ ∆(S×A) a data distribution, and ϵ > 0, L ∈ [0, 1].
Assume there exists a policy π̂ with the property that RegR (π̂) ≥ L and D(supp Dπ̂) < ϵ, where supp Dπ̂ is defined as
the set of state-action pairs (s, a) ∈ S×A such that Dπ̂(s, a) > 0. In other words, there is a “bad” policy for R that is not
very supported by D. Then, D allows for error-regret mismatch to occur, i.e., D ∈ unsafe(R, ϵ, L).

Proof. We claim that whenever there exists a policy π̂ with the following two properties:

• RegR (π̂) ≥ L,

• D(supp Dπ̂) < ϵ,
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then there exists a reward function R̂ for which π̂ is optimal, and such that

E(s,a)∼D

[
|R(s, a)− R̂(s, a)|

range R

]
≤ ϵ.

Since we assumed that RegR (π̂) ≥ L, this gives the result D ∈ unsafe(R, ϵ, L).

To prove the claim, define

R̂(s, a) :=

{
R(s, a), (s, a) /∈ supp Dπ̂;

maxR, else.

The state-action pairs that π̂ visits all lie in supp Dπ̂, where R̂ takes on its maximal reward maxR. This implies that π̂ is
optimal for R̂. Furthermore, we obtain

E(s,a)∼D

[
|R(s, a)− R̂(s, a)|

range R

]
=
∑
(s,a)

D(s, a)
|R(s, a)− R̂(s, a)|

range R

=
∑

(s,a)∈supp Dπ̂

D(s, a)
maxR−R(s, a)

range R

≤
∑

(s,a)∈supp Dπ̂

D(s, a)

= D(supp Dπ̂)

≤ ϵ.

That was to show.

Corollary C.6. Let M = ⟨S,A, τ, µ0, R, γ⟩ be an MDP, ϵ > 0, and L ∈ [0, 1]. Assume there exists a set of policies ΠL

with:

• RegR (π) ≥ L for all π ∈ ΠL;

• supp Dπ ∩ supp Dπ′
= ∅ for all π, π′ ∈ ΠL; and

• |ΠL| ≥ 1/ϵ.

Then unsafe(R, ϵ, L) = ∆(S ×A), i.e.: all distributions are unsafe.

Proof. Let D ∈ ∆(S ×A). Let π ∈ argminπ′∈ΠL
D(supp Dπ′

). We obtain

|ΠL| ·D(supp Dπ) ≤
∑

π′∈ΠL

D(supp Dπ′
) = D

( ⋃
π′∈ΠL

supp Dπ′

)
≤ 1,

and therefore D(supp Dπ) ≤ 1/|ΠL| < ϵ. Since π ∈ ΠL, we also have RegR (π) ≥ L. Together, π and D thus
satisfy the assumptions from Theorem 3.3, whose conclusion implies D ∈ unsafe(R, ϵ, L). This shows the inclusion
∆(S ×A) ⊆ unsafe(R, ϵ, L). The other inclusion is clear, and so we have equality.

Proposition C.7. The assumptions on ϵ in Theorem 3.2 and Theorem 3.3 cannot hold simultaneously.

Proof. If they would hold simultaneously, we would get:

min
(s,a)∈S×A

D(s, a) ≤ D
(
suppDπ̂

)
< ϵ <

1− γ√
2
· rangeJR

rangeR
· min
(s,a)∈S×A

D(s, a) · L.

Here, the first step is clear, the second step is the assumption from Theorem 3.3, and the third step is the assumption
from Theorem 3.2. We now show that this leads to a contradiction.
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Dividing by the minimum on both sides, we obtain

1 <
L√
2
· (1− γ)rangeJR

rangeR
. (14)

Clearly, we have L/
√
2 < 1. We also claim that the second fraction is smaller or equal to 1, which then leads to the desired

contradiction. Indeed, let π∗ and π∗ be an optimal and a worst-case policy, respectively. Then we have

(1− γ)rangeJR = (1− γ)(JR(π
∗)− JR(π∗))

= (1− γ)ηπ
∗
· R⃗− (1− γ)ηπ∗ · R⃗

= Dπ∗
· R⃗−Dπ∗ · R⃗

=
∑

(s,a)∈S×A

Dπ∗
(s, a)R(s, a)−

∑
(s,a)∈S×A

Dπ∗(s, a)R(s, a)

≤ max
(s,a)∈S×A

R(s, a)− min
(s,a)∈S×A

R(s, a)

= rangeR.

Here, we used the formulation of the policy evaluation function in terms of the occupancy measure η, and then that
1 − γ is a normalizing factor that transforms the occupancy measure into a distribution. Overall, this means that (1 −
γ)rangeJR/rangeR ≤ 1, contradicting (14). Consequently, the assumptions of Theorem 3.2 and Theorem 3.3 cannot hold
simultaneously.

C.3. General existence statements

We start by giving some definitions:

Definition C.8 (Minkowski addition). Let A,B be sets of vectors, then the Minkowski addition of A,B is defined as:

A+B := {a+ b | a ∈ A, b ∈ B}.

(Karwowski et al., 2023) showed in their proposition 1, that for every MDP, the corresponding occupancy measure space Ω
forms a convex polytope. Furthermore, for each occupancy measure η ∈ Ω there exists at least one policy πη such that
∀(s, a) ∈ S×A, ηπ(s, a) = η(s, a) (see Theorem 6.9.1, Corollary 6.9.2, and Proposition 6.9.3 of (Puterman, 1994)). In the
following proofs, we will refer multiple times to vertices of the occupancy measure space Ω whose corresponding policies
have high regret. We formalize this in the following definition:

Definition C.9 (High regret vertices). Given a lower regret bound L ∈ [0, 1], an MDP ⟨S,A, τ, µ0, R, γ⟩ and a corresponding
occupancy measure Ω, we define the set of high-regret vertices of Ω, denoted by V L

R , to be the set of vertices v of Ω for
which RegR (πv) ≥ L

Definition C.10 (Active inequalities). Let ⟨S,A, τ, µ0, R, γ⟩ be an MDP with corresponding occupancy measure space Ω.
For every η ∈ Ω, we define the set of transitions (s, a) for which η(s, a) = 0 by zeros(η).

Definition C.11 (Normal cone). The normal cone of a convex set C ⊂ Rn at point x ∈ C is defined as:

NC(x) := {n ∈ Rn | nT · (x′ − x) ≤ 0 for all x′ ∈ C} (15)

We first state a theorem from prior work that we will use to prove some lemmas in this section:

Theorem C.12 ( (Schlaginhaufen & Kamgarpour, 2023)). Let ⟨S,A, τ, µ0, γ⟩ be an MDP without reward function and
denote with Ω its corresponding occupancy measure space. Then, for every reward function R and occupancy measure
η ∈ Ω, it holds that:

η is optimal for R ⇐⇒ R ∈ NΩ(η), (16)

where the normal cone is equal to:

NΩ(η) = Φ + cone
(
{−es,a}(s,a)∈zeros(η)

)
(17)

where Φ is the linear subspace of potential functions used for reward-shaping, and the addition is defined as the Minkowski
addition.
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Proof. This is a special case of theorem 4.5 of Schlaginhaufen & Kamgarpour (2023), where we consider the unconstrained-
and unregularized RL problem.

From the previous lemma, we can derive the following corollary which uses the fact that Ω is a closed, and bounded convex
polytope (see Proposition 1 of Karwowski et al. (2023)).

Corollary C.13. Given an MDP ⟨S,A, τ, µ0, R, γ⟩ and a corresponding occupancy measure space Ω, then for every
reward function R̂ : S×A → R, and lower regret bound L ∈ [0, 1], the following two statements are equivalent:

a) There exists an optimal policy π̂ for R̂ such that π̂ has regret at least L w.r.t. the original reward function, i.e.,
RegR (π̂) ≥ L.

b) R̂ ∈ Φ +
⋃

v∈V L
R

cone
(
{−es,a}(s,a)∈zeros(v)

)
, where Φ is the linear subspace of potential functions used for reward-

shaping, the addition is defined as the Minkowski addition.

Proof. Let R̂ be chosen arbitrarily. Statement a) can be formally expressed as:

∃π̂ ∈ Π, RegR̂ (π̂) = 0 ∧ RegR (π̂) ≥ L.

Using Theorem C.12, it follows that:

∃π̂ ∈ Π, RegR̂ (π̂) = 0 ∧ RegR (π̂) ≥ L

⇐⇒ ∃π̂ ∈ Π, R̂ ∈ NΩ(η
π̂) ∧ RegR (π̂) ≥ L

⇐⇒ R̂ ∈
⋃

η: RegR(πη)≥L

NΩ(η).

It remains to be shown that the union in the previous derivation is equivalent to a union over just all V L
R . First, note that by

definition of the set of high-regret vertices V L
R (see Theorem C.9), it trivially holds that:⋃

v∈V L
R

NΩ(v) ⊆
⋃

η: RegR(πη)≥L

NΩ(η), (18)

Next, because Ω is a convex polytope, it can be defined as the intersection of a set of defining half-spaces which are defined
by linear inequalities:

Ω = {η | aTi · η ≤ bi, for i = 1, ...,m}.

By defining the active index set of a point η ∈ Ω as IΩ(η) = {ai | aTi · η = bi}, Rockafellar & Wets (2009) then show that:

NΩ(η) =
{
y1 · a1 + ...+ ym · am | yi ≥ 0 for i ∈ IΩ(η), yi = 0 for i /∈ IΩ(η)

}
, (19)

(see their theorem 6.46). Note that, because Ω lies in an |S| · (|A| − 1) dimensional affine subspace (see Proposition 1
of (Karwowski et al., 2023)), a subset of the linear inequalities which define Ω must always hold with equality, namely, the
inequalities that correspond to half-spaces which define the affine subspace in which Ω resides. Therefore, the corresponding
active index set, let’s denote it by IΩ,Φ(η) because the subspace orthogonal to the affine subspace in which Ω lies corresponds
exactly to Φ, is always non-empty and the same for every η ∈ Ω.

Now, from Equation (19), it follows that for every η ∈ Ω, there exists a vertex v of Ω, such that NΩ(η) ⊆ NΩ(v). We take
this one step further and show that for every η with RegR (πη) ≥ L, there must exist a vertex v with RegR (πv) ≥ L such
that NΩ(η) ⊆ NΩ(v). We prove this via case distinction on η.

• η is in the interior of Ω. In this case, the index set IΩ(η) reduces to IΩ,Φ(η) and because we have IΩ,Φ(η) ⊆ IΩ(η) for
every η ∈ Ω, the claim is trivially true.

• η itself is already a vertex in which case the claim is trivially true.
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• η is on the boundary of Ω. In this case η can be expressed as the convex combination of some vertices Vη which lie on
the same face of Ω as η. Note that all occupancy measures with regret≥ L must lie on one side of the half-space defined
by the equality RT · η = L · ηmin + (1 − L) · ηmax, where ηmin and ηmax are worst-case and best-case occupancy
measures. By our assumption, η also belongs to this side of the half-space. Because η lies in the interior of the convex
hull of the vertices Vη, at least one v ∈ Vη must therefore also lie on this side of the hyperplane and have regret ≥ L.
Because v and η both lie on the same face of Ω, we have IΩ(η) ⊂ IΩ(v) and therefore also NΩ(η) ⊆ NΩ(v).

Hence, it must also hold that: ⋃
η: RegR(πη)≥L

NΩ(η) ⊆
⋃

v∈V L
R

NΩ(v),

which, together with Equation (18) proves the claim.

The following lemma relates the set of reward functions to the set of probability distributions D

Lemma C.14. Given an MDP ⟨S,A, τ, µ0, R, γ⟩ and a second reduced reward function R̂ : S×A → R, then the following
two statements are equivalent:

a) There exists a data distribution D ∈ ∆(S×A) such that E(s,a)∼D

[
|R(s, a)− R̂(s, a)|

]
< ϵ · range R

b) At least one component R̂i of R̂ is "close enough" to R, i.e., it holds that for some transition (s, a): |R(s, a)−R̂(s, a)| <
ϵ · range R.

Proof. We first show the direction b)⇒ a). Assume that |R(s∗, a∗)− R̂(s∗, a∗)| < ϵ · range R for a given R̂ and transition
(s∗, a∗). In that case, we can construct the data distribution D which we define as follows:

D(s, a) =

{
p if (s, a) ̸= (s∗, a∗)

1− (|S×A| − 1) · p if (s, a) = (s∗, a∗)

where we choose p < min

(
ϵ·range R−|R(s∗,a∗)−R̂(s∗,a∗)|∑

(s,a) ̸=(s∗,a∗) |R(s,a)−R̂(s,a)| ,
1

|S×A|

)
. From this it can be easily seen that:

E(s,a)∼D

[
|R(s, a)− R̂(s, a)|

]
= (1− (|S×A| − 1) · p) · |R(s∗, a∗)− R̂(s∗, a∗)|

+ p ·
∑

(s,a)̸=(s∗,a∗)

|R(s, a)− R̂(s, a)|

< ϵ · range R

We now show the direction a) ⇒ b) via contrapositive. Whenever it holds that |R(s, a)− R̂(s, a)| ≥ ϵ · range R for all
transitions (s, a) ∈ S×A, then the expected difference under an arbitrary data distribution D ∈ ∆(S×A) can be lower
bounded as follows:

E(s,a)∼D

[
|R(s, a)− R̂(s, a)|

]
=

∑
(s,a)∈S×A

D(s, a) · |R(s, a)− R̂(s, a)|

≥ ϵ · range R ·
∑

(s,a)∈S×A

D(s, a)

= ϵ · range R

Because this holds for all possible data distributions D we have ¬b)⇒ ¬a) which proves the result.
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Theorem C.13 describes the set of reward functions R̂ for which there exists an optimal policy π̂ that achieves worst-case
regret under the true reward function R. Theorem C.14 on the other hand, describes the set of reward functions R̂, for which
there exists a data distribution D such that R̂ is close to the true reward function R under D. We would like to take the
intersection of those two sets of reward functions, and then derive the set of data distributions D corresponding to this
intersection. Toward this goal we first present the following lemma:
Lemma C.15. For all ϵ > 0, L ∈ [0, 1], MDP M = ⟨S,A, τ, µ0, R, γ⟩ and all data distributions D ∈ ∆(S×A), there
exists a system of linear inequalities, such that D ∈ unsafe(R, ϵ, L) if and only if the system of linear inequalities is
solvable.

More precisely, let V L
R be the set of high-regret vertices defined as in Theorem C.9. Then, there exists a matrix C, as well as

a matrix U(v) and a vector b(v) for every v ∈ V L
R such that the following two statements are equivalent:

1. D ∈ unsafe(R, ϵ, L), i.e., there exists a reward function R̂ and a policy π̂ such that:

(a) E(s,a)∼D

[
|R̂(s,a)−R(s,a)|

range R

]
≤ ϵ;

(b) RegR (π̂) ≥ L

(c) RegR̂ (π̂) = 0

2. There exists a vertex v ∈ V L
R such that the linear system[

U(v)
C · diag (D)

]
·B ≤

[
b(v)

ϵ · range R · 1

]
(20)

has a solution B. Here, we use the vector notation of the data distribution D.

Proof. We can express any reward function R̂ as R̂ = R+B, i.e. describing R̂ as a deviation B : S×A → R from the true
reward function. Note that in this case, we get R̂−R = B. Next, note that the expression:

E(s,a)∼D [|B(s, a)|] ≤ ϵ · range R (21)

describes a “weighted L1 ball” around the origin in which B must lie:

E(s,a)∼D [|B(s, a)|] ≤ ϵ · range R (22)

⇐⇒
∑

(s,a)∈S×A

D(s, a) · |B(s, a)| ≤ ϵ · range R (23)

⇐⇒ B ∈ C(D) :=

{
x ∈ R|S×A|

∣∣∣ ∑
(s,a)∈S×A

D(s, a) · |xs,a| ≤ ϵ · range R
}
. (24)

This “weighted L1 ball” is a polyhedral set, which can be described by the following set of inequalities:

D(s1, a1) ·B(s1, a1) +D(s1, a2) ·B(s1, a2) + ... ≤ ϵ · range R
−D(s1, a1) ·B(s1, a1) +D(s1, a2) ·B(s1, a2) + ... ≤ ϵ · range R
D(s1, a1) ·B(s1, a1)−D(s1, a2) ·B(s1, a2) + ... ≤ ϵ · range R
−D(s1, a1) ·B(s1, a1)−D(s1, a2) ·B(s1, a2) + ... ≤ ϵ · range R

· · · .

This can be expressed more compactly in matrix form, as:

C · diag (D) ·B ≤ ϵ · range R · 1, (25)

where C ∈ R2|S×A|×|S×A|, diag (D) ∈ R|S×A|×|S×A|, B ∈ R|S×A|, 1 ∈ {1}|S×A| and the individual matrices are
defined as follows:

C =


1 1 · · · 1
−1 1 · · · 1
1 −1 · · · 1
· · · · · · · · · · · ·
−1 −1 · · · −1

 , diag (D) =

D(s1, a1) 0
. . .

0 D(sn, am)

 . (26)
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Next, from Theorem C.13 we know that a reward function R̂ = R+B has an optimal policy with regret larger or equal to
L if and only if:

R+B ∈ Φ+
⋃

v∈V L
R

cone
(
{−es,a}(s,a)∈zeros(v)

)
⇐⇒ B ∈ −R+Φ+

⋃
v∈V L

R

cone
(
{−es,a}(s,a)∈zeros(v)

)
(27)

We can rephrase the above statement a bit. Let’s focus for a moment on just a single vertex v ∈ V L
R . First, note that because

Φ and cone
(
{−es,a}(s,a)∈zeros(v)

)
, are polyhedral, Φ + cone

(
{−es,a}(s,a)∈zeros(v)

)
must be polyhedral as well (this

follows directly from Corollary 3.53 of (Rockafellar & Wets, 2009)). Therefore, the sum on the right-hand side can be
expressed by a set of linear constraints U(v) ·B ≤ b(v).

Hence, a reward function, R̂ = R+B is close in expected L1 distance to the true reward function R, and has an optimal
policy that has large regret with respect to R, if and only if there exists at least one vertex v ∈ V L

R , such that:[
U(v)

C · diag (D)

]
·B ≤

[
b(v)

ϵ · range R · 1

]
(28)

holds.

In the next few subsections, we provide a more interpretable version of the linear system of inequalities in Equation (20),
and the conditions for when it is solvable and when not.

C.3.1. MORE INTERPRETABLE STATEMENT

Ideally, we would like to have a more interpretable statement about which classes of data distributions D fulfill the condition
of Equation (20). We now show that for an arbitrary MDP and data distribution D, D is a safe distribution, i.e., error-regret
mismatch is not possible, if and only if D fulfills a fixed set of linear constraints (independent of D).

Theorem C.16. For all MDPs ⟨S,A, τ, µ0, R, γ⟩ and L ∈ [0, 1], there exists a matrix M such that for all ϵ > 0 and
D ∈ ∆(S×A) we have:

D ∈ safe(R, ϵ, L) ⇐⇒ M ·D > ϵ · range R · 1, (29)

where we use the vector notation of D, and 1 is a vector containing all ones.

Proof. Remember from Theorem C.15, that a data distribution D is safe, i.e., D ∈ safe(R, ϵ, L), if and only if for all
unsafe vertices v ∈ V L

R the following system of linear inequalities:[
U(v)

C · diag (D)

]
·B ≤

[
b(v)

ϵ · range R · 1

]
(30)

has no solution. Let v ∈ V L
R be chosen arbitrarily and define Uv := {B ∈ R|S×A| | U(v) ·B ≤ b(v)}, i.e., Uv is the set of

all B ∈ R|S×A|, such that R̂ := R+B has an optimal policy with regret at least L. Then, Equation (30) has no solution if
and only if:

∀B ∈ Uv, C · diag (D) ·B ≰ ϵ · range R · 1 (31)

⇐⇒ ∀B ∈ Uv, abs(B)T ·D > ϵ · range R, (32)

where we used the definition of the matrices C, and diag (D) (see Equation (25)) and abs(·) denotes the element-wise
absolute value function. Now, we will finish the proof by showing that there exists a finite set of vectors X ⊂ Uv (which is
independent of the choice of D), such that for every x ∈ X , Equation (32) holds if and only if it is true for all B, i.e., more
formally:

∀B ∈ X, abs(B)T ·D > ϵ · range R
⇐⇒ ∀B ∈ Uv, abs(B)T ·D > ϵ · range R.
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And since X is finite, we can then summarize the individual elements of X as rows of a matrix M and get the desired
statement by combining the previous few statements, namely:

D ∈ safe(R, ϵ, L) ⇐⇒ M ·D > ϵ · range R · 1 (33)

Towards this goal, we start by reformulating Equation (32) as a condition on the optimal value of a convex optimization
problem:

∀x ∈ Uv, abs(x)T ·D > ϵ · range R

⇐⇒
(
min
x∈Uv

abs(x)T ·D
)
> ϵ · range R

⇐⇒ abs(x∗)T ·D > ϵ · range R, where x∗ := arg min
x∈Uv

abs(x)T ·D

⇐⇒ abs(x∗)T ·D > ϵ · range R, where x∗ := argmin
x

abs(x)T ·D, (34)

subject to U(v) · x ≤ b(v)

Note that the optimal value x∗ of this convex optimization problem depends on the precise definition of the data distribution
D. But importantly, the set over which we optimize (i.e., Uv defined as the set of all x, such that U(v) · x ≤ b) does not
depend on D! The goal of this part of the proof is to show that for all possible D the optimal value of the optimization
problem in Equation (34) is always going to be one of the vertices of Uv. Therefore, we can transform the optimization
problem in Equation (34) into a new optimization problem that does not depend on D anymore. It will then be possible
to transform this new optimization problem into a simple set of linear inequalities which will form the matrix M in
Equation (33).

Towards that goal, we continue by splitting up the convex optimization problem into a set of linear programming problems.
For this, we partition R|S×A| into its different orthants Oc for c ∈ {−1, 1}|S×A| (a high-dimensional generalization of the
quadrants). More precisely, for every x ∈ Oc, we have diag (c) · x = abs(x). Using this definition, we can reformulate the
constraint on the convex optimization problem as follows:

min
c∈{−1,1}|S×A|

xc ̸=∅

(diag (c) · xc)
T ·D > ϵ · range R, (35)

where the individual xc are defined as the solution of linear programming problems:

xc := argmin
x

(diag (c) · x)T ·D (36)

subject to U(v) · x ≤ b(v)

diag (c) · x ≥ 0,

or xc := ∅ in case the linear program is infeasible. Finally, by re-parametrizing each linear program using the variable
transform x′ = diag (c) · x we can convert these linear programs into standard form:

xc := diag (c) · argmin
x′

x′T ·D (37)

subject to U(v) · diag (c) · x′ ≤ b(v)

x′ ≥ 0,

where we used twice the fact that diag (c)−1
= diag (c), and hence, x = diag (c) · x′. Because it was possible to transform

these linear programming problems described in Equation (36) into standard form using a simple variable transform, we can
apply standard linear programming theory to draw the following conclusions (see Theorem 3.4 and Section 6 of Chapter 2
of (Vanderbei, 1998) for reference):

1. The set of constraints in Equations (36) and (37) are either infeasible or they form a polyhedral set of feasible solutions.

2. If the set of constraints in Equations (36) and (37) are feasible, then there exists an optimal feasible solution that
corresponds to one of the vertices (also called basic feasible solutions) of the polyhedral constraint sets. This follows
from the fact that the objective function is bounded from below by zero.
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Let’s denote the polyhedral set of feasible solutions defined by the constraints in Equation (36) by Fc(v). Because Fc(v)
does not depend on the specific choice of the data distribution, this must mean that for every possible data distribution D,
we have either xc = ∅ or xc is one of the vertices of Fc(v), denoted by vertices(Fc(v))! Note that, by definition of xc, it
holds that:

∀x ∈ vertices(Fc(v)), (diag (c) · xc)
T ·D ≤ (diag (c) · x)T ·D. (38)

Therefore, we can define:

X(v) :=
⋃

c∈{−1,1}|S×A|

vertices(Fc(v)) = {x1, ..., xk}, and MX(v) :=

abs(x1)
T

· · ·
abs(xk)

T

 , (39)

where MX(v) contains the element-wise absolute value of all vectors of X(v) as row vectors. Let D be an arbitrary data
distribution. Then, we’ve shown the following equivalences:

∀B ∈ Uv, abs(B)T ·D > ϵ · range R (see Equation (32))

⇐⇒ min
c∈{−1,1}|S×A|

xc ̸=∅

(diag (c) · xc)
T ·D > ϵ · range R (see Equation (35))

⇐⇒ min
x∈X(v)

abs(x)T ·D > ϵ · range R (due to Equation (38))

⇐⇒ MX(v) ·D > ϵ · range R · 1

Now, by combining the individual sets of vertices X(v), as follows:

X :=
⋃

v∈V L
R

X(v) = {x1, ..., xl}, and M =

abs(x1)
T

· · ·
abs(xl)

T

 , (40)

we are now ready to finish the proof by combining all previous steps:

D ∈ safe(R, ϵ, L)

⇐⇒ ∀v ∈ V L
R , ∀B ∈ Uv, abs(B)T ·D > ϵ · range R

⇐⇒ ∀v ∈ V L
R , MX(v) ·D > ϵ · range R · 1

⇐⇒ M ·D > ϵ · range R · 1.

That was to show.

C.3.2. DERIVING THE CONDITIONS ON D

In Theorem C.16 we’ve shown that there exists a set of linear constraints M ·D > ϵ · range R · 1, such that whenever a data
distribution D satisfies these constraints, it is safe. In this subsection, we derive closed-form expressions for the individual
rows of M to get a general idea about the different factors determining whether an individual data distribution is safe.

In the proof of Theorem C.16, we showed that M has the form:

M =

abs(x1)
T

...
abs(xl)

T

 ,

for some set X = {x1, ..., xl}, where each x ∈ X belongs to a vertex of the set of linear constraints defined by the
following class of system of linear inequalities:[

U(v)
−diag (c)

]
· x ≤

[
b(v)
0

]
(Corresponds to the set of unsafe reward functions)
(Corresponds to the orthant Oc)

(41)

for some v ∈ V L
R (the set of unsafe vertices of Ω), and some c ∈ {−1, 1}|S×A| (defining the orthant Oc).
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To ease the notation in the following paragraphs, we will use the notation Uv for the polyhedral set of x such that
U(v) · x ≤ b(v), and Fc(v) for the set of solutions to the full set of linear inequalities in Equation (41). Furthermore, we
will use n := |S| and m := |A|.

We start by giving a small helper definition.

Definition C.17 (General position, (Stanley, 2024)). LetH be a set of hyperplanes in Rn. ThenH is in general position if:

{H1, ...,Hp} ⊆ H, p ≤ n =⇒ dim(H1 ∩ ... ∩Hp) = n− p

{H1, ...,Hp} ⊆ H, p > n =⇒ H1 ∩ ... ∩Hp = ∅

We will use this definition in the next few technical lemmas. First, we claim that each of the vertices of Fc(v) must lie on
the border of the orthant Oc.

Lemma C.18 (Vertices lie on the intersection of the two constraint sets.). All vertices of the polyhedral set, defined by the
system of linear inequalities: [

U(v)
−diag (c)

]
· x ≤

[
b(v)
0

]
(42)

must satisfy some of the inequalities of −diag (c) · x ≤ 0 with equality.

Proof. Let Uv be the set of solutions of the upper part of the system of linear equations in Equation (42) and Oc be the set
of solutions of the lower part of the system of linear equations in Equation (42). The lemma follows from the fact that Uv
can be expressed as follows (see Equation (27) and the subsequent paragraph):

Uv = −R+Φ+ cone
(
{−es,a}(s,a)∈zeros(v)

)
, (43)

where Φ is a linear subspace. Hence, for every x that satisfies the constraints U(v) · x ≤ b(v), x lies on the interior of the
line segment spanned between x′ = x + ϕ, and x′′ = x − ϕ for some ϕ ∈ Φ, ϕ ̸= 0. Note that every point on this line
segment also satisfies the constraints U(v) · x ≤ b(v). Therefore, x can only be a vertex if it satisfies some of the additional
constraints, provided by the inequalities −diag (c) · x ≤ 0, with equality.

Consequently, every vertex of Fc(v) is the intersection of some k-dimensional surface of Uv and k > 0 standard hyperplanes
(hyperplanes whose normal vector belongs to the standard basis).

Lemma C.19 (Basis for Φ. (Schlaginhaufen & Kamgarpour, 2023)). The linear subspace Φ of potential shaping transfor-
mations can be defined as:

Φ = span(A− γ · P ),

where A,P ∈ R(n·m)×n for n = |S|,m = |A| are matrices defined as:

A :=


1m 0m · · · 0m

0m 1m · · · 0m

· · · · · ·
. . . · · ·

0m 0m · · · 1m

 , P :=


τ( · | s1, a1)
τ( · | s1, a2)

· · · · · · · · ·
τ( · | sn, am)

 ,

where 0m,1m are column vectors and τ(·|si, aj) is a row vector of the form [τ(s1 | si, aj), · · · , τ(sn | si, aj)].

Furthermore, we have dimΦ = n.

Proof. This has been proven by (Schlaginhaufen & Kamgarpour, 2023) (see their paragraph "Identifiability" of Section
4). The fact that dimΦ = n follows from the fact that Φ is the linear space orthogonal to the affine space containing the
occupancy measure space Ω, i.e. Φ⊥ = L where L is the linear subspace parallel to span(Ω) (see the paragraph Convex
Reformulation of Section 3 of (Schlaginhaufen & Kamgarpour, 2023)) and the fact that dim span(Ω) = n · (m− 1) (see
Proposition 1 of (Karwowski et al., 2023)).

Lemma C.20 (Dimension of Uv). dimUv = n ·m.
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Proof. Remember that Uv can be expressed as follows (see Equation (27) and the subsequent paragraph):

Uv = −R+Φ+ cone
(
{−es,a}(s,a)∈zeros(v)

)
, (44)

From Theorem C.19 we know that dimΦ = n. We will make the argument that:

a) dim
[
cone

(
{−es,a}(s,a)∈zeros(v)

)]
≥ n · (m− 1)

b) There exist exactly n · (m − 1) basis vectors of cone
(
{−es,a}(s,a)∈zeros(v)

)
such that the combined set of these

vectors and the basis vectors of Φ is linearly independent.

From this, it must follow that:

dim
[
Φ+ cone

(
{−es,a}(s,a)∈zeros(v)

) ]
= dim

[
Φ
]
+ n · (m− 1) = n ·m

For a), remember that v is a vertex of the occupancy measure space Ω and that each vertex v of Ω corresponds to at least
one deterministic policy πv (see Proposition 1 of (Karwowski et al., 2023)). And since every deterministic policy is zero
for exactly n · (m − 1) transitions, it must follow that v is also zero in at least n · (m − 1) transitions, since whenever
πv(a|s) = 0 for some (s, a) ∈ S×A, we have:

v(s, a) =

∞∑
t=0

γt · P (st = s, at = a | πv, τ) = πv(a|s) ·
∞∑
t=0

γt · P (st = s | πv, τ) = 0.

Therefore, it follows that dim
[
cone

(
{−es,a}(s,a)∈zeros(v)

)]
≥ n · (m− 1).

For b), (Puterman, 1994) give necessary and sufficient conditions for a point x ∈ Rn·m to be part of Ω (see the dual linear
program in section 6.9.1 and the accompanying explanation), namely:

x ∈ Ω ⇐⇒
[
(A− γ · P )T · x = µ0 and I · x ≥ 0

]
,

where I is the identity matrix and we use the vector notation of the initial state distribution µ0. Because v is a vertex of Ω, it
can be described as the intersection of n ·m supporting hyperplanes of Ω that are in general position. Because (A− γ · P )
has rank n (see Theorem C.19), this must mean that for v at least n · (m− 1) inequalities of the system I · v ≥ 0 hold with
equality and the combined set of the corresponding row vectors and the row vectors of (A− γ · P )T is linearly independent
(as the vectors correspond to the normal vectors of the set of n ·m hyperplanes in general position).

Note that the set of unit vectors that are orthogonal to v is precisely defined by {−es,a}(s,a)∈zeros(v), since, by definition of
zeros(v) (see Theorem C.10), we have

∀x ∈ {−es,a}(s,a)∈zeros(v), xT · v = 0.

From this, it must follow that the polyhedral set Uv , has dimension n ·m.

Lemma C.21 (Defining the faces of Uv). Each k-dimensional face F of Uv (with k ≥ n) can be expressed as:

−R+Φ+ cone (EF ) , where EF ⊂ {−es,a}(s,a)∈zeros(v), (45)

such that |EF | = k − n and the combined set of vectors of EF and the columns of A− γ · P is linearly independent.

Proof. Remember that Uv can be expressed as follows (see Equation (27) and the subsequent paragraph):

Uv = −R+Φ+ cone
(
{−es,a}(s,a)∈zeros(v)

)
, (46)

This means that we can express Uv as a polyhedral cone, spanned by non-negative combinations of:

• The column vectors of the matrix A− γ · P .
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• The column vectors of the matrix −(A− γ ·P ). Since Φ is a linear subspace and a cone is spanned by only the positive
combinations of its set of defining vectors we also have to include the negative of this matrix to allow arbitrary linear
combinations.

• The set of vectors {−es,a}(s,a)∈zeros(v).

Consequently, each face of Uv of dimension k is spanned by a subset of the vectors that span Uv and is therefore also a cone
of these vectors. Because the face has dimension k, we require exactly k linearly independent vectors, as it’s not possible to
span a face of dimension k with less than k linearly independent vectors, and every additional linearly independent vector
would increase the dimension of the face. Furthermore, since Φ is a linear subspace that is unbounded by definition, it must
be part of every face. Therefore, every face of Uv has a dimension of at least n (the dimension of Φ).

Note that the converse of Theorem C.21 doesn’t necessarily hold, i.e., not all sets of the form described in Equation (45) are
necessarily surfaces of the polyhedral set U(v) · x ≤ b(v).

We are now ready to develop closed-form expressions for the vertices of Fc(v). Note that it is possible for 0 ∈ Rn·m to
be a vertex of Fc(v). But in this case, according to Theorem C.16, this must mean that the linear system of inequalities
M · D > ϵ · range R · 1 is infeasible (since M would contain a zero row and all elements on the right-hand side are
non-negative), which means that in this case safe(R, ϵ, L) = ∅. We will therefore restrict our analysis to all non-zero
vertices of Fc(v).

Proposition C.22 (Vertices of Fc(v).). Every vertex vFG of Fc(v), with vFG ̸= 0, lies on the intersection of some face F
of the polyhedral set Uv and some face G of the orthant Oc and is defined as follows:

vFG = −R+ [A− γ · P,EF ] ·
(
EG · [A− γ · P,EF ]

)−1

· EG ·R,

where EF , EG are matrices whose columns contain standard unit vectors, such that:

F = −R+Φ+ cone (EF ) , for EF ⊂ {−es,a}(s,a)∈zeros(v)

G = {x ∈ Rn·m | EG · x = 0}.

Proof. We start by defining the faces of the orthant Oc. Remember that Oc is the solution set to the system of inequalities
diag (c) · x ≥ 0. Therefore, each defining hyperplane of Oc is defined by one row i of diag (c), i.e. diag (c)i · x = 0. Note
that since c ∈ {−1, 1}n·m, this is equivalent to the equation eTi · x = 0 where ei is either the i’th standard unit vector or its
negative. And because every l-dimensional face G of Oc is the intersection of l standard hyperplanes {ei1 , ..., eil}, this must
mean that G is defined as the set of solutions to the system of equations EG · x = 0 where EG is the matrix whose row
vectors are the vectors {ei1 , ..., eil}.

Next, let vFG be an arbitrary non-zero vertex of Fc(v). As proven in Theorem C.18, every vertex of Fc(v) must satisfy
some of the inequalities diag (c) · x ≥ 0 for c ∈ {−1, 1}n·m with equality. This means that vFG must lie on some face G of
the orthant Oc. The non-zero property guarantees that not all inequalities of the system of inequalities diag (c) · x ≥ 0 are
satisfied with equality, i.e. that G is not a vertex. Assume that k > 0 inequalities are not satisfied with equality. Therefore,
G must have dimension k, and EG ∈ Rn·m×k.

Since vFG is a vertex of the intersection of the orthant Oc and the polyhedral set Uv , and it only lies on a k-dimensional face
of Oc, it must also lie on a n ·m− k dimensional face F of Uv such that the combined set of hyperplanes defining F and G
is in general position. The condition that the combined set of hyperplanes is in general position is necessary, to guarantee
that vFG has dimension 0 and is therefore a proper vertex.

From Theorem C.21 we know that F can be expressed as:

−R+Φ+ cone (EF ) , where EF ⊂ {−es,a}(s,a)∈zeros(v), (47)

such that |EF | = n · (m − 1) − k and the combined set of vectors of EF and the columns of A − γ · P are linearly
independent.
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Because vFG is part of both, F and G, we can combine all information that we gathered about F and G and deduce that it
must hold that:

EG · vFG = 0︸ ︷︷ ︸
equivalent to vFG∈G

, and ∃x ∈ Rn·m−k, vFG = −R+ [A− γ · P,EF ] · x︸ ︷︷ ︸
equivalent to vFG∈F

, (48)

where for x in Equation (48) it additionally must hold that ∀i ∈ {n+ 1, ..., n ·m− k}, xi ≥ 0. This must hold because
these last entries of x should form a convex combination of the vectors in EF (as F is defined to lie in the cone of EF , see
Equation (47)). We briefly state the following two facts that will be used later in the proof:

a) vFG is the only vector in Rn·m that fulfills both conditions in Equation (48). This is because we defined F in such a
way that the intersection of F and G is a single point. And only points in this intersection fulfill both conditions in
Equation (48).

b) For every non-zero vertex vFG, there can only exist a single x that satisfies the two conditions in Equation (48). This
follows directly from the assumption that the combined set of vectors of EF and the columns of A− γ · P are linearly
independent (see Equation (47) and the paragraph below).

We can combine the two conditions in Equation (48) to get the following, unified condition that is satisfied for every non-zero
vertex vFG:

∃x ∈ Rn·m−k, EG ·
(
−R+ [A− γ · P,EF ] · x

)
= 0n·m−k, (49)

From this, it is easy to compute the precise coordinates of vFG:

x =
(
EG · [A− γ · P,EF ]

)−1

· EG ·R (50)

=⇒ vFG = −R+ [A− γ · P,EF ] ·
(
EG · [A− γ · P,EF ]

)−1

· EG ·R. (51)

We finish the proof by showing that the matrix inverse in Equation (50) always exists for every non-zero vertex vFG. Assume,
for the sake of contradiction, that the matrix EG · [A− γ · P,EF ] is not invertible. We will show that in this case, there
exists a z ∈ Rn·m with z ̸= vFG such that z fulfills both conditions in Equation (48). As we’ve shown above in fact a) this
is not possible, hence this is a contradiction.

Assuming that EG · [A− γ · P,EF ] is not invertible, we know from standard linear algebra that in that case the kernel of
this matrix has a dimension larger than zero. Let y1, y2, be two elements of this kernel with y1 ̸= y2.

Earlier in this proof, we showed that for every non-zero vertex vFG, Equation (49) is satisfiable. Let x be a solution to
Equation (49). From our assumptions, it follows that both x+ y1 and x+ y2 must also be solutions to Equation (49) as:

∀y ∈ {y1, y2}, EG ·
(
−R+ [A− γ · P,EF ] · (x+ y)

)
= −EG ·R + EG · [A− γ · P,EF ] · (x+ y)

= −EG ·R + EG · [A− γ · P,EF ] · x

= EG ·
(
−R+ [A− γ · P,EF ] · x

)
= 0n·m−k.

And from this, it will follow that both, x + y1 and x + y2 must satisfy both conditions in Equation (48). Because
x+ y1 ̸= x+ y2, it must also hold that:

−R+ [A− γ · P,EF ] · (x+ y1) ̸= −R+ [A− γ · P,EF ] · (x+ y2),

see fact b) above for a proof of this. And this would mean that there exists at least one z ∈ Rn·m with z ̸= vFG such that
z fulfills both conditions in Equation (48). But as we have shown in fact a), this is not possible. Therefore, the matrix
EG · [A− γ · P,EF ] must be invertible for every non-zero vertex vFG.
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We are now ready to provide more specific information about the exact conditions necessary for a data distribution D to be
safe.

Corollary C.23 (Vertices of Fc(v).). For all ϵ > 0, L ∈ [0, 1] and MDPs ⟨S,A, τ, µ0, R, γ⟩, there exists a matrix M such
that:

D ∈ safe(R, ϵ, L) ⇐⇒ M ·D > ϵ · range R · 1, (52)

for all D ∈ ∆(S×A), where we use the vector notation of D, and 1 is a vector containing all ones.

The matrix M is defined as:

M =

abs(x1)
T

· · ·
abs(xl)

T

 ,

where an individual row xi of M can either be all zeros, or

xi = −R+ [A− γ · P,Ei1] ·
(
Ei2 · [A− γ · P,Ei1]

)−1

· Ei2 ·R, (53)

where Ei1, Ei2 are special matrices whose columns contain standard unit vectors.

Proof. This is a simple combination of Theorem C.16 and Theorem C.22.

In particular, Equation (53) shows that whether a particular data distribution D is safe or not depends on the true reward
function R, as well as the transition distribution τ (encoded by the matrix P ).

C.3.3. ALGORITHM TO COMPUTE THE CONDITIONS ON D

The derivations of Appendix C.3.2 can be used to define a simple algorithm that constructs matrix M . An outline of such an
algorithm is presented in Algorithm 1. We use the terms RowMatrix and ColumnMatrix to denote functions that take a
set of vectors and arrange them as rows/columns of a matrix.

To give a brief explanation of the algorithm:

• Line 5 follows from the definitions of V L
R , X(v) and X (see Theorem C.9 and Equations (39) and (40)).

• Lines 6 and 7 are taken from the definition of EF in Equation (47) (except that we don’t take the negative of the vectors
and instead negate EF in the final formula).

• Lines 8 and 9 are taken from the definition of EG (see the first two paragraphs of Theorem C.22). We additionally ensure
that EF is a subset of EG as otherwise, the matrix EG · [A− γ · P,−EF ] is not invertible (due to the multiplication of
EG · EF ) and we know that the matrix must be invertible for every vertex.

• Lines 20 and 22 compute the row of the matrix M . The formulas are a combination of the definition of the sets
X(v), X (see Equations (39) and (40)), the matrix MX (Equation (40)) and Theorem C.22.

• Line 19 checks whether the matrix EG · [A− γ · P,−EF ] is invertible. This is always the case for the rows of M (see
the last few paragraphs of the proof of Theorem C.22) but might not be true for other candidates.

• To explain Line 21, remember that every row of the matrix M corresponds to the element-wise absolute value of a
vector that lies on the intersection of two polyhedral sets F , and G (see Theorem C.22). The polyhedral set F is defined
via a convex cone. To check that our solution candidate lies in this convex cone, we have to check whether the last
entries of x = (EG · [A− γ · P,−EF ])

−1 · EG ·R, the entries belonging to the vectors in EF , are non-negative.

The asymptotic runtime of this naive algorithm is exponential in |S × A| due to the iterations over all subsets in Lines 7
and 8. However, better algorithms might exist and we consider this an interesting direction for future work.
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Algorithm 1 Computes the set of conditions used to determine the safety of a data distribution.
1: Input: MDP = ⟨S,A, τ, µ0, R, γ⟩, L ∈ [0, 1]
2: I ← the set of all unit vectors of dimension |S×A|. Create a fixed ordering of S and A and denote each vector of I by

e(s,a) for a unique tuple (s, a) ∈ S×A.
3: candidates← [ ]
4: Πd ← Set of deterministic policies of MDP

5: % Create a set of potential row candidates.
6: for π ∈ {π′ ∈ Πd : RegR (π′) ≥ L} do
7: E ← {e(s,a) ∈ I : π(a|s) = 0}
8: for EF ⊂ E do
9: for subset ⊆ I \ EF , |subset| = |S| do

10: EG ← EF ∪ subset
11: EF , EG ← ColumnMatrix(EF ), RowMatrix(EG)
12: candidates.append((EF , EG))
13: end for
14: end for
15: end for

16: % Find the valid rows amongst the candidates.
17: rows← [ ]
18: for (EF , EG) ∈ candidates do
19: k ← num_columns(EF )

20: if rank
(
EG · [A− γ · P,−EF ]

)
= n+ k then

21: x←
(
EG · [A− γ · P,−EF ]

)−1

· EG ·R
22: if ∀i ∈ {n, n+ 1, ..., n+ k} xi ≥ 0 then

23: row← abs
(
−R+ [A− γ · P,−EF ] · x

)T
24: rows.append

(
row

)
25: end if
26: end if
27: end for

28: M ← RowMatrix(rows)
29: return M

C.3.4. WORKING EXAMPLE OF COMPUTING MATRIX M

Figure 4 shows a simple toy-MDP with a single state and three actions, for which we then compute matrix M using
Algorithm 1. Due to the simple structure of the MDP, the auxiliary matrix A and the state-transition matrix P (both used in
Algorithm 1) become trivial:

A =

11
1

 , and P =

11
1


The resulting four constraints that a given data distribution over the state-action space of this MDP has to fulfill to
be in safe(R, ϵ, L) are then visualized in the right-most column of Figure 4. Note that the constraints are over three-
dimensional vectors. However, because D is a probability distribution, it must live in a two-dimensional subspace of this
three-dimensional space, and using the identity d3 = 1− d1 − d2 we can transform the constraints as follows: m1 m2 m3

 ·
d1d2
d3

 >

 b

 ⇐⇒

 m1 −m3 m2 −m3

 · [d1d2
]

>

 b−m3
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s

a1

a2

a3

R(a1 | s) = 2.78

R(a2 | s) = 1.98

R(a3 | s) = 1.6

d 2

d1
γ = 0.4    (Discount factor)

L = 0.8    (Largest allowed norm. regret)

ε = 0.2    (Largest reward model train error)

Reward

MDP

Setup Result Visualization

A data distribution D = (d1, d2, d3) 
is safe if and only if: 

a
b
c
d

a

b

c

d

Figure 4. A working example of how to compute the matrix M on a very simple MDP with a single state and three actions. Given
the information in the Setup column, matrix M can be computed using Algorithm 1. The constructed matrix M contains four linear
constraints that a data distribution D has to fulfill in order to be in safe(R, ϵ, L). The four constraints are plotted in the right-most
column.

The brown triangle in Figure 4 depicts the 2d-probability simplex of all distributions over the three actions of the MDP.

Note that constraint a⃝ is a redundant constraint that is already covered by the constraint d⃝ and the border of the simplex. It
would therefore be possible to disregard the computation of such constraints entirely, which could speed up the execution of
Algorithm 1. In the next section, we discuss this possibility, as well as other potential directions in which we can extend
Theorem 3.5.

C.3.5. BUILDING UP ON THEOREM 3.5

There are multiple ways how future work can build up on the results of Theorem 3.5:

Finding sufficient conditions for safety that require less information about the true reward function: It would be very
interesting to investigate whether there exists some subset of the set of safe data distributions for which it is possible to more
easily determine membership. This could be helpful in practice, as knowing that a provided data distribution is safe directly
yields safety guarantees for the resulting optimal policy.

Developing faster methods to construct M: While the algorithm we provide above runs in exponential time it is unclear
whether this has to be the case. The set of vectors that are computed by our algorithm is redundant in the sense that some
elements can be dropped as the conditions they encode are already covered by other rows of M. Depending on what fraction
of computed elements are redundant it might be possible to develop an algorithm that prevents the computation of redundant
rows and can therefore drastically reduce computation time. Alternatively, it would be interesting to develop fast algorithms
to compute only parts of M. This could be especially interesting to quickly prove the unsafety of a data distribution, which
only requires that a single constraint is violated.

Extending Theorem 3.5 to the regularized policy optimization case: This would allow one to extend the use case we
described above to an even wider variety of reward learning algorithms, such as RLHF.

A theoretical baseline (a broader view on the previous point): Most of the options above reveal the properties of the
“baseline algorithm” of reinforcement learning under unknown rewards: First, a reward model is trained, and second, a
policy is optimized against the trained reward model. The matrix M is valid for the simplest such baseline algorithms
without any regularization in either the reward model or the policy. As we mentioned in comments to other reviewers, it
would be valuable to study other training schemes (e.g., regularized reward modeling, or switching back and forth between
policy optimization and reward modeling on an updated data distribution), for which the set of safe data distributions (or
“safe starting conditions”) is likely more favorable than for the baseline case. Then, similar to how empirical work compares
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new algorithms empirically against baseline algorithms, we hope our work can be a basis to theoretically study improved RL
algorithms under unknown rewards, e.g. by deriving a more favorable analog of the matrix M and comparing it with our
work.

C.4. Existence of negative results in the RLHF setting

C.4.1. GENERALIZATION OF THE ERROR MEASUREMENT: PROOFS

In this subsection we test the extent to which the results of the previous section generalize to different distance definitions. To
ensure compatibility with the positive results of Appendix D.3, we consider MDPs with finite time horizon T . In this setting,
trajectories are defined as a finite list of states and actions: ξ = s0, a0, s1, ..., aT−1. Let Ξ bet the set of all trajectories of
length T . As in the previous sections, G : Ξ→ R denotes the trajectory return function, defined as:

G(ξ) =

T−1∑
t=0

γt ·R(st, at)

Proposition C.24. Given an MDP ⟨S,A, τ, µ0, R, γ⟩, a data sampling policy π : S → ∆(A) and a second reward function
R̂ : S×A → R, we can upper bound the expected difference in trajectory evaluation as follows:

Eξ∼π

[
|GR(ξ)−GR̂(ξ)|

]
≤ 1− γT

1− γ
· E(s,a)∼Dπ

[
|R(s, a)− R̂(s, a)|

]
(54)

where Dπ = 1−γ
1−γT · ηπ .

Proof. This follows from the subsequent derivation:

Eξ∼π

[
|GR(ξ)−GR̂(ξ)|

]
=
∑
ξ∈Ξ

P (ξ | π) ·

∣∣∣∣∣
T−1∑
t=0

γt · (R(st, at)− R̂(st, at))

∣∣∣∣∣
≤
∑
ξ∈Ξ

P (ξ | π) ·
T−1∑
t=0

γt ·
∣∣∣R(st, at)− R̂(st, at)

∣∣∣
=

∑
(s,a)∈S×A

(
T−1∑
t=0

γt · P (st = s, at = a | π)

)
·
∣∣∣R(s, a)− R̂(s, a)

∣∣∣
=

∑
(s,a)∈S×A

ηπ(s, a) ·
∣∣∣R(s, a)− R̂(s, a)

∣∣∣
=

1− γT

1− γ
· E(s,a)∼Dπ

[∣∣∣R(s, a)− R̂(s, a)
∣∣∣]

Given some reward function R, define the probability of trajectory ξ1 being preferred over trajectory ξ2 to be:

pR(ξ1 ≻ ξ2) = σ(GR(ξ1)−GR(ξ2)) =
exp(GR(ξ1))

exp(GR(ξ1)) + exp(GR(ξ2))
.

Then, the following statement holds:

Proposition C.25. Given an MDP ⟨S,A, τ, µ0, R, γ⟩, a data sampling policy π : S → ∆(A) and a second reward function
R̂ : S×A → R, we can upper bound the expected KL divergence over trajectory preference distributions as follows:

Eξ1,ξ2∼π×π

[
DKL

(
pR(·|ξ1, ξ2)||pR̂(·|ξ1, ξ2)

)]
≤ 2 · Eξ∼π

[
|GR(ξ)−GR̂(ξ)|

]
, (55)
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Proof. The right-hand-side of Equation (55) can be lower bounded as follows:

2· Eξ∼π

[
|GR(ξ)−GR̂(ξ)|

]
(56)

= Eξ1,ξ2∼π×π

[
|GR(ξ1)−GR̂(ξ1)|+ |GR(ξ2)−GR̂(ξ2)|

]
(57)

≥ Eξ1,ξ2∼π×π

[∣∣(GR(ξ1)−GR(ξ2))− (GR̂(ξ1)−GR̂(ξ2))
∣∣] (58)

= Eξ1,ξ2∼π×π [|xξ1,ξ2 − yξ1,ξ2 |] , (59)

where from Equation (57) to Equation (58) we used the triangle inequality and did some rearranging of the terms, and
from Equation (58) to Equation (59) we simplified the notation a bit by defining xξ1,ξ2 := GR(ξ1) − GR(ξ2) and
yξ1,ξ2 := GR̂(ξ1)−GR̂(ξ2).

Similarly, we can reformulate the left-hand-side of Equation (55) as follows:

Eξ1,ξ2∼π×π

[
DKL

(
pR(·|ξ1, ξ2)||pR̂(·|ξ1, ξ2)

)]
(60)

= Eξ1,ξ2∼π×π

 ∑
i,j∈{1,2}

i̸=j

pR(ξi ≻ ξj |ξ1, ξ2) · log
(
pR(ξi ≻ ξj |ξ1, ξ2)
pR̂(ξi ≻ ξj |ξ1, ξ2)

) (61)

= Eξ1,ξ2∼π×π

 ∑
i,j∈{1,2}

i̸=j

σ(GR(ξi)−GR(ξj)) · log
(
σ(GR(ξi)−GR(ξj))

σ(GR̂(ξi)−GR̂(ξj))

) (62)

= Eξ1,ξ2∼π×π

 ∑
i,j∈{1,2}

i̸=j

σ(xξi,ξj ) · log
(
σ(xξi,ξj )

σ(yξi,ξj )

) . (63)

We will now prove the lemma by showing that for all (ξ1, ξ2) ∈ Ξ× Ξ we have:∑
i,j∈{1,2}

i ̸=j

σ(xξi,ξj ) · log
(
σ(xξi,ξj )

σ(yξi,ξj )

)
≤ |xξ1,ξ2 − yξ1,ξ2 |, (64)

from which it directly follows that Equation (63) is smaller than Equation (59).

Let (ξ1, ξ2) ∈ Ξ× Ξ be chosen arbitrarily. We can then upper bound the left-hand side of Equation (64) as follows:

σ(xξ1,ξ2) · log
(
σ(xξ1,ξ2)

σ(yξ1,ξ2)

)
+ σ(xξ2,ξ1) · log

(
σ(xξ2,ξ1)

σ(yξ2,ξ1)

)
(65)

≤ log

(
σ(xξ1,ξ2)

σ(yξ1,ξ2)

)
+ log

(
σ(xξ2,ξ1)

σ(yξ2,ξ1)

)
(66)

= log

(
σ
(
xξ1,ξ2

)
· σ
(
−xξ1,ξ2

)
σ
(
yξ1,ξ2

)
· σ
(
−yξ1,ξ2

) ) (67)

= log

(
exp(xξ1,ξ2) · (1 + exp(yξ1,ξ2))

2

exp(yξ1,ξ2) · (1 + exp(xξ1,ξ2))
2

)
(68)

= xξ1,ξ2 − yξ1,ξ2 + 2 · log
(
1 + exp(yξ1,ξ2)

1 + exp(xξ1,ξ2)

)
, (69)

where we used the fact that xξ1,ξ2 = GR(ξ1)−GR(ξ2) and therefore, −xξ1,ξ2 = xξ2,ξ1 (similar for yξ1,ξ2 ). We now claim
that for all (ξ1, ξ2) ∈ Ξ× Ξ it holds that:

xξ1,ξ2 − yξ1,ξ2 + 2 · log
(
1 + exp(yξ1,ξ2)

1 + exp(xξ1,ξ2)

)
≤ |xξ1,ξ2 − yξ1,ξ2 | (70)
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We prove this claim via proof by cases:

xξ1,ξ2 > yξ1,ξ2 : In this case we have |xξ1,ξ2 − yξ1,ξ2 | = xξ1,ξ2 − yξ1,ξ2 and Equation (70) becomes:

2 · log
(
1 + exp(yξ1,ξ2)

1 + exp(xξ1,ξ2)

)
≤ 0.

And since xξ1,ξ2 > yξ1,ξ2 the fraction inside the logarithm is smaller than 1, this equation must hold.

xξ1,ξ2 = yξ1,ξ2 : In this case, Equation (70) reduces to 0 ≥ 0 which is trivially true.

xξ1,ξ2 < yξ1,ξ2 : In this case, we have |xξ1,ξ2 − yξ1,ξ2 | = yξ1,ξ2 − xξ1,ξ2 and we can reformulate Equation (70) as follows:

xξ1,ξ2 − yξ1,ξ2 + 2 · log
(
1 + exp(yξ1,ξ2)

1 + exp(xξ1,ξ2)

)
≤ yξ1,ξ2 − xξ1,ξ2

⇐⇒ 1 + exp(yξ1,ξ2)

1 + exp(xξ1,ξ2)
≤ exp(yξ1,ξ2)

exp(xξ1,ξ2)

⇐⇒ exp(xξ1,ξ2) ≤ exp(yξ1,ξ2).

Because we assume that xξ1,ξ2 < yξ1,ξ2 , the last equation, and therefore also the first, must be true.

Combining all the previous statements concludes the proof.

Finally, in some RLHF scenarios, one prefers to only compare trajectories with a common starting state. In the last lemma,
we upper-bound the expected error in choice distributions with trajectories that share a common starting state by the expected
error in choice distributions with arbitrary trajectories:

Proposition C.26. Given an MDP ⟨S,A, τ, µ0, R, γ⟩, a data sampling policy π : S → ∆(A) and a second reward function
R̂ : S×A → R, we can upper bound the expected KL divergence of preference distributions over trajectories with a common
starting state as follows:

E s0∼µ0,
ξ1,ξ2∼π(s0)

[
DKL

(
pR(·|ξ1, ξ2)||pR̂(·|ξ1, ξ2)

)]
≤ 1

min
s′∈S

µ0(s
′)>0

µ0(s′)
Eξ1,ξ2∼π×π

[
DKL

(
pR(·|ξ1, ξ2)||pR̂(·|ξ1, ξ2)

)]
. (71)

Proof. Let s0 : Ξ→ S define the function which outputs the starting state s ∈ S of a trajectory ξ ∈ Ξ. We can then prove
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the lemma by directly lower-bounding the right-hand side of Equation (71):

Eξ1,ξ2∼π×π

[
DKL

(
pR(·|ξ1, ξ2)||pR̂(·|ξ1, ξ2)

)]
=

∑
s1,s2∈S×S

µ0(s1) · µ0(s2) ·
∑

ξ1,ξ2∈Ξ×Ξ
s0(ξ1)=s1
s0(ξ2)=s2

pπ,τ (ξ1|s1) · pπ,τ (ξ2|s2) · DKL
(
pR(·|ξ1, ξ2)||pR̂(·|ξ1, ξ2)

)

=
∑

s1=s2

µ0(s1) · µ0(s2) ·
∑

ξ1,ξ2∈Ξ×Ξ
s0(ξ1)=s1
s0(ξ2)=s2

pπ,τ (ξ1|s1) · pπ,τ (ξ2|s2) · DKL
(
pR(·|ξ1, ξ2)||pR̂(·|ξ1, ξ2)

)

+
∑

s1 ̸=s2

µ0(s1) · µ0(s2) ·
∑

ξ1,ξ2∈Ξ×Ξ
s0(ξ1)=s1
s0(ξ2)=s2

pπ,τ (ξ1|s1) · pπ,τ (ξ2|s2) · DKL
(
pR(·|ξ1, ξ2)||pR̂(·|ξ1, ξ2)

)

≥
∑

s1=s2

µ0(s1) · µ0(s2) ·
∑

ξ1,ξ2∈Ξ×Ξ
s0(ξ1)=s1
s0(ξ2)=s2

pπ,τ (ξ1|s1) · pπ,τ (ξ2|s2) · DKL
(
pR(·|ξ1, ξ2)||pR̂(·|ξ1, ξ2)

)

≥ min
s′∈S

µ0(s
′)>0

µ0(s
′) ·
∑
s∈S

µ0(s) ·
∑

ξ1,ξ2∈Ξ×Ξ
s0(ξ1)=s
s0(ξ2)=s

pπ,τ (ξ1|s) · pπ,τ (ξ2|s) · DKL
(
pR(·|ξ1, ξ2)||pR̂(·|ξ1, ξ2)

)

= min
s′∈S

µ0(s
′)>0

µ0(s
′) · E s0∼µ0,

ξ1,ξ2∼π(s0)

[
DKL

(
pR(·|ξ1, ξ2)||pR̂(·|ξ1, ξ2)

)]
,

where we used the fact that the KL divergence is always positive.

C.4.2. RLHF BANDIT FORMULATION

RLHF, especially in the context of large language models, is usually modeled in a contextual bandit setting ( (Ziegler et al.,
2019; Stiennon et al., 2020; Bai et al., 2022; Ouyang et al., 2022; Rafailov et al., 2023)). A contextual bandit ⟨S,A, µ0, R⟩
is defined by a set of states S, a set of actions A, a data distribution µ0 ∈ ∆(S), and a reward function R : S×A → R.
The goal is to learn a policy π : S → ∆(A) which maximizes the expected return J(π) = Es∼µ0,a∼π(·|s) [R(s, a)]. In the
context of language models, S is usually called the set of prompts/contexts, and A the set of responses. Just as for the MDP
case, we will assume for all our contextual bandits that max J −min J > 0 since the reward function would otherwise be
trivial. We model the human preference distribution over the set of answers A using the Bradley-Terry model (Bradley
& Terry, 1952). Given a prompt s ∈ S and two answers a1, a2 ∈ A, then the probability that a human supervisor prefers
answer a1 to answer a2 is modelled as:

pR(a1 ≻ a2| s) =
exp(R(s, a1))

exp(R(s, a1)) + exp(R(s, a2))
, (72)

where R : S×A → R is assumed to be the true, underlying reward function of the human.

RLHF is usually done with the following steps:

1. Supervised finetuning: Train/Fine-tune a language model πref using supervised training.

2. Reward learning: Given a data distribution over prompts µ ∈ ∆(S), use µ and πref to sample a set of transitions
(s, a0, a1) ∈ S×A × A where s ∼ µ and a0, a1 ∼ πref(·|s). Use this set of transitions to train a reward model R̂
which minimizes the following loss:

LR(R̂) = −E(s,a0,a1,c)∼µ,πref ,pR

[
log
(
σ(R̂(s, ac)− R̂(s, a1−c))

)]
, (73)

where c ∈ {0, 1} and p(c = 0|s, a0, a1) = pR(a0 ≻ a1|s).
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3. RL finetuning: Use the trained reward model R̂ to further finetune the language model πref using reinforcement
learning. Make sure that the new model does not deviate too much from the original model by penalizing the KL
divergence between the two models. This can be done by solving the following optimization problem for some λ > 0:

π = argmax
π

Es∼µ,a∼π(·|s)

[
R̂(s, a)

]
− λ · DKL (π(a|s)||πref(a|s)) (74)

C.4.3. SAFE AND UNSAFE DATA DISTRIBUTIONS FOR RLHF

Definition C.27 (Safe- and unsafe data distributions for RLHF). For a given contextual bandit ⟨S,A, µ0, R⟩, let ϵ > 0,
L ∈ [0, 1], λ ∈ [0,∞), and πref : S → ∆(A) an arbitrary reference policy. Similarly to Theorem 2.1, we define the
set of safe data distributions safeRLHF

(
R, ϵ, L, λ,DKL (·||πref)

)
for RLHF as all D ∈ ∆(S×A) such that for all reward

functions R̂ : S×A → R and policies π̂ : S → ∆(A) that satisfy the following two properties:

1. Low expected error: R̂ is similar to R in expected choice probabilities under D, i.e.:

E(s,a1,a2)∼D

[
DKL

(
pR(·|s, a1, a2)||pR̂(·|s, a2, a2)

)]
≤ ϵ · range R.

2. Optimality: π̂ is optimal with respect to R̂, i.e.:

π̂ ∈ argmax
π

JR̂(π)− λ · DKL (π(a|s)||πref(a|s)) .

we can guarantee that π̂ has regret smaller than L, i.e.:

3. Low regret: π̂ has a regret smaller than L with respect to R, i.e., RegR (π̂) < L.

Similarly, we define the set of unsafe data distributions to be the complement of safeRLHF
(
R, ϵ, L, λ,DKL (·||πref)

)
:

unsafeRLHF
(
R, ϵ, L, λ,DKL (·||πref)

)
:=
{
D ∈ ∆(S×A) | D /∈ safeRLHF

(
R, ϵ, L, λ,DKL (·||πref)

)}
.

Note: Property 1 of Theorem C.27 is commonly phrased as minimizing (with respect to R̂) the loss
−E(s,a1,a2)∼D,pR

[
log(σ(R̂(s, a1)− R̂(s, a2)))

]
(which includes pR, the probability that a1 is the preferred action over

a2, in the expectation). Our version of Property 1 is equivalent to this and can be derived from the former by adding the
constant (w.r.t. R̂) term E(s,a1,a2)∼D,pR

[log(σ(R(s, a1)−R(s, a2)))].

C.4.4. NEGATIVE RESULTS

In the following proofs, we will define πrlhf
R,λ to be the optimal policy after doing RLHF on πref with some reward function

R, i.e.,:

Definition C.28 (RLHF-optimal policy). For any λ ∈ R+, reward function R and reference policy πref , we define the
policy maximizing the RLHF objective by:

πrlhf
R,λ = argmax

π
Es∼µ,a∼π(·|s) [R(s, a)]− λ · DKL (π(a|s)||πref(a|s)) (75)

πrlhf
R,λ does have the following analytical definition (see Appendix A.1 of (Rafailov et al., 2023) for a derivation):

πrlhf
R,λ(a|s) :=

πref(a|s) · exp
(
1
λ ·R(s, a)

)∑
a′∈A πref(a′|s) · exp

(
1
λ ·R(s, a′)

) . (76)

Before stating the next negative result, we prove a small helper lemma which states that doing RLHF with some reward
function R on a policy πref is guaranteed to improve the policy return concerning R:

Lemma C.29. For any λ ∈ R+, reward function R and reference policy πref , it holds that:

JR

(
πrlhf
R,λ

)
≥ JR

(
πref

)
(77)
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Proof. Define:

JR
KL(π, πref) := JR

(
π
)
− λDKL (π||πref)

Then we have

JR

(
πrlhf
R,λ

) (1)

≥ JR
KL(π

rlhf
R,λ, πref)

(2)

≥ JR
KL(πref , πref) = JR(πref)

where (1) follows from the non-negativity of the KL divergence and (2) follows from the fact that πrlhf
R,λ maximizes

JR
KL(π, πref) (see Equation (75)).

We begin by proving a helper lemma that we are going to use in subsequent proofs.

Lemma C.30. Let ⟨S,A, µ0, R⟩ be a contextual bandit.

Given a lower regret bound L ∈ [0, 1), we define for every state s ∈ S the reward threshold:

RL(s) := (1− L) ·max
a∈A

R(s, a) + L ·min
a∈A

R(s, a),

and define as ∈ A to be an action such that R(s, as) < RL(s).

Let πref : S → A be an arbitrary reference policy for which it holds that for every state s ∈ S we have πref(a|s) > 0.

Then, performing KL-regularized policy optimization with some regularization constant λ ∈ [0,∞), starting from πref and
using the reward function:

R̂(s, a) :=

{
R(s, a) if a ̸= as

cs ∈ R+ if a = as
, (78)

results in an optimal (w.r.t. the regularized optimization objective) policy π̂ such that RegR (π̂) ≥ L, whenever the constants
cs are larger than the following lower bound:

cs ≥ λ · log

[∑
a̸=as

(R(s, a)−RL(s)) · πref(a|s) · exp
(
1
λ ·R(s, a)

)
(RL(s)−R(s, as)) · πref(as|s)

]
.

Proof. Denote by πrlhf
R̂,λ

the optimal policy for the following KL-regularized optimization problem:

πrlhf
R̂,λ
∈ argmax

π
JR̂(π)− λ · DKL (π(a|s)||πref(a|s)) .

The closed-form solution for this optimization problem is known (see Theorem C.28). We prove the statement by assuming
the specific definition of R̂ (see Equation (78)), as well as that πrlhf

R̂,λ
has a regret at least L, and then working backward to

derive a necessary lower bound for the individual constants cs.

We start by defining a small helper policy. Let π⊤ be a deterministic optimal policy for R and π⊥ be a deterministic
worst-case policy for R. We then define πL(a|s) as a convex combination of π⊤ and π⊥:

πL(a|s) := (1− L) · π⊤(a|s) + L · π⊥(a|s)

=


1 if R(s, a) = mina′∈A R(s, a′) = maxa′∈A R(s, a′)

1− L if R(s, a) = maxa′∈A R(s, a′)

L if R(s, a) = mina′∈A R(s, a′)

0 Otherwise

(79)

Next, we show that the regret of πL is L. Let η⊤ and η⊥ be the corresponding occupancy measures of π⊤ and π⊥. Then, we
have:

JR(πL) = (1− L) ·RT · η⊤ + L ·RT · η⊥,
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from which it directly follows that:

RegR (πL) =
RT · η⊤ −

[
(1− L) ·RT · η⊤ + L ·RT · η⊥

]
RT · η⊤ −RT · η⊥

= L.

Now, having defined πL, we start the main proof. Assume that RegR
(
πrlhf
R̂,λ

)
≥ L, which is equivalent to J(πrlhf

R̂,λ
) ≤ J(πL).

By using the definition of the policy evaluation function, we get:

J(πrlhf
R̂,λ

) ≤ J(πL)

⇐⇒ RT · (ηπ
rlhf
R̂,λ − ηπL) ≤ 0

⇐⇒
∑

(s,a)∈S×A

R(s, a) · µ0(s) · (πrlhf
R̂,λ

(a|s)− πL(a|s)) ≤ 0

We will prove the sufficient condition, that for every s ∈ S, we have:

∑
a∈A

R(s, a) ·
(
πrlhf
R̂,λ

(a|s)− πL(a|s)
)
≤ 0 (80)

Before continuing, note that with our definition of πL (see Equation (79)) we have:∑
a∈A

R(s, a) · πL(a|s) = (1− L) ·max
a∈A

R(s, a) + L ·min
a∈A

R(s, a) =: RL(s).

Now, using this fact as well as the definitions of πL and πrlhf
R̂,λ

(see Theorem C.28) we prove under which conditions
Equation (80) holds:

∑
a∈A

R(s, a) ·
(
πrlhf
R̂,λ

(a|s)− πL(a|s)
)
≤ 0

⇐⇒
∑
a∈A

R(s, a) ·

 πref(a|s) · exp
(

1
λ · R̂(s, a)

)
∑

a′∈A πref(a′|s) · exp
(

1
λ · R̂(s, a′)

) − πL(a|s)

 ≤ 0

⇐⇒
∑
a∈A

R(s, a)·πref(a|s) · exp
(
1

λ
· R̂(s, a)

)

≤

[∑
a∈A

R(s, a) · πL(a|s)

]
·
∑
a′∈A

πref(a
′|s) · exp

(
1

λ
· R̂(s, a′)

)
⇐⇒

∑
a∈A

(R(s, a)−RL(s)) · πref(a|s) · exp
(
1

λ
· R̂(s, a)

)
≤ 0

⇐⇒
∑
a∈A

R(s,a)>RL(s)

(R(s, a)−RL(s)) · πref(a|s) · exp
(
1

λ
· R̂(s, a)

)

≤
∑
a∈A

R(s,a)<RL(s)

(RL(s)−R(s, a)) · πref(a|s) · exp
(
1

λ
· R̂(s, a)

)

Now, according to the assumptions of the lemma, we know that there exists some action as for which R(s, as) < RL(s)
and πref(as|s) > 0. According to our definition of R̂ (see Equation (78)), we have R̂(s, as) = cs and R̂(s, a) = R(s, a) for
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all other actions. We can use this definition to get a lower bound for cs:∑
a∈A

R(s,a)>RL(s)

(R(s, a)−RL(s)) · πref(a|s) · exp
(
1

λ
· R̂(s, a)

)

≤
∑
a∈A

R(s,a)<RL(s)

(RL(s)−R(s, a)) · πref(a|s) · exp
(
1

λ
· R̂(s, a)

) (81)

⇐⇒
∑
a̸=as

(R(s, a)−RL(s)) · πref(a|s) · exp
(
1

λ
·R(s, a)

)

≤ (RL(s)−R(s, as)) · πref(as|s) · exp
(
1

λ
· R̂(s, as)

) (82)

⇐⇒ λ · log

[∑
a ̸=as

(R(s, a)−RL(s)) · πref(a|s) · exp
(
1
λ ·R(s, a)

)
(RL(s)−R(s, as)) · πref(as|s)

]
≤ R̂(s, as). (83)

We can now use this lemma to prove a more general result:

Proposition C.31. Let ⟨S,A, µ0, R⟩ be a contextual bandit.

Given a lower regret bound L ∈ [0, 1), we define for every state s ∈ S the reward threshold:

RL(s) := (1− L) ·max
a∈A

R(s, a) + L ·min
a∈A

R(s, a),

Lastly, πref : S → A be an arbitrary reference policy for which it holds that for every state s ∈ S, πref(a|s) > 0 and there
exists at least one action as ∈ A such that:

a) πref(as|s) is small enough, that the following inequality holds:

log

∑
a ̸=as

πref(a|s) · exp
(
1

λ
· (R(s, a)−R(s, as))

)
· R(s, a)−RL(s)

RL(s)−R(s, as)

 ≤ ϵ · range R
2 · λ · πref(as|s)

+ log (πref(as|s))

(84)

b) R(s, as) < RL(s)

for some ϵ > 0 and λ ∈ [0,∞). Let Dref
µ (s, a) := µ · πref(a|s) be a data distribution based on the reference policy and

some µ ∈ ∆(S). Then Dref
µ ∈ unsafeRLHF

(
R, ϵ, L, λ,DKL (·||πref)

)
Proof. According to the definition of a safe data distribution for RLHF (see Theorem C.27), Dref

µ ∈
unsafeRLHF

(
R, ϵ, L, λ,DKL (·||πref)

)
if there exists a reward function R̂ : S×A → R, and a policy π̂ : S → ∆(A) such

that:

1. Es,a1,a2∼µ,πref

[
DKL

(
pR(·|s, a1, a2)||pR̂(·|s, a1, a2)

)]
≤ ϵ · range R

2. π̂ ∈ argmaxπ JR̂(π)− λ · DKL (π(a|s)||πref(a|s))

3. RegR (π̂) ≥ L,

We will prove the lemma by construction. Namely, given the assumptions a) and b) of Theorem C.31, we choose:

R̂(s, a) :=

{
R(s, a) if a ̸= as

cs ∈ R+ if a = as
(85)
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where the different cs are some positive constants defined as follows:

R̂(s, as) = cs ≥ ls := max

(
R(s, as), λ · log

[∑
a̸=as

(R(s, a)−RL(s)) · πref(a|s) · exp
(
1
λ ·R(s, a)

)
(RL(s)−R(s, as)) · πref(as|s)

])
. (86)

Furthermore, the closed-form of the optimal policy π̂ of the KL-regularized optimization problem is known to be πrlhf
R̂,λ

(see

Theorem C.28). We now claim that this choice of R̂ and π̂ fulfills properties (1) and (3) of the above list (property (2) is true
by assumption).

Property (3) is true because every reference policy πref and corresponding reward function R that fulfills the conditions
of this proposition also fulfills the conditions of Theorem C.30. Hence, we can directly apply Theorem C.30 and get the
guarantee that RegR (π̂) ≥ L.

All that remains to be shown, is that condition (1) can be satisfied by using the definition of R̂ and the lower bounds in
Equation Equation (86). First, note that we can reformulate the expected error definition in condition (1) as follows:

Es,a1,a2∼µ,πref

[
DKL

(
pR(·|s, a1, a2)||pR̂(·|s, a1, a2)

)]
=
∑
s∈S

µ(s) ·
∑

a1,a2∈A×A
πref(a1|s) · πref(a2|s) ·

∑
i,j∈{1,2}

σ(R(s, ai)−R(s, aj)) · log

(
σ(R(s, ai)−R(s, aj))

σ(R̂(s, ai)− R̂(s, aj))

)

= 2 ·
∑
s∈S

µ(s) ·
∑

a1,a2∈A×A
πref(a1|s) · πref(a2|s) · σ(R(s, a1)−R(s, a2)) · log

(
σ(R(s, a1)−R(s, a2))

σ(R̂(s, a1)− R̂(s, a2))

)
︸ ︷︷ ︸

=:IS(a1,a2)

= 2 ·
∑
s∈S

µ(s) ·
∑

a1,a2∈A×A
πref(a1|s) · πref(a2|s) · IS(a1, a2).

Next, note that for every tuple (a1, a2) ∈ A, the sum IS(a1, a2) + IS(a2, a1) can be reformulated as follows:

IS(a1, a2) + IS(a2, a1)

= σ(R(s, a1)−R(s, a2)) · log

(
σ(R(s, a1)−R(s, a2))

σ(R̂(s, a1)− R̂(s, a2))

)

+ σ(R(s, a2)−R(s, a1)) · log

(
σ(R(s, a2)−R(s, a1))

σ(R̂(s, a2)− R̂(s, a1))

)

= σ(R(s, a1)−R(s, a2)) · log

(
σ(R(s, a1)−R(s, a2))

σ(R̂(s, a1)− R̂(s, a2))

)

+

(
1− σ(R(s, a1)−R(s, a2))

)
· log

(
σ(R(s, a2)−R(s, a1))

σ(R̂(s, a2)− R̂(s, a1))

)

= σ(R(s, a1)−R(s, a2)) ·

[
log

(
σ(R(s, a1)−R(s, a2))

σ(R̂(s, a1)− R̂(s, a2))

)
− log

(
σ(R(s, a2)−R(s, a1))

σ(R̂(s, a2)− R̂(s, a1))

)]
︸ ︷︷ ︸

(A)

+ log

(
σ(R(s, a2)−R(s, a1))

σ(R̂(s, a2)− R̂(s, a1))

)
︸ ︷︷ ︸

(B)

.
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The term (A) can now be simplified as follows:

log

(
σ(R(s, a1)−R(s, a2))

σ(R̂(s, a1)− R̂(s, a2))

)
− log

(
σ(R(s, a2)−R(s, a1))

σ(R̂(s, a2)− R̂(s, a1))

)

= log

(
σ(R(s, a1)−R(s, a2))

1− σ(R(s, a1)−R(s, a2))

)
+ log

(
1− σ(R̂(s, a1)− R̂(s, a2))

σ(R̂(s, a1)− R̂(s, a2))

)
= [R(s, a1)−R(s, a2)]− [R̂(s, a1)− R̂(s, a2)],

where we used the definition of the inverse of the logistic function. Similarly, the term (B) can be simplified as follows:

log

(
σ(R(s, a2)−R(s, a1))

σ(R̂(s, a2)− R̂(s, a1))

)

= log

(
exp(R(s, a2)−R(s, a1))

1 + exp(R(s, a2)−R(s, a1)
· 1 + exp(R̂(s, a2)− R̂(s, a1)

exp(R̂(s, a2)− R̂(s, a1)

)

= [R(s, a2)−R(s, a1)]− [R̂(s, a2)− R̂(s, a1)] + log

(
1 + exp(R̂(s, a2)− R̂(s, a1))

1 + exp(R(s, a2)−R(s, a1))

)

These expressions, together with the fact that IS(a, a) = 0 for all a ∈ A, allow us to choose an arbitrary ordering ≺ on the
set of actions A, and then re-express the sum:∑
a1,a2∈A×A

πref(a1|s) · πref(a2|s) · IS(a1, a2) =
∑

a1,a2∈A×A
a1≺a2

πref(a1|s) · πref(a2|s) ·
(
IS(a1, a2) + IS(a2, a1)

)
. (87)

Summarizing all the equations above, we get:

Es,a1,a2∼µ,πref

[
DKL

(
pR(·|s, a1, a2)||pR̂(·|s, a1, a2)

)]
= 2 ·

∑
s∈S

µ(s) ·
∑

a1,a2∈A×A
πref(a1|s) · πref(a2|s) · IS(a1, a2)

= 2 ·
∑
s∈S

µ(s) ·
∑

a1,a2∈A×A
a1≺a2

πref(a1|s) · πref(a2|s) ·

[(
[R(s, a1)−R(s, a2)]− [R̂(s, a1)− R̂(s, a2)]

)

·
(
σ(R(s, a1)−R(s, a2)) − 1

)
+ log

(
1 + exp(R̂(s, a2)− R̂(s, a1))

1 + exp(R(s, a2)−R(s, a1))

)]
.

(88)

Now, by using our particular definition of R̂ (see Equation (85)), we notice that whenever both a1 ̸= as, and a2 ̸= as, the
inner summand of Equation (88)is zero. What remains of Equation (88) can be restated as follows:

= 2 ·
∑
s∈S

µ(s) · πref(as|s) ·
∑
a∈A

πref(a|s) ·

[(
R(s, as)− cs

)
·
(
σ(R(s, as)−R(s, a)) − 1

)

+ log

(
1 + exp(R(s, a)− cs)

1 + exp(R(s, a)−R(s, as))

)]
(89)

To prove property (1), we must show that Equation (89) is smaller or equal to ϵ · range R. We do this in two steps. First,
note that for all states s it holds that cs ≥ R(s, as) (this is obvious from the definition of cs, see Equation (86)). This allows
us to simplify Equation (89) by dropping the logarithm term.
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Es,a1,a2∼µ,πref

[
DKL

(
pR(·|s, a1, a2)||pR̂(·|s, a1, a2)

)]
= 2 ·

∑
s∈S

µ(s) · πref(as|s) ·
∑
a∈A

πref(a|s) ·

[(
R(s, as)− cs

)
·
(
σ(R(s, as)−R(s, a)) − 1

)

+ log

(
1 + exp(R(s, a)− cs)

1 + exp(R(s, a)−R(s, as))

)]

= 2 ·
∑
s∈S

µ(s) · πref(as|s) ·
(
cs −R(s, as)

)
·
∑
a∈A

πref(a|s) ·
(
1− σ(R(s, as)−R(s, a))

)
+ 2 ·

∑
s∈S

µ(s) · πref(as|s) ·
∑
a∈A

πref(a|s) · log
(

1 + exp(R(s, a)− cs)

1 + exp(R(s, a)−R(s, as))

)
.

(90)

Now, we choose to define cs := ls + δs, where ls is defined in Equation (86) and δs ≥ 0 such that:

2 ·
∑
s∈S

µ(s) · πref(as|s) ·
(
ls + δs −R(s, as)

)
·
∑
a∈A

πref(a|s) ·
(
1− σ(R(s, as)−R(s, a))

)
︸ ︷︷ ︸

<1

+ 2 ·
∑
s∈S

µ(s) · πref(as|s) ·
∑
a∈A

πref(a|s) · log
(

1 + exp(R(s, a)− ls − δs)

1 + exp(R(s, a)−R(s, as))

)
︸ ︷︷ ︸

≤0 (because cs:=ls+δs≥R(s,as))

≤ 2 ·
∑
s∈S

µ(s) · πref(as|s) ·
(
ls −R(s, as)

) !
≤ ϵ · range R. (91)

Note that the first inequality is always feasible, as we could just choose δs = 0 for all s ∈ S in which case the inequality
must hold due to the last term in the first line being smaller than one and the last term in the second line being negative.
Now, to prove Equation (91), we prove the sufficient condition that for every state s ∈ S:

πref(as|s) · (ls −R(s, as))
!
≤ ϵ · range R

2
. (92)

In case that ls = R(s, as), the left-hand side of Equation (92) cancels and the inequality holds trivially. We can therefore
focus on the case where ls > R(s, as). In this case, we get:

πref(as|s) · λ · log

[∑
a̸=as

(R(s, a)−RL(s)) · πref(a|s) · exp
(
1
λ ·R(s, a)

)
(RL(s)−R(s, as)) · πref(as|s) · exp

(
1
λ ·R(s, as)

) ]
!
≤ ϵ · range R

2

⇐⇒ log

∑
a ̸=as

πref(a|s) · exp
(
1

λ
· (R(s, a)−R(s, as))

)
· R(s, a)−RL(s)

RL(s)−R(s, as)


!
≤ ϵ · range R

2 · λ · πref(as|s)
+ log(πref(as|s))

which holds by assumption (a) of the lemma. Therefore, property (1) of the lemma must hold as well which concludes the
proof.

Theorem C.32. Let ⟨S,A, µ0, R⟩ be a contextual bandit. Given L ∈ [0, 1), we define for every state s ∈ S the reward
threshold:RL(s) := (1− L) ·maxa∈A R(s, a) + L ·mina∈A R(s, a). Lastly, let πref : S → A be an arbitrary reference
policy for which it holds that for every (s, a) ∈ S×A, πref(a|s) > 0, and there exists at least one action as ∈ A such that
R(s, as) < RL(s) and πref(as|s) satisfies the following inequality:

πref(as|s) ≤
(RL(s)−R(s, as)) · range R

L · exp
(
1
λ · range R

) · ϵ2

4 · λ2
.

Let Dref
µ (s, a) := µ(s) · πref(a|s) for some µ ∈ ∆(S). Then

Dref
µ ∈ unsafeRLHF

(
R, ϵ, L, λ,DKL (·||πref)

)
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Proof. We begin by showing that every πref that fulfills the conditions of the theorem also satisfies properties a) and b) of
Theorem C.31. Let s be an arbitrary state and as the corresponding action that fulfills the conditions stated in the theorem.
We show that condition a) of Theorem C.31 holds via direct derivation:

πref(as|s) ≤ RL(s)−R(s, as)

L
· range R

exp
(
1
λ · range R

) · ϵ2

4 · λ2

=⇒ 1√
range R

· λ ·

√
πref(as|s) · L · exp

(
1
λ · range R

)
RL(s)−R(s, as)

≤ ϵ

2

=⇒ πref(as|s) · λ ·

√
L · range R · exp

(
1
λ · range R

)
(RL(s)−R(s, as)) · πref(as|s)

≤ ϵ · range R
2

We continue by lower-bounding the square-root term as follows:

λ ·

√
L · range R · exp

(
1
λ · range R

)
(RL(s)−R(s, as)) · πref(as|s)

≥ λ · log

[
L · range R · exp

(
1
λ · range R

)
(RL(s)−R(s, as)) · πref(as|s)

]

≥ λ · log

[
L · range R · exp

(
1
λ ·
[
maxa∈A R(s, a)−R(s, as)

])
(RL(s)−R(s, as)) · πref(as|s)

]

≥ λ · log

[
(maxa∈A R(s, a)−RL(s)) · exp

(
1
λ ·maxa∈A R(s, a)

)
(RL(s)−R(s, as)) · πref(as|s) · exp

(
1
λ ·R(s, as)

) ]

≥ λ · log

[∑
a̸=as

(R(s, a)−RL(s)) · πref(a|s) · exp
(
1
λ ·R(s, a)

)
(RL(s)−R(s, as)) · πref(as|s) · exp

(
1
λ ·R(s, as)

) ]

By applying this lower bound, we can finish the derviation of condition a) of Theorem C.31:

πref(as|s) ≤ RL(s)−R(s, as)

L
· range R

exp
(
1
λ · range R

) · ϵ2

4 · λ2

=⇒ πref(as|s) · λ ·

√
L · range R · exp

(
1
λ · range R

)
(RL(s)−R(s, as)) · πref(as|s)·

≤ ϵ · range R
2

=⇒ πref(as|s) · λ · log

[∑
a̸=as

(R(s, a)−RL(s)) · πref(a|s) · exp
(
1
λ ·R(s, a)

)
(RL(s)−R(s, as)) · πref(as|s) · exp

(
1
λ ·R(s, as)

) ]
≤ ϵ · range R

2

=⇒ log

[ ∑
a̸=as

πref(a|s) · exp

(
1

λ
· (R(s, a)−R(s, as))

)
· R(s, a)−RL(s)

RL(s)−R(s, as)

]

≤ ϵ · range R
2 · λ · πref(as|s)

+ log(πref(as|s))

Before moving on, note that condition b) of Theorem C.31 holds directly by assumption of this theorem. Therefore, we have
shown that every πref that fulfills the conditions of this theorem also fulfills the two conditions of Theorem C.31. This must
mean that Dref

µ ∈ unsafeRLHF
(
R, ϵ, L, λ,DKL (·||πref)

)
for arbitrary µ ∈ ∆(S) thereby concluding the proof.

C.4.5. ANOTHER NEGATIVE RESULT WITH REGULARIZATION

Proposition C.33. Let ⟨S,A, µ0, R⟩ be a contextual bandit.

Given a lower regret bound L ∈ [0, 1), we define for every state s ∈ S the reward threshold:

RL(s) := (1− L) ·max
a∈A

R(s, a) + L ·min
a∈A

R(s, a),
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Lastly, let πref : S → A be an arbitrary reference policy for which it holds that for every state s ∈ S, πref(a|s) > 0 and
there exists at least one action as ∈ A such that:

a) πref(as|s) is small enough, that the following inequality holds:

πref(as|s) ≤
(RL(s)−R(s, as))

L
· range R

exp
(
1
λ · range R

) · ϵ2
λ2

(93)

b) R(s, as) < RL(s)

Let Dref(s, a) := µ0(s) · πref(a | s). Then Dref ∈ unsafe(R, ϵ, L, λ, ω).

Proof. To prove the proposition we show that there exists some reward function R̂, as well as a policy π̂ such that the
following properties hold:

1. E(s,a)∼Dref

[
|R(s,a)−R̂(s,a)|

range R

]
≤ ϵ.

2. π̂ ∈ argmaxπ JR̂(π)− λω(π)

3. RegR (π̂) ≥ L.

In particular, we choose:

R̂(s, a) :=

{
R(s, a) if a ̸= as

cs ∈ R+ if a = as
, (94)

where the different cs are some positive constants defined as follows:

R̂(s, as) = cs := max

(
R(s, as), λ · log

[∑
a̸=as

(R(s, a)−RL(s)) · πref(a|s) · exp
(
1
λ ·R(s, a)

)
(RL(s)−R(s, as)) · πref(as|s)

])
. (95)

Furthermore, the closed-form of the optimal policy π̂ of the KL-regularized optimization problem is known to be πrlhf
R̂,λ

(see

Theorem C.28). We now claim that this choice of R̂ and π̂ fulfills properties (1) and (3) of the lemma (property (2) is true by
assumption).

Property (3) is true because every reference policy πref and corresponding reward function R that fulfills the conditions
of this proposition also fulfills the conditions of Theorem C.30. Hence, we can directly apply Theorem C.30 and get the
guarantee that RegR (π̂) ≥ L.

All that remains to be shown, is that condition (1) can be satisfied by using the definition of R̂ and in particular, the definition
of the individual cs (see Equation (95)). The expected error expression in condition (1) can be expanded as follows:

E(s,a)∼Dref

[
|R(s, a)− R̂(s, a)|

range R

]
=

∑
(s,a)∈S×A

µ0(s) · πref(a|s) ·
|R(s, a)− R̂(s, a)|

range R

!
≤ ϵ.

We show the sufficient condition that for each state s ∈ S it holds:∑
a∈A

πref(a|s) ·
|R(s, a)− R̂(s, a)|

range R

!
≤ ϵ.

By using our definition of R̂ (see Equation (94)), this further simplifies as follows:

∑
a∈A

πref(a|s) ·
|R(s, a)− R̂(s, a)|

range R
= πref(as|s) ·

R̂(s, as)−R(s, as)

range R

!
≤ ϵ. (96)

52



The Perils of Optimizing Learned Reward Functions

In the last equation, we were able to drop the absolute value sign because our definition of the constants cs (see Equation (95))
guarantees that R̂(s, as) ≥ R(s, as).

Next, note that whenever R̂(s, as) = R(s, as) the left-hand side of Equation (96) cancels out and so the inequality holds
trivially. In the following, we will therefore only focus on states where R̂(s, as) > R(s, as). Note that this allows us to drop
the max statement in the definition of the cs constants (see Equation (95)).

We continue by upper-bounding the difference R̂(s, as)−R(s, as). By making use of the following identity:

R(s, as) = λ · log
[
exp

(
1

λ
·R(s, as)

)]
,

we can move the R(s, as) term into the logarithm term of the cs constants, and thereby upper-bounding the difference
R̂(s, as)−R(s, as) as follows:

R̂(s, as)−R(s, as)

= λ · log

[∑
a̸=as

(R(s, a)−RL(s)) · πref(a|s) · exp
(
1
λ ·R(s, a)

)
(RL(s)−R(s, as)) · πref(as|s) · exp

(
1
λ ·R(s, as)

) ]

≤ λ · log

[
(maxa∈A R(s, a)−RL(s)) · exp

(
1
λ ·maxa∈A R(s, a)

)
(RL(s)−R(s, as)) · πref(as|s) · exp

(
1
λ ·R(s, as)

) ]

≤ λ · log

[
L · range R · exp

(
1
λ ·
[
maxa∈A R(s, a)−R(s, as)

])
(RL(s)−R(s, as)) · πref(as|s)

]

≤ λ · log

[
L · range R · exp

(
1
λ · range R

)
(RL(s)−R(s, as)) · πref(as|s)

]

≤ λ ·

√
L · range R · exp

(
1
λ · range R

)
(RL(s)−R(s, as)) · πref(as|s)

We can now put this upper bound back into Equation (96) and convert the inequality into an upper bound for πref(as|s) as
follows:

πref(as|s) ·
R̂(s, as)−R(s, as)

range R

≤ πref(as|s)
range R

· λ ·

√
L · range R · exp

(
1
λ · range R

)
(RL(s)−R(s, as)) · πref(as|s)

=
1√

range R
· λ ·

√
πref(as|s) · L · exp

(
1
λ · range R

)
RL(s)−R(s, as)

!
≤ ϵ

=⇒ πref(as|s) ≤ RL(s)−R(s, as)

L
· range R

exp
(
1
λ · range R

) · ϵ2
λ2

.

The last line in the previous derivation holds by assumption of the proposal. That was to show.

C.5. A regularized negative result for general MDPs

Throughout, let ⟨S,A, τ, µ0, R, γ⟩ be an MDP. Additionally, assume there to be a data distribution D ∈ ∆(S×A) used for
learning the reward function. We do a priori not assume that D is induced by a reference policy, but we will specialize to
that case later on.

We also throughout fix ϵ > 0, λ > 0, L ∈ (0, 1), which will represent, respectively, an approximation-error for the reward
function, the regularization strength, and a lower regret bound. Furthermore, let ω : Π→ R be any continuous regularization
function of policies with ω(π) ≥ 0 for all π ∈ Π. For example, if there is a nowhere-zero reference policy πref , then ω could
be given by ω(π) = DKL (π||πref). For any reward function R̂, a policy π̂ exists that is optimal with respect to regularized
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maximization of reward:
π̂ ∈ argmax

π
JR̂(π)− λω(π).

We will try to answer the following question: Do there exist realistic conditions on ω and D for which there exists R̂ together
with π̂ such that the following properties hold?

• E(s,a)∼D

[
|R̂(s,a)−R(s,a)|

range R

]
≤ ϵ.

• RegR (π̂) ≥ L.

Furthermore, we now fix π∗, a worst-case policy for R, meaning that RegR (π∗) = 1. We assume π∗ to be deterministic.

Lemma C.34. Define C(L,R) := (1−L)·range JR

∥R∥ . Then the following implication holds:

∥Dπ −Dπ∗∥ ≤ C(L,R) =⇒ RegR (π) ≥ L.

Proof. Using the Cauchy-Schwarz inequality, the left side of the implication implies:

JR(π)−min JR = JR(π)− JR(π∗)

=
(
Dπ −Dπ∗

)
·R

≤ ∥Dπ −Dπ∗∥ · ∥R∥
≤ (1− L) · range JR.

By subtracting range JR = max JR −min JR from both sides, then multiplying by −1, and then dividing by range R, we
obtain the result.

Lemma C.35. For any (s, a), we have

Dπ(s, a)

1− γ
=

∞∑
t=0

γt
∑

s0,a0,...,st−1,at−1

τ(s0, a0, . . . , st−1, at−1, s) · π(s0, a0, . . . , st−1, at−1, s, a),

where

τ(s0, a0, . . . , s) := µ0(s0) ·

[
t−1∏
i=1

τ(si | si−1, ai−1)

]
· τ(s | st−1, at−1),

which is the part in the probability of a trajectory that does not depend on the policy, and

π(s0, a0, . . . , s, a) := π(a | s) ·
t−1∏
i=0

π(ai | si).

Proof. We have

Dπ(s, a)

1− γ
=

∞∑
t=0

γtP (st = s, at = a | ξ ∼ π)

=

∞∑
t=0

γt
∑

s0,a0,...,st−1,at−1

P (s0, a0, . . . , st−1, at−1, s, a | π)

=

∞∑
t=0

γt
∑

s0,a0,...,st−1,at−1

µ0(s0)π(a0 | s0)

[
t−1∏
i=1

τ(si | si−1, ai−1)π(ai | si)

]
τ(s | st−1, at−1)π(a | s)

=

∞∑
t=0

γt
∑

s0,a0,...,st−1,at−1

τ(s0, a0, . . . , st−1, at−1, s) · π(s0, a0, . . . , st−1, at−1, s, a).
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Lemma C.36. Let 1 ≥ δ > 0. Assume that π(a | s) ≥ 1 − δ for all (s, a) ∈ supp Dπ∗ and that π∗ is a deterministic
policy.4 Then for all (s, a) ∈ S×A, one has

Dπ∗(s, a)− δ · (1− γ) · ∂

∂γ

(
γ

1− γ
Dπ∗(s, a)

)
≤ Dπ(s, a) ≤ Dπ∗(s, a) +

δ

1− γ
. (97)

This also results in the following two inequalities:

Dπ(supp Dπ∗) ≥ 1− δ

1− γ
, ∥Dπ −Dπ∗∥ ≤

√
|S×A| · δ

1− γ
. (98)

Proof. Let (s, a) ∈ supp Dπ∗ . We want to apply the summation formula in Lemma C.35, which we recommend to recall.
For simplicity, in the following we will write s0, a0, . . . when we implicitly mean trajectories up until st−1, at−1. Now, we
will write “π∗-comp” into a sum to indicate that we only sum over states and actions that make the whole trajectory-segment
compatible with policy π∗, meaning all transitions have positive probability and the actions are deterministically selected by
π∗. Note that if we restrict to such summands, then each consecutive pair (si, ai) ∈ supp Dπ∗ is in the support of Dπ∗ , and
thus we can use our assumption π(ai | si) ≥ 1− δ on those. We can use this strategy for a lower-bound:

Dπ(s, a)

1− γ
≥

∞∑
t=0

γt
∑

s0,a0,...
π∗−comp

τ(s0, a0, . . . , s) · π(s0, a0, . . . , s, a)

≥
∞∑
t=0

γt
∑

s0,a0,...
π∗−comp

τ(s0, a0, . . . , s) · (1− δ)t+1

≥
∞∑
t=0

γt
∑

s0,a0,...
π∗−comp

τ(s0, a0, . . . , s) ·
(
1− δ · (t+ 1)

)
.

(99)

In the last step, we used the classical formula (1− δ)t ≥ 1− δ · t, which can easily be proved by induction over t. Now, we
split the sum up into two parts. For the first part, we note:

∞∑
t=0

γt
∑

s0,a0,...
π∗−comp

τ(s0, a0, . . . , s) · 1 =

∞∑
t=0

γt
∑

s0,a0,...
π∗−comp

τ(s0, a0, . . . , s) · π∗(s0, a0, . . . , s, a)

=

∞∑
t=0

γt
∑

s0,a0,...

τ(s0, a0, . . . , s) · π∗(s0, a0, . . . , s, a)

=
Dπ∗(s, a)

1− γ
.

(100)

For the second part, we similarly compute:

∞∑
t=0

(t+ 1)γt
∑

s0,a0,...
π∗−comp

τ(s0, a0, . . . , s) =

∞∑
t=0

∂

∂γ
γt+1P (st = s, at = a | π∗)

=
∂

∂γ

(
γ

1− γ
·Dπ∗(s, a)

)
.

(101)

Putting Equations (100) and (101) into Equation (99) gives the first equation of Equation (97) for the case that (s, a) ∈
supp Dπ∗ . For the case that (s, a) /∈ supp Dπ∗(s, a), the inequality is trivial since then Dπ∗(s, a) = 0 and since the
stated derivative is easily shown to be non-negative by writing out the occupancy explicitly (i.e., by reversing the previous
computation).

4In this lemma, one does not need the assumption that π∗ is a worst-case policy, but this case will be the only application later on.
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This then implies

Dπ(supp Dπ∗) =
∑

(s,a)∈supp Dπ∗

Dπ(s, a)

≥
∑

(s,a)∈supp Dπ∗

(
Dπ∗(s, a)− δ · (1− γ) · ∂

∂γ

(
γ

1− γ
Dπ∗(s, a)

))

= 1− δ · (1− γ) · ∂

∂γ

 γ

1− γ

∑
(s,a)∈supp Dπ∗

Dπ∗(s, a)


= 1− δ · (1− γ) · 1

(1− γ)2

= 1− δ

1− γ
.

This shows the first inequality in Equation (98). To show the second inequality in Equation (97), we use the first one and
compute:

Dπ(s, a) = 1−
∑

(s′,a′ )̸=(s,a)

Dπ(s′, a′)

≤ 1−
∑

(s′,a′)∈supp Dπ∗\{(s,a)}

Dπ(s′, a′)

≤ 1−
∑

(s′,a′)∈supp Dπ∗\{(s,a)}

Dπ∗(s′, a′)

+
∑

(s′,a′)∈supp Dπ∗\{(s,a)}

δ · (1− γ) · ∂

∂γ

(
γ

1− γ
Dπ∗(s′, a′)

)

≤ Dπ∗(s, a) +
δ

1− γ
,

where in the last step we again used the trick of the previous computation of pulling the sum through the derivative. Finally,
we prove the second inequality in Equation (98), using what we know so far. First, note that

δ · (1− γ) · ∂

∂γ

(
γ

1− γ
Dπ∗(s, a)

)
≤ δ

1− γ

since we showed that the left-hand-side is non-negative and sums to the right-hand-side over all (s, a). Consequently, we
obtain:

∥Dπ −Dπ∗∥ =
√∑

(s,a)

(
Dπ(s, a)−Dπ∗(s, a)

)2
≤

√√√√∑
(s,a)

∣∣∣∣ δ

1− γ

∣∣∣∣2
=
√
|S×A| · δ

1− γ
.

This finishes the proof.

We now fix more constants and notation. Define S0 := supp µ0 as the support of µ0, and more generally St as the states
reachable within t timesteps using the fixed worst-case policy π∗:

St :=
{
s
∣∣ ∃π∗ − compatible sequence s0, a0, . . . , sk−1, ak−1, s for k ≤ t

}
.
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Since there are only finitely many states and St ⊆ St+1, there is a t0 such that St0 is maximal. Set Dπ∗(s) :=
∑

a D
π∗(s, a).

Recall the notation τ from Lemma C.35. Define the following constant which, given the MDP, only depends on δ > 0 and
π∗:

C(δ, π∗, µ0, τ, γ) := min
t∈[0:t0]

s0,a0,...,st−1,at−1,s: π∗−comp

γtτ(s0, a0 . . . , s) · (1− δ)t · δ > 0. (102)

We get the following result:

Lemma C.37. Define the reward function R̂ : S×A → R as follows:

R̂(s, a) :=

{
R(s, a), (s, a) /∈ supp Dπ∗ ,

maxR+ λ
C(δ,π∗,µ0,τ,γ)

· ω(π∗), else.
(103)

Assume that π̂ is (λ, ω)-RLHF optimal with respect to R̂. Then for all (s, a) ∈ supp Dπ∗ , we have π̂(a | s) ≥ 1− δ.

Proof. We show this statement by induction over the number of timesteps that π∗ needs to reach a given state. Thus, first
assume s ∈ S0 and a = π∗(s). We do a proof by contradiction. Thus, assume that π̂(a | s) < 1 − δ. This means that∑

a′ ̸=a π̂(a
′ | s) ≥ δ, and consequently

∑
a′ ̸=a

Dπ̂(s, a′) ≥ µ0(s) · δ ≥ C(δ, π∗, µ0, τ, γ). (104)

We now claim that from this it follows that π∗ is more optimal than π̂ with respect to RLHF, a contradiction to the optimality
of π̂. Indeed:

JR̂(π̂)− λω(π̂)
(1)

≤ JR̂(π̂)

(2)
=
∑
a′ ̸=a

Dπ̂(s, a′) ·R(s, a′) +
∑

(s′,a′)/∈{s}×A\{a}

Dπ̂(s′, a′) · R̂(s′, a′)

(3)

≤
∑
a′ ̸=a

Dπ̂(s, a′) ·maxR+ R̂(s, a) ·
∑

(s′,a′)/∈{s}×A\{a}

Dπ̂(s′, a′′)

=
∑
a′ ̸=a

Dπ̂(s, a′) ·maxR+

1−
∑
a′ ̸=a

Dπ̂(s, a′)

 · R̂(s, a)

(4)

≤ C(δ, π∗, µ0, τ, γ) ·maxR+
(
1− C(δ, π∗, µ0, τ, γ)

)
· R̂(s, a)

(5)
= JR̂(π∗) + C(δ, π∗, µ0, τ, γ) ·

(
maxR− R̂(s, a)

)
(6)
= JR̂(π∗)− C(δ, π∗, µ0, τ, γ) ·

λ

C(δ, π∗, µ0, τ, γ)
· ω(π∗)

= JR̂(π∗)− λω(π∗).

(105)

In step (1), we use the non-negativity of ω. In step (2), we use that (s, a′) /∈ supp Dπ∗ , and so R̂(s, a′) = R(s, a′). In the
right term in step (3), we use that (s, a) ∈ supp Dπ∗ , and thus R̂(s, a) ≥ R̂(s′, a′), by definition of R̂. In step (4), we use
that R̂(s, a) ≥ maxR and Equation (104). Step (5) uses that JR̂(π∗) = R̂(s, a), following from the fact that R̂ is constant
for policy π∗. Step (6) uses the concrete definition of R̂. Thus, we have showed a contradiction to the RLHF-optimality of
π̂, from which it follows that π̂(a | s) ≥ 1− δ.

Now assume the statement is already proven for t− 1 and let s ∈ St \ St−1. Then there exists a π∗-compatible sequence
s0, a0, . . . , st−1, at−1 leading to s. We necessarily have si ∈ Si for all i = 0, . . . , t−1, and so we obtain π̂(ai | si) ≥ 1−δ
by the induction hypothesis. Now, let a := π∗(s) and assume we had π̂(a | s) < 1 − δ. As before, we then have
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a′ ̸=a π̂(a

′ | s) ≥ δ. Consequently, we get∑
a′ ̸=a

Dπ̂(s, a′) ≥ γt ·
∑
a′ ̸=a

τ(s0, a0, . . . , s) · π̂(s0, a0, . . . , s, a′)

≥ γt · τ(s0, a0, . . . , s) · (1− δ)t · δ
≥ C(δ, π∗, µ0, τ, γ)

Then the same computation as in Equation (105) leads to the same contradiction again, and we are done.

Theorem C.38. Define

δ :=
(1− γ) · (1− L) · range JR√

|S×A| · ∥R∥
> 0.

LetM = ⟨S,A, τ, µ0, R, γ⟩ be our MDP. Set

C := C(M, π∗, L, λ, ω) :=
λ · ω(π∗)

range R · C(δ, π∗, µ0, τ, γ)
<∞, (106)

with the “inner” C(δ, π∗, µ0, τ, γ) defined in Equation (102). Assume that

D(supp Dπ∗) ≤ ϵ

1 + C
. (107)

Then D ∈ unsafe(R, ϵ, L, λ, ω).

Proof. We prove the theorem by showing that for every data distribution D ∈ ∆(S×A) that fulfills the conditions of
Theorem C.38, there exists a reward function R̂ together with a (λ, ω)-RLHF optimal policy π̂ with respect to R̂ such that

• E(s,a)∼D

[
|R̂(s,a)−R(s,a)|

range R

]
≤ ϵ,

• RegR (π̂) ≥ L.

Towards that goal, define R̂ as in Equation (103) and π̂ as a (λ, ω)-RLHF optimal policy for R̂. Then Theorem C.37 shows
that π̂(s | a) ≥ 1− δ for all (s, a) ∈ supp Dπ∗ . Consequently, Theorem C.36 implies that

∥Dπ̂ −Dπ∗∥ ≤
√
|S×A| · δ

1− γ
=

(1− L) · range JR
∥R∥

.

Consequently, Theorem C.34 shows that RegR (π̂) ≥ L, and thus the second claim. For the first claim, note that

E(s,a)∼D

[
|R̂(s, a)−R(s, a)|

]
=

∑
(s,a)∈supp Dπ∗

D(s, a) ·
(
maxR+

λ

C(δ, π∗, µ0, τ, γ)
ω(π∗)−R(s, a)

)

≤ D(supp Dπ∗) ·
(
range R+

λ

C(δ, π∗, µ0, τ, γ)
ω(π∗)

)
≤ ϵ · range R,

where the last claim follows from the assumed inequality in D(supp Dπ∗).

We obtain the following corollary, which is very similar to Theorem C.5. The main difference is that the earlier result only
assumed a poliy of regret L and not regret 1:

Corollary C.39. Theorem C.38 specializes as follows for the case λ = 0: Assume D(supp Dπ∗) ≤ ϵ. Then there exists a
reward function R̂ together with an optimal policy π̂ that satisfies the two inequalities from the previous result.
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Proof. This directly follows from λ = 0. For completeness, we note that the definition of R̂ also simplifies, namely to

R̂(s, a) =

{
R(s, a), (s, a) /∈ supp Dπ∗

maxR, else.

We now present another specialization of Theorem C.38. Namely, from now on, assume that D = Dπref and ω(π) =
DKL (π||πref). In other words, the dataset used to evaluate the reward function is sampled from the same (safe) policy used
in KL-regularization. This leads to the following condition specializing the one from Equation (107):

Dπref (supp Dπ∗) ≤ ϵ

1 + λ·DKL(π∗||πref )
range R·C(δ,π∗,µ0,τ,γ)

. (108)

πref now appears on both the left and right side of the equation, and so one can wonder whether it is ever possible that the
inequality holds. After all, if Dπref (supp Dπ∗) “gets smaller”, then DKL (π∗||πref) should usually get “larger”. However,
halfing each of the probabilities Dπref (s, a) for (s, a) ∈ supp Dπ∗ leads to only an increase by the addition of log 2 of
DKL (π∗||πref). Thus, intuitively, we expect the inequality to hold when the left-hand-side is very small. An issue is that the
KL divergence can disproportionately blow up in size if some individual probabilities Dπref (s, a) for (s, a) ∈ supp Dπ∗

are very small compared to other such probabilities. This can be avoided by a bound in the proportional difference of these
probabilities. We thus obtain the following sufficient condition for a “negative result”:5

Corollary C.40. Let the notation be as in Theorem C.38 and assume D = Dπref and ω(π) = DKL (π||πref). Let K ≥ 0 be
a constant such that

max
(s,a)∈supp Dπ∗

Dπref (s, a) ≤ K · min
(s,a)∈supp Dπ∗

Dπref (s, a).

Assume that

min
(s,a)∈supp Dπ∗

Dπref (s, a) ≤

 ϵ

K · |S| ·
(
1 + λ

range R·C(δ,π∗,µ0,τ,γ)

)
2

. (109)

Then Equation (107) holds, and the conclusion of the theorem thus follows.

Proof. As argued before, the equation to show can be written as Equation (108). We can upper-bound the left-hand-side as
follows:

Dπref (supp Dπ∗) =
∑

(s,a)∈supp Dπ∗

Dπref (s, a)

≤ |supp Dπ∗ | · max
(s,a)∈supp Dπ∗

Dπref (s, a)

≤ |S| ·K · min
(s,a)∈supp Dπ∗

Dπref (s, a).

(110)

In one step, we used that π∗ is assumed to be deterministic, which leads to a bound in the size of the support. Now, we
lower-bound the other side by noting that

DKL (π∗||πref) =
∑

(s,a)∈supp Dπ∗

Dπ∗(s, a) · log Dπ∗(s, a)

Dπref (s, a)

≤
∑

(s,a)∈supp Dπ∗

Dπ∗(s, a) · log 1

min(s′,a′)∈supp Dπ∗ Dπref (s′, a′)

= log
1

min(s,a)∈supp Dπ∗ Dπref (s, a)
.

5The condition is quite strong and we would welcome attempts to weaken it.
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Thus, for the right-hand-side, we obtain

ϵ

1 + λ·DKL(π∗||πref )
range R·C(δ,π∗,µ0,τ,γ)

≥ ϵ

1 + λ
range R·C(δ,π∗,µ0,τ,γ)

· log 1
min(s,a)∈supp Dπ∗ Dπref (s,a)

(111)

Now, set A := |S| · K, B := λ
range R·C(δ,π∗,µ0,τ,γ)

and x := min(s,a)∈supp Dπ∗ Dπref (s, a). Then comparing with
Equations (110) and (111), we are left with showing the following, which we also equivalently rewrite:

A · x ≤ ϵ

1 +B · log 1
x

⇐⇒A ·
(
x+Bx log

1

x

)
≤ ϵ.

Now, together with the assumed condition on x from Equation (109), and upper-bounding the logarithm with a square-root,
and x by

√
x since x ≤ 1, we obtain:

A ·
(
x+Bx log

1

x

)
≤ A ·

(
x+B

√
x
)

≤ A ·
(
(1 +B) ·

√
x
)

≤ A · (1 +B) · ϵ

A · (1 +B)

= ϵ.

That was to show.

D. Requirements for safe optimization
In this section, we answer the question under which circumstances we can guarantee a safe optimization of a given reward
function. Wherever applicable, we make the same assumptions as stated in Appendix C.1.

D.1. Applying Berge’s maximum theorem

Definition D.1 (Correspondence). Let X,Y be two sets. A correspondence C : X ⇒ Y is a function X → P(Y ) from X
to the power set of Y .

Definition D.2 (Upper Hemicontinuous, Lower Hemicontinuous, Continuous, Compact-Valued). Let C : X ⇒ Y be a
correspondence where X and Y are topological spaces. Then:

• C is called upper hemicontinuous if for every x ∈ X and every open set V ⊆ Y with C(x) ⊆ V , there exists an open
set U ⊆ X with x ∈ U and such that for all x′ ∈ U one has C(x′) ⊆ V .

• C is called lower hemicontinuous if for every x ∈ X and every open set V ⊆ Y with C(x) ∩ V ̸= ∅, there exists an
open set U ⊆ X with x ∈ U and such that for all x′ ∈ U one has C(x′) ∩ V ̸= ∅.

• C is called continuous if it is both upper and lower hemicontinuous.

• C is called compact-valued if C(x) is a compact subset of Y for all x ∈ X .

Theorem D.3 (Maximum Theorem, (Berge, 1963)). Let Θ and X be topological spaces, f : Θ×X → R a continuous
function, and C : Θ ⇒ X be a continuous, compact-valued correspondence such that C(θ) ̸= ∅ for all θ ∈ Θ. Define the
optimal value function f∗ : Θ→ R by

f∗(θ) := max
x∈C(θ)

f(θ, x)

and the maximizer function C∗ : Θ ⇒ X by

C∗(θ) := argmax
x∈C(θ)

f(θ, x) =
{
x ∈ C(θ) | f(θ, x) = f∗(θ)

}
.
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Then f∗ is continuous and C∗ is a compact-valued, upper hemicontinuous correspondence with nonempty values, i.e.
C∗(θ) ̸= ∅ for all θ ∈ Θ.

We now show that this theorem corresponds to our setting. Namely, replace X be by Π, the set of all policies. Every policy
π ∈ Π can be viewed as a vector π⃗ =

(
π(a | s)

)
s∈S,a∈A ∈ RS×A, and so we view Π as a subset of RS×A. Π inherits the

standard Euclidean metric and thus topology from RS×A. Replace Θ byR, the set of all reward functions. We can view
each reward function R ∈ R as a vector R⃗ =

(
R(s, a)

)
(s,a)∈S×A ∈ RS×A. So we viewR as a subset of RS×A and thus a

topological space. Replace f by the function J : R×Π→ R given by

J(R, π) := JR(π) = ηπ · R⃗.

Take as the correspondence C : R⇒ Π the trivial function C(R) := Π that maps every reward function to the full set of
policies.

Proposition D.4. These definitions satisfy the conditions of Theorem D.3, that is:

1. J : R×Π→ R is continuous.

2. C : R⇒ Π is continuous and compact-valued with non-empty values.

Proof. Let us prove 1. Since the scalar product is continuous, it is enough to show that η : Π→ RS×A is continuous. Let
(s, a) ∈ S×A be arbitrary. Then it is enough to show that each componentfunction η(s, a) : Π→ R given by[

η(s, a)
]
(π) := ηπ(s, a)

is continuous.

Now, for any t ≥ 0, define the function Pt(s, a) : Π→ R by[
Pt(s, a)

]
(π) := P (st = s, at = a | ξ ∼ π).

We obtain

η(s, a) =

∞∑
t=0

γtPt(s, a).

Furthermore, this convergence is uniform since
[
Pt(s, a)

]
(π) ≤ 1 for all π and since

∑∞
t=0 γ

t is a convergent series. Thus,
by the uniform limit theorem, it is enough to show that each Pt(s, a) is a continuous function.

Concretely, we have[
Pt(s, a)

]
(π) =

∑
s0,a0,...,st−1,at−1

P
(
s0, a0, . . . , st−1, at−1, s, a | ξ ∼ π

)
=

∑
s0,a0,...,st−1,at−1

µ0(s0) · π(a0 | s0) ·

[
t−1∏
l=1

τ(sl | sl−1, al−1) · π(al | sl)

]
· τ(s | st−1, at−1) · π(a | s).

Since S and A are finite, this whole expression can be considered as a polynomial with variables given by all π(a | s) for all
(s, a) ∈ S×A and coefficients specified by µ0 and τ . Since polynomials are continuous, this shows the result.

Let us prove 2. Since Π ̸= ∅, C has non-empty values. Furthermore, Π is compact because it is a finite cartesian product of
compact simplices. And finally, since C is constant, it is easily seen to be continuous. That was to show.

Define the optimal value function J∗ : R → R by

J∗(R) := max
π∈Π

JR(π)

and the maximizer function Π∗ : R⇒ Π by

Π∗(R) := argmax
π∈Π

JR(π) =
{
π ∈ Π | JR(π) = J∗(R)

}
.
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Corollary D.5. J∗ is continuous and Π∗ is upper hemicontinuous and compact-valued with non-empty values.

Proof. This follows from Theorem D.3 and Proposition D.4.

In particular, every reward function has a compact and non-empty set of optimal policies, and their value changes continuously
with the reward function. The most important part of the corollary is the upper hemicontinuity, which has the following
consequence:

Corollary D.6. Let R be a fixed, non-trivial reward function, meaning that max JR ̸= min JR. Let U ∈ (0, 1] be arbitrary.
Then there exists ϵ > 0 such that for all R̂ ∈ Bϵ (R) and all π̂ ∈ Π∗(R̂), we have RegR (π̂) < U .

Proof. The condition max JR ̸= min JR ensures that the regret function RegR : Π → [0, 1] is well-defined. Recall its
definition:

RegR (π) =
max JR − JR(π)

max JR −min JR
.

Since JR is continuous by Proposition D.4, the regret function RegR is continuous as well. Consequently, the set
V :=

(
RegR

)−1(
[0, U)

)
is open in Π.

Notice that Π∗(R) ⊆ V (optimal policies have no regret). Thus, by Corollary D.5, there exists an open set W ⊆ R with
R ∈W such that for all R̂ ∈W we have Π∗(R̂) ⊆ V . Consequently, for all π̂ ∈ Π∗(R̂), we get RegR (π̂) < U . Since W
is open, it contains a whole epsilon ball around R, showing the result.

Now we translate the results to the distance defined by D, a data distribution. Namely, let D ∈ ∆(S×A) a distribution that
assigns a positive probability to each transition. Then define the D-norm by

dD(R) := E(s,a)∼D

[∣∣R(s, a)
∣∣] . (112)

This is indeed a norm, i.e.: for all α ∈ R and all R,R′ ∈ R, we have

• dD(R+R′) ≤ dD(R) + dD(R′);

• dD(α ·R) = |α| · dD(R);

• dD(R) = 0 if and only if R = 0.

For the third property, one needs the assumption that D(s, a) > 0 for all (s, a) ∈ S×A.

This norm then induces a metric that we denote the same way:

dD(R,R′) := dD(R−R′). (113)

We obtain:

Corollary D.7. Let ⟨S,A, τ, µ0, R, γ⟩ be an arbitrary non-trivial MDP, meaning that max JR ̸= min JR. Furthermore,
let L ∈ (0, 1] be arbitrary, and D ∈ ∆(S×A) a positive data distribution, i.e., a distribution D such that ∀(s, a) ∈ S×A,
D(s, a) > 0. Then there exists ϵ > 0 such that D ∈ safe(R, ϵ, L)

Proof. To prove the corollary, we will show that there exists ϵ > 0 such that for all R̂ ∈ R with

dD(R, R̂)

range R
< ϵ

and all π̂ ∈ Π∗(R̂) we have RegR (π̂) < L. We know from Corollary D.6 that there is ϵ′ > 0 such that for all R̂ ∈ Bϵ′ (R)
and all π̂ ∈ Π∗(R̂), we have RegR (π̂) < L. Now, let c > 0 be a constant such that

c · ∥R′ −R′′∥ ≤ dD(R′, R′′)
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for all R′, R′′ ∈ R, where ∥ · ∥ is the standard Euclidean norm. This exists since all norms in RS×A are equivalent, but one
can also directly argue that

c := min
(s,a)∈S×A

D(s, a)

is a valid choice. Then, set

ϵ := ϵ′ · c

range R
.

Then for all R̂ ∈ R with
dD(R, R̂)

range R
< ϵ

we obtain

∥R− R̂∥ ≤ dD(R, R̂)

c

=
dD(R,R′)

range R
· range R

c

≤ ϵ · range R
c

= ϵ′.

Thus, for all π̂ ∈ Π∗(R̂), we obtain RegR (π̂) < L, showing the result.

Remark D.8. If c := min(s,a)∈S×A D(s, a) is very small, then the proof of the preceding corollary shows that dD(R, R̂)

must be correspondingly smaller to guarantee a low regret of π̂ ∈ Π∗(R̂). This makes sense since a large effective distance
between R and R̂ can “hide” in the regions where D is small when distance is measured via dD.

D.2. Elementary proof of a regret bound

In this section, we provide another elementary proof of a regret bound, but without reference to Berge’s theorem. This will
also lead to a better quantification of the bound. In an example, we will show that the bound we obtain is tight.

Define the cosine of an angle between two vectors ad hoc as usual:

cos
(
ang

(
v, w

))
:=

v · w
∥v∥ · ∥w∥

,

where v · w is the dot product.

Lemma D.9. Let R, R̂ be two reward functions. Then for any policy π, we have

JR(π)− J R̂(π) =
1

1− γ
· ∥Dπ∥ ·

∥∥R− R̂
∥∥ · cos( ang (ηπ, R⃗− ⃗̂

R
))

.

Proof. We have

JR(π)− J R̂(π) = ηπ ·
(
R⃗− ⃗̂

R
)
= ∥ηπ∥ ·

∥∥R⃗− ⃗̂
R
∥∥ · cos( ang (ηπ, R⃗− ⃗̂

R
))

.

The result follows from ηπ = 1
1−γ ·D

π .

we will make use of another lemma:

Lemma D.10. Let a, â, and r be three vectors. Assume a · â ≥ 0, where · is the dot product. Then

cos
(
ang(a, r)

)
− cos

(
ang(â, r)

)
≤
√
2.
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Proof. None of the angles change by replacing any of the vectors with a normed version. We can thus assume ∥a∥ = ∥â∥ =
∥r∥ = 1. We obtain ∣∣ cos ( ang(a, r))− cos

(
ang(â, r)

)∣∣2 =
∣∣a · r − â · r

∣∣2
=
∣∣(a− â) · r

∣∣2
≤ ∥a− â∥2 · ∥r∥2

= ∥a− â∥2

= ∥a∥2 + ∥â∥2 − 2a · â
≤ 2.

In the first, fourth, and sixth step, we used that all vectors are normed. In the third step, we used the Cauchy-Schwarz
inequality. Finally, we used that a · â ≥ 0. The result follows.

Recall that for two vectors v, w, the projection of v onto w is defined by

projw v :=
v · w
∥w∥2

w.

This projection is a multiple of w, and it minimizes the distance to v:∥∥v − projw v
∥∥ = min

α∈R

∥∥v − αw
∥∥.

We can now formulate and prove our main regret bound:

Theorem D.11. Let R be a fixed, non-trivial reward function, meaning that max JR ̸= min JR. Then for all R̂ ∈ R and
all π̂ ∈ Π∗(R̂), we have

RegR (π̂) ≤
√
2

(1− γ) · (max JR −min JR)
·
∥∥R⃗− ⃗̂

R
∥∥.

Furthermore, if R⃗ · ⃗̂R ≥ 0, then we also obtain the following stronger bound:

RegR (π̂) ≤
√
2

(1− γ) · (max JR −min JR)
·
∥∥∥R⃗− proj ⃗̂

R
R⃗
∥∥∥.

Now, let D ∈ ∆(S×A) be a positive data distribution (positive meaning D(s, a) > 0 for all (s, a) ∈ S × A). Then we
obtain the following consequence:

RegR (π̂) ≤
√
2

(1− γ) ·
(
max JR −min JR

)
·min(s,a)∈S×A D(s, a)

· dD
(
R, R̂).

Proof. We start with the first claim. First, notice that the inequality we want to show is equivalent to the following:

JR(π̂) ≥ max JR −
√
2

1− γ
·
∥∥R⃗− ⃗̂

R
∥∥. (114)

From Lemma D.9, we obtain

JR(π̂) = J R̂(π̂) +
1

1− γ
· ∥Dπ̂∥ ·

∥∥R⃗− ⃗̂
R
∥∥ · cos( ang (ηπ̂, R− R̂

))
.

Now, let π ∈ Π∗(R) be an optimal policy for R. Then also from Lemma D.9, we obtain

max JR = JR(π) = J R̂(π) +
1

1− γ
· ∥Dπ∥ ·

∥∥R⃗− ⃗̂
R
∥∥ · cos( ang (ηπ, R− R̂

))
≤ J R̂(π̂) +

1

1− γ
· ∥Dπ∥ ·

∥∥R⃗− ⃗̂
R
∥∥ · cos( ang (ηπ, R− R̂

))
.
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In the last step, we used that π̂ ∈ Π∗(R⃗) and so J R̂(π) ≤ J R̂(π̂). Combining both computations, we obtain:

JR(π̂) ≥ max JR − 1

1− γ
·
∥∥R⃗− ⃗̂

R
∥∥ · [∥Dπ∥ · cos

(
ang

(
ηπ, R− R̂

))
− ∥Dπ̂∥ · cos

(
ang

(
ηπ̂, R− R̂

))]

Since we want to show Equation (114), we are done if we can bound the big bracket by
√
2. By the Cauchy-Schwarz

inequality, cos
(
ang

(
v, w

))
∈ [−1, 1] for all vectors v, w. Thus, if the first cosine term is negative or the second cosine

term is positive, then since ∥Dπ∥ ≤ ∥Dπ∥1 = 1, the bound by
√
2 is trivial. Thus, assume that the first cosine term is

positive and the second is negative. We obtain

∥Dπ∥ · cos
(
ang

(
ηπ, R− R̂

))
− ∥Dπ̂∥ · cos

(
ang

(
ηπ̂, R− R̂

))
≤ cos

(
ang

(
ηπ, R− R̂

))
− cos

(
ang

(
ηπ̂, R− R̂

))
≤
√
2

by Lemma D.10. Here, we used that ηπ and ηπ̂ have only non-negative entries and thus also nonnegative dot product
ηπ · ηπ̂ ≥ 0.

For the second claim, notice the following: if R⃗ · ⃗̂R ≥ 0, then proj ⃗̂
R
R⃗ = α · ⃗̂R for some constant α ≥ 0. Consequently, we

have π̂ ∈ Π∗
(
proj ⃗̂

R
R⃗
)

. The claim thus follows from the first result.

For the third claim, notice that

min
(s,a)∈S×A

D(s, a) ·
∥∥R⃗− ⃗̂

R
∥∥ ≤ min

(s,a)∈S×A
D(s, a) ·

∥∥R⃗− ⃗̂
R
∥∥
1

= min
(s,a)∈S×A

D(s, a) ·
∑

(s,a)∈S×A

∣∣R(s, a)− R̂(s, a)
∣∣

≤
∑

(s,a)∈S×A

D(s, a) ·
∣∣R(s, a)− R̂(s, a)

∣∣
= dD(R, R̂).

So the first result implies the third.

Corollary D.12. The theorem implies Theorem 3.2.

Proof. Let L ∈ (0, 1] and assume ϵ > 0 satisfies

ϵ <
1− γ√

2
· range J

R

range R
· min
(s,a)∈S×A

D(s, a) · L.

We want to show D ∈ safe(R, ϵ, L). For this aim, assume that R̂ and π̂ are given with

E(s,a)∼D

[
|R̂(s, a)−R(s, a)|

range R

]
≤ ϵ

and such that π̂ is optimal for R̂, i.e. (in the notation of the appendix): π̂ ∈ Π∗(R̂). Then the last claim in Theorem D.11
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implies

RegR (π̂) ≤
√
2

(1− γ) ·
(
max JR −min JR

)
·min(s,a)∈S×A D(s, a)

· dD
(
R, R̂)

=

√
2

(1− γ) · range JR ·min(s,a)∈S×A D(s, a)
· E(s,a)∼D

[
|R(s, a)− R̂(s, a)|

]
=

√
2

1− γ
· range R

range JR
· 1

min(s,a)∈S×A D(s, a)
· E(s,a)∼D

[
|R(s, a)− R̂(s, a)|

range R

]

≤
√
2

1− γ
· range R

range JR
· 1

min(s,a)∈S×A D(s, a)
· ϵ

< L.

In the first step, we used Theorem D.11. Then, we substituted the definition of dD from Equations (112) and (113). Then we
expanded the term by multiplying with range R in both the numerator and denominator. Then, we used the assumption
that R̂ is ϵ-close to R in the data distribution D. Finally, we used the assumed bound on ϵ from Theorem 3.2. Overall, this
shows RegR (π̂) < L, and thus, since R̂ and π̂ were arbitrary, we obtain D ∈ safe(R, ϵ, L). This is precisely the claim
from Theorem 3.2.

We now include more discussion of Theorem D.11:
Remark D.13. As one can easily see geometrically, but also prove directly, there is the following equality of sets for a
reward function R {

proj ⃗̂
R
R⃗
∣∣ R̂ ∈ R

}
=

{
1

2
R⃗+

1

2
∥R⃗∥v

∣∣ v ∈ RS×A, ∥v∥ = 1

}
.

In other words, the projections form a sphere of radius 1
2∥R⃗∥ around the midpoint 1

2 R⃗.

We now show that the regret bound in Theorem D.11 is tight:

Example D.14. Let U ∈ [0, 1] and γ ∈ [0, 1) be arbitrary. Then there exists an MDP ⟨S,A, τ, µ0, R, γ⟩ together with a

reward function R̂ with R⃗ · ⃗̂R ≥ 0 and a policy π̂ ∈ Π∗(R̂) such that

U = RegR (π̂) =

√
2

(1− γ) ·
(
max JR −min JR

) · ∥∥∥R⃗− proj ⃗̂
R
R⃗
∥∥∥.

Furthermore, there exists a data distribution D ∈ ∆(S×A) such that

RegR (π̂) =
1

(1− γ) ·
(
max JR −min JR

)
·min(s,a)∈S×A D(s, a)

· dD
(
R, R̂

)
.

Proof. If U = 0 then R̂ = R always works. If U > 0, then set S = {⋆} and A = {a, b, c}. This determines τ and µ0.
Define R(x) := R(⋆, x, ⋆) for any action x ∈ A. Let R(a) > R(b) be arbitrary and set

R(c) := R(a)− R(a)−R(b)

U
≤ R(b).

Define

R̂(a) := R̂(b) :=
R(a) +R(b)

2
, R̂(c) := R(c).

For a policy π, define π(x) := π(x | ⋆) for any action x ∈ A and set the policy π̂ by π̂(b) = 1.
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We obtain: ∥∥R⃗− ⃗̂
R
∥∥ =

√(
R(a)− R̂(a)

)2
+
(
R(b)− R̂(b)

)2
+
(
R(c)− R̂(c)

)2
=

1

2
·
√(

R(a)−R(b)
)2

+
(
R(b)−R(a)

)2
=

1√
2
·
(
R(a)−R(b)

)
= U · R(a)−R(c)√

2

= U · maxR−minR√
2

= U ·
(1− γ) ·

(
max JR −min JR

)
√
2

.

Furthermore, we have

RegR (π̂) =

1
1−γ ·R(a)− 1

1−γ ·R(b)
1

1−γ ·R(a)− 1
1−γ ·R(c)

= U.

This shows

U = RegR (π̂) =

√
2

(1− γ) ·
(
max JR −min JR

) · ∥∥R⃗− ⃗̂
R
∥∥.

We are done if we can show that proj ⃗̂
R
R⃗ =

⃗̂
R. This is equivalent to

⃗̂
R · R⃗ =

∥∥ ⃗̂R∥∥2,
which is in turn equivalent to

⃗̂
R ·
[
R⃗− ⃗̂

R
]
= 0.

This can easily be verified.

Finally, for the claim about the data distribution, simply set D(a) = D(b) = D(c) = 1
3 . Then one can easily show that

√
2 ·
∥∥R⃗− ⃗̂

R
∥∥ = R(a)−R(b) =

dD(R, R̂)

min(s,a)∈S×A D(s, a)
.

That shows the result.

D.3. Safe optimization via approximated choice probabilities

In this section, we will show that for any chosen upper regret bound U , there is an ϵ > 0 s.t. if the choice probabilities of R̂
are ϵ-close to those of R, the regret of an optimal policy for R̂ is bounded by U .

Assume a finite time horizon T . Trajectories are then given by ξ = s0, a0, s1, . . . , aT−1, sT . Let Ξ be the set of all
trajectories of length T . Let D ∈ ∆(Ξ) be a distribution. Assume that the human has a true reward function R and makes
choices in trajectory comparisons given by

PR

(
1 | ξ1, ξ2

)
=

exp
(
G(ξ1)

)
exp

(
G(ξ1)

)
+ exp

(
G(ξ2)

) . (115)

Here, the return function G is given by

G(ξ) =

T−1∑
t=0

γtR(st, at, st+1).
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We can then define the choice distance of proxy reward R̂ to true reward R as

dDKL(R, R̂) := Eξ1,ξ2∼D×D

[
DKL

(
PR

(
· | ξ1, ξ2

) ∥∥ PR̂

(
· | ξ1, ξ2

))]
Here, DKL

(
PR

(
· | ξ1, ξ2

) ∥∥ PR̂

(
· | ξ1, ξ2

))
is the Kullback-Leibler divergence of two binary distributions over values 1, 2.

Explicitly, for P := PR

(
· | ξ1, ξ2

)
and similarly P̂ , we have

DKL

(
P ∥ P̂

)
= P (1) log

P (1)

P̂ (1)
+
(
1− P (1)

)
log

1− P (1)

1− P̂ (1)

= −
[
P (1) log P̂ (1) +

(
1− P (1)

)
log
(
1− P̂ (1)

)]
−H

(
P (1)

)
.

(116)

Here, H(p) := −
[
p log p+ (1− p) log(1− p)

]
is the binary entropy function.

Fix in this whole section the true reward function R with max JR ̸= min JR in a fixed MDP.

The goal of this section is to prove the following proposition:

Proposition D.15. Let U ∈ (0, 1]. Then there exists an ϵ > 0 such that for all R̂ with

dDKL(R, R̂) < ϵ

and all π̂ ∈ Π∗(R̂) we have RegR (π̂) < U .

We prove this by chaining together four lemmas. The first of the four lemmas needs its own lemma, so we end up with five
lemmas overall:

Lemma D.16. Assume R, R̂ are two reward functions and π a policy. Then∣∣JR(π)− J R̂(π)
∣∣ ≤ max

ξ∈Ξ

∣∣G(ξ)− Ĝ(ξ)
∣∣.

Proof. We have ∣∣JR(π)− J R̂(π)
∣∣ = ∣∣D̃π ·

(
G− Ĝ

)∣∣
=

∣∣∣∣∣∑
ξ∈Ξ

D̃π(ξ) ·
(
G(ξ)− Ĝ(ξ)

)∣∣∣∣∣
≤
∑
ξ∈Ξ

D̃π(ξ) ·
∣∣G(ξ)− Ĝ(ξ)

∣∣
≤ max

ξ∈Ξ

∣∣G(ξ)− Ĝ(ξ)
∣∣ ·∑

ξ∈Ξ

D̃π(ξ)

= max
ξ∈Ξ

∣∣G(ξ)− Ĝ(ξ)
∣∣

In the last step, we used that distributions sum to one.

Lemma D.17. Let U ∈ (0, 1]. Then there exists σ(U) > 0 such that for all R̂ and π̂ ∈ Π∗(R̂) for which there exists c ∈ R
such that maxξ∈Ξ

∣∣Ĝ(ξ)−G(ξ)− c
∣∣ < σ(U), we have RegR (π̂) < U .

Concretely, we can set σ(U) := max JR−min JR

2 · U .

Proof. Set σ(U) as stated and let R̂, π̂ and c have the stated properties. The regret bound we want to show is equivalent to
the following statement:

JR(π̂) > max JR −
(
max JR −min JR

)
· U = max JR − 2σ(U). (117)
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Let c̃ be the constant such that Ĝ− c is the return function of R̂− c̃. Concretely, one can set c̃ = 1−γ
1−γT+1 · c. Lemma D.16

ensures that
JR(π̂) > J R̂−c̃(π̂)− σ(U). (118)

Now, let π be an optimal policy for R. Again, Lemma D.16 ensures

max JR = JR(π) < J R̂−c̃(π) + σ(U) ≤ J R̂−c̃(π̂) + σ(U). (119)

In the last step, we used that π̂ is optimal for R̂ and thus also R̂− c̃. Combining Equations (118) and (119), we obtain the
result, Equation (117).

Lemma D.18. For q ∈ (0, 1), define gq : (−q, 1− q)→ R by

gq(x) := log
q + x

1− (q + x)
.

Then for all σ > 0 there exists δ(q, σ) > 0 such that for all x ∈ (−q, 1−q) with |x| < δ(q, σ), we have |gq(x)−gq(0)| < σ.

Concretely, one can choose

δ(q, σ) :=
(
exp(σ)− 1

)
·min

{
1

1
q + exp(σ)

1−q

,
1

1
1−q + exp(σ)

q

}

Proof. If one does not care about the precise quantification, then the result is simply a reformulation of the continuity of gq
at the point x0 = 0.

Now we show more specifically that δ(q, σ), as defined above, has the desired property. Namely, notice the following
sequence of equivalences (followed by a one-sided implication) that holds whenever x ≥ 0:

∣∣gq(x)− gq(0)
∣∣ < σ ⇐⇒ log

(q + x) · (1− q)(
1− (q + x)

)
· q

< σ

⇐⇒ (q + x) · (1− q)(
1− (q + x)

)
· q

< exp(σ)

⇐⇒ (q + x) < (1− q − x) · q

1− q
· exp(σ)

⇐⇒
(
1 +

q

1− q
· exp(σ)

)
· x < q ·

(
exp(σ)− 1

)
⇐⇒ x <

exp(σ)− 1
1
q + exp(σ)

1−q

⇐= |x| < δ(q, σ).

In the first step, we used the monotonicity of gq to get rid of the absolute value. Similarly, whenever x ≤ 0, we have

∣∣gq(x)− gq(0)
∣∣ < σ ⇐⇒ x >

1− exp(σ)
1

1−q + exp(σ)
q

⇐= |x| < δ(q, σ).

This shows the result.

Lemma D.19. For q ∈ (0, 1), define fq : (0, 1)→ R by

fq(p) := −
[
q log p+ (1− q) log(1− p)

]
.

Then for all δ > 0 there exists µ(δ) > 0 such that for all p ∈ (0, 1) with fq(p) < H(q) + µ(δ), we have |p − q| < δ.
Concretely, one can choose µ(δ) := 2δ2.
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Proof. Let δ > 0 and define µ(δ) := 2δ2. Assume that fq(p) < H(q) + µ(δ). By Pinker’s inequality, we have

2(p− q)2 ≤ q log
q

p
+ (1− q) · log 1− q

1− p

= −H(q) + fq(p)

< µ(δ)

= 2δ2.

Consequently, we have |p− q| < δ.

Lemma D.20. Define fq(p) as in Lemma D.19. Then for all µ > 0 there exists ϵ(µ) > 0 such that for all R̂ with
dDKL(R, R̂) < ϵ(µ), we have the following for all ξ1, ξ2 ∈ Ξ:

fPR(1|ξ1,ξ2)
(
PR̂(1 | ξ1, ξ2)

)
< H

(
PR(1 | ξ1, ξ2)

)
+ µ.

Concretely, we can set ϵ(µ) := µ ·minξ1,ξ2∈Ξ D(ξ1) ·D(ξ2)

Proof. We have the following for all ξ1, ξ2 ∈ Ξ:

µ ·min
ξ,ξ′

D(ξ) ·D(ξ) = ϵ(µ)

> dDKL(R, R̂)

= Eξ,ξ′∼D×D

[
DKL

(
PR

(
· | ξ, ξ′

) ∥∥ PR̂

(
· | ξ, ξ′

))]
≥
(
min
ξ,ξ′

D(ξ) ·D(ξ′)
)
·DKL

(
PR

(
· | ξ1, ξ2

) ∥∥ PR̂

(
· | ξ1, ξ2

))
Now, Equation (116) shows that

DKL

(
PR

(
· | ξ1, ξ2

) ∥∥ PR̂

(
· | ξ1, ξ2

))
= fPR(1|ξ1,ξ2)

(
PR̂(1 | ξ1, ξ2)

)
−H

(
PR(1 | ξ1, ξ2)

)
.

The result follows.

Corollary D.21. Let σ > 0. Then there exists ϵ := ϵ(σ) > 0 such that dDKL(R, R̂) < ϵ implies that there exists c ∈ R such
that

∥∥G− (Ĝ− c
)∥∥

∞ < σ.

Proof. Set
δ := min

ξ1,ξ2∈Ξ×Ξ
δ
(
PR(1 | ξ1, ξ2), σ

)
, µ := µ(δ), ϵ := ϵ(µ),

with the constants satisfying the properties from Lemmas D.18, D.19, and D.20. Now, let R̂ be such that dDKL(R, R̂) < ϵ.

First of all, Lemma D.20 ensures that

fPR(1|ξ1,ξ2)
(
PR̂(1 | ξ1, ξ2)

)
< H

(
PR(1 | ξ1, ξ2)

)
+ µ

for all ξ1, ξ2 ∈ Ξ. Then Lemma D.19 shows that∣∣PR̂(1 | ξ1, ξ2)− PR(1 | ξ1, ξ2)
∣∣ < δ

for all ξ1, ξ2 ∈ Ξ. From Lemma D.18, we obtain that∣∣∣∣gPR(1|ξ1,ξ2)

(
PR̂

(
1 | ξ1, ξ2

)
− PR

(
1 | ξ1, ξ2

))
− gPR(1|ξ1,ξ2)(0)

∣∣∣∣ < σ (120)

for all ξ1, ξ2 ∈ Ξ. Now, note that

gPR(1|ξ1,ξ2)

(
PR̂

(
1 | ξ1, ξ2

)
− PR

(
1 | ξ1, ξ2

))
= gPR̂(1|ξ1,ξ2)(0).
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Furthermore, for R′ ∈ {R, R̂}, Equation (115) leads to the following computation:

gPR′ (1|ξ1,ξ2)(0) = log
PR′(1 | ξ1, ξ2)
PR′(2 | ξ1, ξ2)

= log
exp

(
G′(ξ1)

)
exp

(
G′(ξ2)

)
= G′(ξ1)−G′(ξ2).

Therefore, Equation (120) results in∣∣∣(Ĝ(ξ1)−G(ξ1)
)
−
(
Ĝ(ξ2)−G(ξ2)

)∣∣∣ = ∣∣∣(Ĝ(ξ1)− Ĝ(ξ2)
)
−
(
G(ξ1)−G(ξ2)

)∣∣∣ < σ

for all ξ1, ξ2 ∈ Ξ. Now, let ξ∗ ∈ Ξ be any reference trajectory. Define c := Ĝ(ξ∗)−G(ξ∗). Then the preceding equation
shows that ∣∣Ĝ(ξ)−G(ξ)− c

∣∣ < σ

for all ξ ∈ Ξ. That shows the claim.

Proof of Proposition D.15. We prove Proposition D.15 by chaining together the constants from the preceding results. We
have U ∈ (0, 1] given. Then, set σ := σ(U) and ϵ := ϵ(σ) as in Lemma D.17 and Corollary D.21. Now, let R̂ be such that
dDKL(R, R̂) < ϵ and let π̂ ∈ Π∗(R̂). Our goal is to show that RegR (π̂) < U .

By Corollary D.21, there is c > 0 such that maxξ∈Ξ

∣∣Ĝ(ξ) − G(ξ) − c
∣∣ < σ. Consequently, Lemma D.17 ensures that

RegR (π̂) < U . This was to show.

D.4. Positive result for regularized RLHF

Here, we present simple positive results for regularized RLHF, both in a version with the expected reward distance, and in a
version using the distance in choice probabilities. Some of it will directly draw from the positive results proved before.

Theorem D.22. Let λ ∈ (0,∞) be given and fixed. Assume we are given an MDP ⟨S,A, τ, µ0, R, γ⟩, and a data distribution
D ∈ S×A which assigns positive probability to all transitions, i.e., ∀(s, a) ∈ S×A, D(s, a) > 0. Let ω : Π → R be
a continuous regularization function that has a reference policy πref as one of its minima.6 Assume that πref is not
(λ, ω)-optimal for R and let L = RegR (πref). Then there exists ϵ > 0 such that D ∈ safe(R, ϵ, L, λ, ω).

Proof. We prove the theorem by showing that for every D ∈ ∆(S×A) such that D(s, a) > 0 for all (s, a) ∈ S×A, there
exists ϵ > 0 such that for all R̂ with E(s,a)∼D

[
|R̂(s,a)−R(s,a)|

range R

]
< ϵ and all policies π̂ that are (λ, ω)-RLHF optimal wrt. R̂,

we have RegR (π̂) < RegR (πref). Because L = RegR (π̂) < RegR (πref) this proves that then D ∈ safe(R, ϵ, L, λ, ω).

The proof is an application of Berge’s maximum Theorem, Theorem D.3. Namely, define the function

f : R×Π→ R, f(R, π) := JR(π)− λω(π).

Furthermore, define the correspondence C : R⇒ Π as the trivial map C(R) = Π. Let f∗ : R → R map a reward function
to the value of a (λ, ω)-RLHF optimal policy, i.e., f∗(R) := maxπ∈Π f(R, π). Define C∗ as the corresponding argmax,
i.e., C∗(R) :=

{
π | f(R, π) = f∗(R)

}
. Assume on R we have the standard Euclidean topology. Since ω is assumed

continuous and by Proposition D.4 also J is continuous, it follows that f is continuous. Thus, Theorem D.3 implies that C∗

is upper hemicontinuous, see Definition D.2. The rest of the proof is simply an elaboration of why upper hemicontinuity of
C∗ gives the result.

Now, define the set
V :=

{
π′ ∈ Π | RegR (π′) < RegR (πref)

}
.

6E.g., if πref(a | s) > 0 for all (s, a) ∈ S×A and ω(π) := DKL (π||πref), then the minimum is given by πref .
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Since the regret is a continuous function, this set is open. Now, let π ∈ C∗(R) be (λ, ω)-RLHF optimal with respect to R.
It follows

JR(π) = f(R, π) + λω(π)

> f(R, πref) + λω(πref)

= JR(πref),

where we used the optimality of π for f , that πref is not optimal for it, and that πref is the minimum of ω. So overall, this
shows C∗(R) ⊆ V .

Since C∗ is upper hemicontinuous, this means there exists an open set U ⊆ R with R ∈ U and such that for all R̂ ∈ U , we
have C∗(R̂) ⊆ V . Let ϵ > 0 be so small that all reward functions R̂ with E(s,a)∼D

[
|R̂(s,a)−R(s,a)|

range R

]
< ϵ satisfy R̂ ∈ U —

which exists since U is open in the Euclidean topology. Then for all such R̂ and any policy π̂ that is (λ, ω)-RLHF optimal
wrt. R̂, we by definition have

π̂ ∈ C∗(R̂) ⊆ V,

and thus, by definition of V , the desired regret property. This was to show.

Now, we show the same result, but with the choice distance instead of expected reward distance:

Theorem D.23. Let λ ∈ (0,∞) be given and fixed. Assume we are given an MDP ⟨S,A, τ, µ0, R, γ⟩, and a data
distribution D ∈ S×A which assigns positive probability to all transitions, i.e., ∀(s, a) ∈ S×A, D(s, a) > 0. Let
ω : Π→ R be a continuous regularization function that has a reference policy πref as one of its minima. Assume that πref is
not (λ, ω)-optimal for R and let L = RegR (πref). Then there exists ϵ > 0 such that D ∈ safeDKL

(
R, ϵ, L, λ, ω

)
.

Proof. Let G := RΞ be the vector space of return functions, which becomes a topological space when equipped with the
infinity norm. Define the function

f : G ×Π→ R, f(G, π) := JG(π)− λω(π),

where JG(π) := Eξ∼π [G(ξ)] is the policy evaluation function of the return function G. f is continuous. Define the
correspondence C : G ⇒ Π as the trivial map C(G) = Π. Let f∗ : G → R map a return function to the value of a
(λ, ω)-optimal policy, i.e., f∗(G) := maxπ∈Π f(G, π). Define C∗ as the corresponding argmax. Then Theorem D.3 implies
that C∗ is upper hemicontinuous, see Definition D.2. As in the previous proof, the rest is an elaboration of why this gives
the desired result.

Set G as the return function corresponding to R. Define

V :=
{
π′ ∈ Π | RegR (π′) < L

}
.

We now claim that C∗(G) ⊆ V . Indeed, let π ∈ C∗(G). Then

JR(π) = f(G, π) + λω(π)

> f(G, πref) + λω(πref)

= JR(πref).

Note that we used the optimality of π for f , that πref is not optimal for it, and also that πref minimizes ω by assumption.
This shows RegR (π) < RegR (πref) = L, and thus the claim.

Since C∗ is upper hemicontinuous and V an open set, this implies that there exists σ > 0 such that for all Ĝ ∈ G with∥∥G− Ĝ
∥∥
∞ < σ, we have C∗(Ĝ) ⊆ V .

Now, define ϵ := ϵ(σ) as in Corollary D.21 and let R̂ be any reward function with dDKL(R, R̂) < ϵ. Then by that corollary,
there exists c ∈ R such that

∥∥G− (Ĝ− c
)∥∥

∞ < σ. Consequently, we have C∗(Ĝ) = C∗(Ĝ− c) ⊆ V by what we showed
before, which shows the result.
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