
Under review as a conference paper at ICLR 2018

NETWORK OF GRAPH CONVOLUTIONAL NETWORKS
TRAINED ON RANDOM WALKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph Convolutional Networks (GCNs) are a recently proposed architecture
which has had success in semi-supervised learning on graph-structured data. At
the same time, unsupervised learning of graph embeddings has benefited from
the information contained in random walks. In this paper we propose a model,
Network of GCNs (N-GCN), which marries these two lines of work. At its core,
N-GCN trains multiple instances of GCNs over node pairs discovered at different
distances in random walks, and learns a combination of the instance outputs which
optimizes the classification objective. Our experiments show that our proposed N-
GCN model achieves state-of-the-art performance on all of the challenging node
classification tasks we consider: Cora, Citeseer, Pubmed, and PPI. In addition,
our proposed method has other desirable properties, including generalization to
recently proposed semi-supervised learning methods such as GraphSAGE, allow-
ing us to propose N-SAGE, and resilience to adversarial input perturbations.

1 INTRODUCTION

Semi-supervised learning on graphs is important in many real-world applications, where the goal is
to recover labels for all nodes given only a fraction of labeled ones. Some applications include social
networks, where one wishes to predict user interests, or in health care, where one wishes to predict
whether a patient should be screened for cancer. In many such cases, collecting node labels can be
prohibitive. However, edges between nodes can be easier to obtain, either using an explicit graph
(e.g. social network) or implicitly by calculating pairwise similarities (e.g. using a patient-patient
similarity kernel, Merdan et al., 2017).

Convolutional Neural Networks (LeCun et al., 1998) learn location-invariant hierarchical filters,
enabling significant improvements on Computer Vision tasks (Krizhevsky et al., 2012; Szegedy
et al., 2015; He et al., 2016). This success has motivated researchers (Bruna et al., 2014) to extend
convolutions from spatial (i.e. regular lattice) domains to graph-structured (i.e. irregular) domains,
yielding a class of algorithms known as Graph Convolutional Networks (GCNs).

Formally, we are interested in semi-supervised learning where we are given a graph G = (V, E)
with N = |V| nodes; adjacency matrix A; and matrix X ∈ RN×F of node features. Labels for
only a subset of nodes VL ⊂ V observed. In general, |VL| � |V|. Our goal is to recover labels for
all unlabeled nodes VU = V − VL, using the feature matrix X , the known labels for nodes in VL,
and the graph G. In this setting, one treats the graph as the “unsupervised” and labels of VL as the
“supervised” portions of the data.

Depicted in Figure 1, our model for semi-supervised node classification builds on the GCN mod-
ule proposed by Kipf & Welling (2017), which operates on the normalized adjacency matrix Â,
as in GCN(Â), where Â = D−

1
2AD−

1
2 , and D is diagonal matrix of node degrees. Our pro-

posed extension of GCNs is inspired by the recent advancements in random walk based graph
embeddings (e.g. Perozzi et al., 2014; Grover & Leskovec, 2016; Abu-El-Haija et al., 2017). We
make a Network of GCN modules (N-GCN), feeding each module a different power of Â, as in
{GCN(Â0),GCN(Â1),GCN(Â2), . . . }. The k-th power contains statistics from the k-th step of a
random walk on the graph. Therefore, our N-GCN model is able to combine information from var-
ious step-sizes. We then combine the output of all GCN modules into a classification sub-network,
and we jointly train all GCN modules and the classification sub-network on the upstream objective,

1

Under review as a conference paper at ICLR 2018

I

X

Â

GCN

•

GCN

×

•

GCN

×

•

. . .

. . .

. . .GCNGCN GCNGCN GCNGCN GCN

×

•

GCNGCN

. . .N

C0 C1 C2 CK−1

r

concatenate

N

∑K−1
k=0 rCk

fully-connected

N

C

(a) NGCN Architecture
(b) t-SNE visualization of fully-connected (fc) hid-
den layer of NGCN when trained over Cora graph.

Figure 1: Left: Model architecture, where Â is the normalized normalized adjacency matrix, I is the
identity matrix, X is node features matrix, and × is matrix-matrix multiply operator. We calculate
K powers of the Â, feeding each power into r GCNs, along with X . The output of all K × r GCNs
can be concatenated along the column dimension, then fed into fully-connected layers, outputting
C channels per node, where C is size of label space. We calculate cross entropy error, between
rows prediction N ×C with known labels, and use them to update parameters of classification sub-
network and all GCNs. Right: pre-relu activations after the first fully-connected layer of a 2-layer
classification sub-network. Activations are PCA-ed to 50 dimensions then visualized using t-SNE.

semi-supervised node classification. Weights of the classification sub-network give us insight on
how the N-GCN model works. For instance, in the presence of input perturbations, we observe that
the classification sub-network weights shift towards GCN modules utilizing higher powers of the
adjacency matrix, effectively widening the “receptive field” of the (spectral) convolutional filters.
We achieve state-of-the-art on several semi-supervised graph learning tasks, showing that explicit
random walks enhance the representational power of vanilla GCN’s.

The rest of this paper is organized as follows. Section 2 reviews background work that provides the
foundation for this paper. In Section 3, we describe our proposed method, followed by experimental
evaluation in Section 4. We compare our work with recent closely-related methods in Section 5.
Finally, we conclude with our contributions and future work in Section 6.

2 BACKGROUND

2.1 SEMI-SUPERVISED NODE CLASSIFICATION

Traditional label propagation algorithms (Weston et al., 2012; Belkin et al., 2006a) learn a model
that transforms node features into node labels and uses the graph to add a regularizer term:

Llabel.propagation = Lclassification + Lreg = Lclassification + λf(X)T∆f(X), (1)

where f : RN×d0 → RN×C is the model, ∆ is the graph Laplacian, and λ ∈ R is the regularization
coefficient hyperparameter.

2.2 GRAPH CONVOLUTIONAL NETWORKS

Graph Convolution (Bruna et al., 2014) generalizes convolution from Euclidean domains to graph-
structured data. Convolving a “filter” over a signal on graph nodes can be calculated by transforming
both the filter and the signal to the Fourier domain, multiplying them, and then transforming the
result back into the discrete domain. The signal transform is achieved by multiplying with the
eigenvectors of the graph Laplacian. The transformation requires a quadratic eigendecomposition of
the symmetric Laplacian; however, the low-rank approximation of the eigendecomposition can be
calculated using truncated Chebyshev polynomials (Hammond et al., 2011). For instance, Kipf &

2

Under review as a conference paper at ICLR 2018

Welling (2017) calculates a rank-1 approximation of the decomposition. They propose a multi-layer
Graph Convolutional Networks (GCNs) for semi-supervised graph learning. Every layer computes
the transformation:

H(l+1) = σ
(
ÂH(l)W (l)

)
, (2)

where H(l) ∈ RN×dl is the input activation matrix to the l-th hidden layer with row H
(l)
i contain-

ing a dl-dimensional feature vector for vertex i ∈ V , and W (l) ∈ Rdl×dl+1 is the layer’s trainable
weights. The first hidden layer H(0) is set to the input features X . A softmax on the last layer is
used to classify labels. All layers use the same “normalized adjacency” Â, obtained by the “renor-
malization trick” utilized by Kipf & Welling (2017), as Â = D−

1
2AD−

1
2 .1

Eq. (2) is a first order approximation of convolving filter W (l) over signal H(l) (Hammond et al.,
2011; Kipf & Welling, 2017). The left-multiplication with Â averages node features with their
direct neighbors; this signal is then passed through a non-linearity function σ(·) (e.g, ReLU(z) =
max(0, z)). Successive layers effectively diffuse signals from nodes to neighbors.

Two-layer GCN model can be defined in terms of vertex features X and normalized adjacency Â as:

GCN2-layer(Â,X; θ) = softmax
(
Âσ(ÂXW (0))W (1)

)
, (3)

where the GCN parameters θ =
{
W (0),W (1)

}
are trained to minimize the cross-entropy error over

labeled examples. The output of the GCN model is a matrix RN×C , whereN is the number of nodes
and C is the number of labels. Each row contains the label scores for one node, assuming there are
C classes.

2.3 GRAPH EMBEDDINGS

Node Embedding methods represent graph nodes in a continuous vector space. They learn a dic-
tionary Z ∈ RN×d, with one d-dimensional embedding per node. Traditional methods use the
adjacency matrix to learn embeddings. For example, Eigenmaps (Belkin & Niyogi, 2003) calculates
the following constrained optimization:∑

i,j

||Aij(Zi − ZJ)|| s.t. ZTDZ = I, (4)

where I is identity vector. Skipgram models on text corpora (Mikolov et al., 2013) inspired modern
graph embedding methods, which simulate random walks to learn node embeddings (Perozzi et al.,
2014; Grover & Leskovec, 2016). Each random walk generates a sequence of nodes. Sequences are
converted to textual paragraphs, and are passed to a word2vec-style embedding learning algorithm
(Mikolov et al., 2013). As shown in Abu-El-Haija et al. (2017), this learning-by-simulation is equiv-
alent, in expectation, to the decomposition of a random walk co-occurrence statistics matrix D. The
expectation on D can be written as:

E[D] ∝ Eq∼Q [(T)
q
] = Eq∼Q

[(
D−1A

)q]
, (5)

where T = D−1A is the row-normalized transition matrix (a.k.a right-stochastic adjacency matrix),
and Q is a “context distribution” that is determined by random walk hyperparameters, such as the
length of the random walk. The expectation therefore weights the importance of one node on another
as a function of how well-connected they are, and the distance between them. The main difference
between traditional node embedding methods and random walk methods is the optimization criteria:
the former minimizes a loss on representing the adjacency matrix A (see Eq. 4), while the latter
minimizes a loss on representing random walk co-occurrence statistics D.

3 OUR METHOD

3.1 MOTIVATION

Graph Convolutional Networks and random walk graph embeddings are individually powerful. Kipf
& Welling (2017) uses GCNs for semi-supervised node classification. Instead of following tradi-

1with added self-connections added as Aii = 1, similar to Kipf & Welling (2017)

3

Under review as a conference paper at ICLR 2018

tional methods that use the graph for regularization (e.g. Eq. 4), Kipf & Welling (2017) use the
adjacency matrix for training and inference, effectively diffusing information across edges at all
GCN layers (see Eq. 6). Separately, recent work has showed that random walk statistics can be very
powerful for learning an unsupervised representation of nodes that can preserve the structure of the
graph (Perozzi et al., 2014; Grover & Leskovec, 2016; Abu-El-Haija et al., 2017).

Under special conditions, it is possible for the GCN model to learn random walks. In particular,
consider a two-layer GCN defined in Eq. 6 with the assumption that first-layer activation is identity
as σ(z) = z, and weight W (0) is an identity matrix (either explicitly set or learned to satisfy the
upstream objective). Under these two identity conditions, the model reduces to:

GCN2-layer-special(Â,X) = softmax
(
ÂÂXW (1)

)
= softmax

(
Â2XW (1)

)
, (6)

where Â2 can be expanded as:

Â2 =
(
D−

1
2AD−

1
2

)(
D−

1
2AD−

1
2

)
= D−

1
2A
[
D−1A

]
D−

1
2 = D−

1
2AT D− 1

2 . (7)

By multiplying the adjacency A with the transition matrix T before normalization, the GCN is
effectively doing a one-step random walk.

3.2 EXPLICIT RANDOM WALKS

The special conditions described above are not true in practice. Although stacking hidden GCN
layers allows information to flow through graph edges, this flow is indirect as the information
goes through feature reduction (matrix multiplication) and a non-linearity (activation function σ(·)).
Therefore, the vanilla GCN cannot directly learn high powers of Â, and could struggle with mod-
eling information across distant nodes. We hypothesize that making the GCN directly operate on
random walk statistics will allow the network to better utilize information across distant nodes, in
the same way that node embedding methods (e.g. DeepWalk, Perozzi et al. (2014)) operating on
D are superior to traditional embedding methods operating on the adjacency matrix (e.g. Eigen-
maps, Belkin & Niyogi (2003)). Therefore, in addition to feeding only Â to the GCN model as
proposed by Kipf & Welling (2017) (see Eq. 6), we propose to feed a K-degree polynomial of Â to
K instantiations of GCN. Generalizing Eq. (7) gives:

Âk = D−
1
2AT k−1D− 1

2 . (8)

We also define Â0 to be the identity matrix. Similar to Kipf & Welling (2017), we add self-
connections and convert directed graphs to undirected ones, making Â and hence Âk symmetric
matrices. The eigendecomposition of symmetric matrices is real. Therefore, the low-rank approx-
imation of the eigendecomposition Hammond et al. (2011) is still valid, and a one layer of Kipf &
Welling (2017) utilizing Âk should still approximate multiplication in the Fourier domain.

3.3 NETWORK OF GCNS

Consider K instantiations of {GCN(Â0, X),GCN(Â1, X), . . . ,GCN(ÂK−1, X)}. Each GCN
outputs a matrix RN×Ck , where the v-th row describes a latent representation of that particular
GCN for node v ∈ V , and where Ck is the latent dimensionality. Though Ck can be different
for each GCN, we set all Ck to be the same for simplicity. We then combine the output of all K
GCN and feed them into a classification sub-network, allowing us to jointly train all GCNs and the
classification sub-network via backpropagation. This should allow the classification sub-network to
choose features from the various GCNs, effectively allowing the overall model to learn a combina-
tion of features using the raw (normalized) adjacency, different steps of random walks, and the input
features X (as they are multiplied by identity Â0).

3.3.1 FULLY-CONNECTED CLASSIFICATION NETWORK

From a deep learning prospective, it is intuitive to represent the classification network as a fully-
connected layer. We can concatenate the output of the K GCNs along the column dimension, i.e.
concatenating all GCN(X, Âk), each ∈ RN×Ck into matrix ∈ RN×CK where CK =

∑
k Ck.

4

Under review as a conference paper at ICLR 2018

We add a fully-connected layer ffc : RN×CK → RN×C , with trainable parameter matrix Wfc ∈
RCK×C , written as:

N-GCNfc(Â, A;Wfc, θ) = softmax
([

GCN(Â0, X; θ(0)) GCN(Â1, X; θ(1)) . . .
]
Wfc
)
. (9)

The classifier parametersWfc are jointly trained with GCN parameters θ = {θ(0), θ(1), . . . }. We use
subscript fc on N-GCN to indicate the classification network is a fully-connected layer.

3.3.2 ATTENTION CLASSIFICATION NETWORK

We also propose a classification network based on “softmax attention”, which learns a convex
combination of the GCN instantiations. Our attention model (N-GCNa) is parametrized by vector
m̃ ∈ RK , one scalar for each GCN. It can be written as:

N-GCNa(Â,X;m, θ) =
∑
k

mkGCN(Âk, X; θ(k)) (10)

where m is output of a softmax: m = softmax(m̃).

This softmax attention is similar to “Mixture of Experts” model, especially if we set the number of
output channels for all GCNs equal to the number of classes, as in C0 = C1 = · · · = C. This
allows us to add cross entropy loss terms on all GCN outputs in addition to the loss applied at the
output NGCN, forcing all GCN’s to be independently useful. It is possible to set the m ∈ RK
parameter vector “by hand” using the validation split, especially for reasonable K such as K ≤ 6.
One possible choice might be setting m0 to some small value and remaining m1, . . . ,mK−1 to the
harmonic series 1

k ; another choice may be linear decay K−k
K−1 . These are respectively similar to the

context distributions of GloVe (Pennington et al., 2014) and word2vec (Mikolov et al., 2013; Levy
et al., 2015). We note that if on average a node’s information is captured by its direct or nearby
neighbors, then the output of GCNs consuming lower powers of Â should be weighted highly.

3.4 TRAINING

We minimize the cross entropy between our model output and the known training labels Y as:

min diag(VL)
[
Y ◦ log N-GCN(X, Â)

]
, (11)

where ◦ is Hadamard product, and diag(VL) denotes a diagonal matrix, with entry at (i, i) set to 1
if i ∈ VL and 0 otherwise. In addition, we can apply intermediate supervision for the NGCNa to
attempt make all GCN become independently useful, yielding minimization objective:

min
m,θ

diag(VL)

[
Y ◦ log N-GCNa(Â,X;m, θ) +

∑
k

Y ◦ log GCN(Âk, X; θ(k))

]
. (12)

3.5 GCN REPLICATION

To simplify notation, our N-GCN derivations (e.g. Eq. 9) assume that there is one GCN per Â
power. However, our implementation feeds every Â to r GCN modules, as shown in Fig. 1.

3.6 GENERALIZATION TO OTHER GRAPH MODELS

In addition to vanilla GCNs (e.g. Kipf & Welling, 2017), our derivation also applies to other graph
models including GraphSAGE (SAGE, Hamilton et al., 2017). Algorithm 1 shows a generalization
that allows us to make a network of arbitrary graph models (e.g. GCN, SAGE, or others). Algorithm
2 shows pseudo-code for the vanilla GCN. Finally, Algorithm 3 defines our full Network of GCN
model (N-GCN) by plugging Algorithm 2 into Algorithm 1. Similarly, we list the algorithms for
SAGE and Network of SAGE (N-SAGE) in the Appendix.

We can recover the original algorithms GCN (Kipf & Welling, 2017) and SAGE (Hamilton et al.,
2017), respectively, by using Algorithms 3 (N-GCN) and 5 (N-SAGE, listed in Appendix) with
r = 1, K = 1, identity CLASSIFIERFN, and modifying line 2 in Algorithm 1 to P ← Â. Moreover,
we can recover original DCNN (Atwood & Towsley, 2016) by calling Algorithm 3 with L = 1,
r = 1, modifying line 3 to Â ← D−1A, and keeping K > 1 as their proposed model operates on
the power series of the transition matrix i.e. unmodified random walks, like ours.

5

Under review as a conference paper at ICLR 2018

Algorithm 1 General Implementation: Network of Graph Models

Require: Â is a normalization of A
1: function NETWORK(GRAPHMODELFN, Â, X , L, r = 4, K = 6, CLASSIFIERFN=FCLAYER)
2: P ← I
3: GraphModels← []
4: for k = 1 to K do
5: for i = 1 to r do
6: GraphModels.append(GRAPHMODELFN(P,X,L))
7: P ← ÂP
8: return CLASSIFIERFN(GraphModels)

Algorithm 2 GCN (Kipf & Welling, 2017)

Require: Â is a normalization of A
1: function GCNMODEL(Â, X , L)
2: Z ← X
3: for i = 1 to L do
4: Z ← σ(ÂZW (i))

5: return Z

Algorithm 3 N-GCN

1: function NGCN(A, X , L = 2)
2: D ← diag(A1) . Sum rows
3: Â← D−1/2AD−1/2

4: return NETWORK(GCNMODEL, Â,X, L)

4 EXPERIMENTS

We follow the experimental setup by Kipf & Welling (2017) and Yang et al. (2016), including the
provided dataset splits (train, validation, test) produced by Yang et al. (2016).

4.1 DATASETS

We experiment on three citation graph datasets: Pubmed, Citeseer, Cora, and a biological graph:
Protein-Protein Interactions (PPI). We choose the aforementioned datasets because they are available
online and are used by our baselines. The citation datasets are prepared by Yang et al. (2016), and
the PPI dataset is prepared by Hamilton et al. (2017). Table 1 summarizes dataset statistics.

Each node in the citation datasets represents an article published in the corresponding journal. An
edge between two nodes represents a citation from one article to another, and a label represents the
subject of the article. Each dataset contains a binary Bag-of-Words (BoW) feature vector for each
node. The BoW are extracted from the article abstract. Therefore, the task is to predict the subject
of articles, given the BoW of their abstract and the citations to other (possibly labeled) articles.
Following Yang et al. (2016) and Kipf & Welling (2017), we use 20 nodes per class for training,
500 (overall) nodes for validation, and 1000 nodes for evaluation. We note that the validation set is
larger than training |VL| for these datasets!

The PPI graph, as processed and described by Hamilton et al. (2017), consists of 24 disjoint sub-
graphs, each corresponding to a different human tissue. 20 of those subgraphs are used for training,
2 for validation, and 2 for testing, as partitioned by Hamilton et al. (2017).

4.2 BASELINE METHODS

For the citation datasets, we copy baseline numbers from Kipf & Welling (2017). These include
label propagation (LP, Zhu et al. (2003)); semi-supervised embedding (SemiEmb, Weston et al.
(2012)); manifold regularization (ManiReg, Belkin et al. (2006b)); skip-gram graph embeddings
(DeepWalk Perozzi et al., 2014); Iterative Classification Algorithm (ICA, Lu & Getoor, 2003);
Planetoid (Yang et al., 2016); vanilla GCN (Kipf & Welling, 2017). For PPI, we copy baseline
numbers from (Hamilton et al., 2017), which include GraphSAGE with LSTM aggregation (SAGE-
LSTM) and GraphSAGE with pooling aggregation (SAGE). Further, for all datasets, we use our
implementation to run baselines DCNN (Atwood & Towsley, 2016), GCN (Kipf & Welling, 2017),

6

Under review as a conference paper at ICLR 2018

Dataset Type Nodes Edges Classes Features Labeled nodes
|V| |E| C F |VL|

Citeseer citaction 3,327 4,732 6 (single class) 3,703 120
Cora citaction 2,708 5,429 7 (single class) 1,433 140
Pubmed citaction 19,717 44,338 3 (single class) 500 60
PPI biological 56,944 818,716 121 (multi-class) 50 44,906

Table 1: Dataset used for experiments. For citation datasets, 20 training nodes per class are observed,
with |VL| = 20× C

Method Citeseer Cora Pubmed PPI
(a) ManiReg (Belkin et al., 2006b) 60.1 59.5 70.7 –
(b) SemiEmb (Weston et al., 2012) 59.6 59.0 71.1 –
(c) LP (Zhu et al., 2003) 45.3 68.0 63.0 –
(d) DeepWalk (Perozzi et al., 2014) 43.2 67.2 65.3 –
(e) ICA (Lu & Getoor, 2003) 69.1 75.1 73.9 –
(f) Planetoid (Yang et al., 2016) 64.7 75.7 77.2 –
(g) GCN (Kipf & Welling, 2017) 70.3 81.5 79.0 –
(h) SAGE-LSTM (Hamilton et al., 2017) – – – 61.2
(i) SAGE (Hamilton et al., 2017) – – – 60.0
(j) DCNN (our implementation) 71.1 81.3 79.3 44.0
(k) GCN (our implementation) 71.2 81.0 78.8 46.2
(l) SAGE (our implementation) 63.5 77.4 77.6 59.8

(m) N-GCN (ours) 72.2 83.0 79.5 46.8
(n) N-SAGE (ours) 71.0 81.8 79.4 65.0

Table 2: Node classification performance (% accuracy for the first three, citation datasets, and f1
micro-averaged for multiclass PPI), using data splits of Yang et al. (2016); Kipf & Welling (2017)
and Hamilton et al. (2017). We report the test accuracy corresponding to the run with the highest
validation accuracy. Results in rows (a) through (g) are copied from Kipf & Welling (2017), rows
(h) and (i) from (Hamilton et al., 2017), and (j) through (l) are generated using our code since we can
recover other algorithms as explained in Section 3.6. Rows (m) and (n) are our models. Entries with
“–” indicate that authors from whom we copied results did not run on those datasets. Nonetheless,
we run all datasets using our implementation of the most-competitive baselines.

and SAGE (with pooling aggregation, Hamilton et al., 2017), as these baselines can be recovered
as special cases of our algorithm, as explained in Section 3.6.

4.3 IMPLEMENTATION

We use TensorFlow(Abadi et al., 2015) to implement our methods, which we use to also measure
the performance of baselines GCN, SAGE, and DCNN. For our methods and baselines, all GCN and
SAGE modules that we train are 2 layers, where the first outputs 16 dimensions per node and the
second outputs the number of classes (dataset-dependent). DCNN baseline has one layer and outputs
16 dimensions per node, and its channels (one per transition matrix power) are concatenated into a
fully-connected layer that outputs the number of classes. We use 50% dropout and L2 regularization
of 10−5 for all of the aforementioned models.

4.4 NODE CLASSIFICATION ACCURACY

Table 2 shows node classification accuracy results. We run 20 different random initializations for
every model (baselines and ours), train using Adam optimizer (Ba & Kingma, 2015) with learning
rate of 0.01 for 600 steps, capturing the model parameters at peak validation accuracy to avoid
overfitting. For our models, we sweep our hyperparameters r, K, and choice of classification sub-
network ∈ {fc, a}. For baselines and our models, we choose the model with the highest accuracy on
validation set, and use it to record metrics on the test set in Table 2.

7

Under review as a conference paper at ICLR 2018

r
1

2
3

4
K

12345
69.2
69.4
69.6
69.8
70.0

(a) N-GCNfc on Citeseer

r
1

2
3

4
K

12345
71.1

71.2

71.3

71.4

71.5

(b) N-GCNa on Citeseer

r
1

2
3

4
K

12345
80.6
80.8
81.0
81.2
81.4
81.6
81.8

(c) N-GCNfc on Cora

r
1

2
3

4
K

12345

82.2
82.3
82.4
82.5
82.6
82.7
82.8

(d) N-GCNa on Cora

r
1

2
3

4
K

12345

76.5

77.0

77.5

78.0

78.5

(e) N-GCNfc on Pubmed

r
1

2
3

4
K

12345
78.2
78.4
78.6
78.8
79.0
79.2
79.4
79.6
79.8

(f) N-GCNa on Pubmed

Figure 2: Sensitivity Analysis. Model performance when varying random walk steps K and replica-
tion factor r. Best viewed with zoom. Overall, model performance increases with larger values ofK
and r. In addition, having random walk steps (larger K) boosts performance more than increasing
model capacity (larger r), as seen by the cross-section cuts on along the K-axis versus the r-axis.

Nodes per class 5 10 20 100
DCNN (our implementation) 63.0± 1.0 72.3± 0.4 79.2± 0.2 82.6± 0.3

GCN (our implementation) 64.6± 0.3 70.0± 3.7 79.1± 0.3 81.8± 0.3
SAGE (our implementation) 69.0± 1.4 72.0± 1.3 77.2± 0.5 80.7± 0.7

N-GCNa (ours) 65.1± 0.7 71.2± 1.1 79.7± 0.3 83.0± 0.4
N-GCNfc (ours) 65.0± 2.1 71.7± 0.7 79.7± 0.4 82.9± 0.3
N-SAGEa (ours) 66.9± 0.4 73.4± 0.7 79.0± 0.3 82.5± 0.2
N-SAGEfc (ours) 70.7± 0.4 74.1± 0.8 78.5± 1.0 81.8± 0.3

Table 3: Node classification accuracy (in %) for our largest dataset (Pubmed) as we vary size of
training data |V|C ∈ {5, 10, 20, 100}. We report mean and standard deviations on 10 runs. We
use a different random seed for every run (i.e. selecting different labeled nodes), but the same 10
random seeds across models. Convolution-based methods (e.g. SAGE) work well with few training
examples, but unmodified random walk methods (e.g. DCNN) work well with more training data.
Our methods combine convolution and random walks, making them work well in both conditions.

Table 2 shows that N-GCN outperforms GCN (Kipf & Welling, 2017) and N-SAGE improves on
SAGE for all datasets, showing that unmodified random walks indeed help in semi-supervised node
classification. Finally, our proposed models acheive state-of-the-art on all datasets.

4.5 SENSITIVITY ANALYSIS

We analyze the impact ofK and r on classification accuracy in Figure 2. We note that adding random
walks by specifically setting K > 1 improves model accuracy due to the additional information, not
due to increased model capacity. Contrast K = 1, r > 1 (i.e. mixture of GCNs, no random walks)
with K > 1, r = 1 (i.e. N-GCN on random walks): in both scenarios, the model has more capacity,
but the latter shows better performance. The same holds for SAGE, as shown in Appendix.

4.6 TOLERANCE TO FEATURE NOISE

We test our method under feature noise perturbations by removing node features at random. This is
practical, as article authors might forget to include relevant terms in the article abstract, and more
generally not all nodes will have the same amount of detailed information. Figure 3 shows that
when features are removed, methods utilizing unmodified random walks: N-GCN, N-SAGE, and
DCNN, outperform convolutional methods including GCN and SAGE. Moreover, the performance

8

Under review as a conference paper at ICLR 2018

10 30 50 70 90
% Features Removed

50

60

70

80

Ac
cu

ra
cy

 m
ea

n
±

st
d N-GCNfc N-GCNa N-SAGEfc DCNN GCN SAGE

Figure 3: Classification accuracy for the Cora dataset with 20 labeled nodes per class (|V| = 20×C),
but features removed at random, averaging 10 runs. We use a different random seed for every run
(i.e. removing different features per node), but the same 10 random seeds across models.

10 30 50 70 90
0.10

0.15

0.20

0.25

0.30

N-
GC

N a

m0 m1 m2 m3 m4 m5

Figure 4: Attention weights (m) for N-GCNa when trained with feature removal perturbation on the
Cora dataset. Removing features shifts the attention weights to the right, suggesting the model is
relying more on long range dependencies.

gap widens as we remove more features. This suggests that our methods can somewhat recover
removed features by directly pulling-in features from nearby and distant neighbors. We visualize
in Figure 4 the attention weights as a function of % features removed. With little feature removal,
there is some weight on Â0, and the attention weights for Â1, Â2, . . . follow some decay function.
Maliciously dropping features causes our model to shift its attention weights towards higher powers
of Â.

5 RELATED WORK

The field of graph learning algorithms is quickly evolving. We review work most similar to ours.

Defferrard et al. (2016) define graph convolutions as aK-degree polynomial of the Laplacian, where
the polynomial coefficients are learned. In their setup, the K-th degree Laplacian is a sparse square
matrix where entry at (i, j) will be zero if nodes i and j are more than K hops apart. Their sparsity
analysis also applies here. A minor difference is the adjacency normalization. We use Â whereas
they use the Laplacian defined as I − Â. Raising Â to power K will produce a square matrix with
entry (i, j) being the probability of random walker ending at node i after K steps from node j.
The major difference is the order of random walk versus non-linearity. In particular, their model
calculates learns a linear combination of K-degree polynomial and pass through classifier function
g, as in g(

∑
k qkÃ

k), while our (e.g. N-GCN) model calculates
∑
k qkg(Ãk), where Ã is Â in our

model and I − Â in theirs, and our g can be a GCN module. In fact, Defferrard et al. (2016) is also
similar to work by Abu-El-Haija et al. (2017), as they both learn polynomial coefficients to some
normalized adjacency matrix.

Atwood & Towsley (2016) propose DCNN, which calculates powers of the transition matrix and
keeps each power in a separate channel until the classification sub-network at the end. Their model
is therefore similar to our work in that it also falls under

∑
k qkg(Ãk). However, where their model

multiplies features with each power Ãk once, our model makes use of GCN’s (Kipf & Welling, 2017)
that multiply by Ãk at every GCN layer (see Eq. 2). Thus, DCNN model (Atwood & Towsley, 2016)
is a special case of ours, when GCN module contains only one layer, as explained in Section 3.6.

9

Under review as a conference paper at ICLR 2018

6 CONCLUSIONS AND FUTURE WORK

In this paper, we propose a meta-model that can run arbitrary Graph Convolution models, such as
GCN (Kipf & Welling, 2017) and SAGE (Hamilton et al., 2017), on the output of random walks.
Traditional Graph Convolution models operate on the normalized adjacency matrix. We make mul-
tiple instantiations of such models, feeding each instantiation a power of the adjacency matrix, and
then concatenating the output of all instances into a classification sub-network. Our model, Network
of GCNs (and similarly, Network of SAGE), is end-to-end trainable, and is able to directly learn in-
formation across near or distant neighbors. We inspect the distribution of parameter weights in our
classification sub-network, which reveal to us that our model is effectively able to circumvent ad-
versarial perturbations on the input by shifting weights towards model instances consuming higher
powers of the adjacency matrix. For future work, we plan to extend our methods to a stochastic
implementation and tackle other (larger) graph datasets.

REFERENCES

Martı́n Abadi, Ashish Agarwal, and TensorFlow Team. TensorFlow: Large-scale machine learning
on heterogeneous systems. 2015.

Sami Abu-El-Haija, Bryan Perozzi, Rami Al-Rfou, and Alex Alemi. Watch your step: Learning
graph embeddings through attention. In arxiv, 2017.

James Atwood and Don Towsley. Diffusion-convolutional neural networks. In Advances in Neural
Information Processing Systems (NIPS), 2016.

Jimmy Ba and Diederik Kingma. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015.

Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality reduction and data
representation. In Neural Computation, 2003.

Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. Manifold regularization: A geometric frame-
work for learning from labeled and unlabeled examples. In Journal of machine learning research
(JMLR), 2006a.

Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. Manifold regularization: A geometric frame-
work for learning from labeled and unlabeled examples. In Journal of machine learning research
(JMLR), 2006b.

J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. Spectral networks and locally connected networks
on graphs. In International Conference on Learning Representations, 2014.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks
on graphs with fast localized spectral filtering. In Advances in Neural Information Processing
Systems (NIPS), 2016.

A. Grover and J. Leskovec. node2vec: Scalable feature learning for networks. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016.

W. Hamilton, R. Ying, and J. Leskovec. Inductive representation learning on large graphs. In NIPS,
2017.

David K. Hammond, Pierre Vandergheynst, and R. Gribonval. Wavelets on graphs via spectral graph
theory. In Applied and Computational Harmonic Analysis, 2011.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

G. Hinton J. Ba, J. Kiros. Layer normalization. In arxiv 1607.06450, 2016.

T. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks. In
International Conference on Learning Representations, 2017.

10

Under review as a conference paper at ICLR 2018

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in Neural Information Processing Systems, 2012.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. In Proceedings of the IEEE, 1998.

Omer Levy, Yoav Goldberg, and Ido Dagan. Improving distributional similarity with lessons learned
from word embeddings. In Transactions of the Association for Computational Linguistics (TACL),
2015.

Qing Lu and Lise Getoor. Link-based classification. In International Conference on Machine Learn-
ing (ICML), 2003.

Selin Merdan, Christine L. Barnett, and Brian T. Denton. Data analytics for optimal detection of
metastatic prostate cancer. 2017.

T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean. Distributed representations of words
and phrases and their compositionality. In Advances in Neural Information Processing Systems,
2013.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors for word
representation. In Conference on Empirical Methods in Natural Language Processing, EMNLP,
2014.

B. Perozzi, R. Al-Rfou, and S. Skiena. Deepwalk: Online learning of social representations. In
Knowledge Discovery and Data Mining, 2014.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015.

Jason Weston, Frederic Ratle, Hossein Mobahi, and Ronan Collobert. Deeplearning via semi-
supervised embedding. In Neural Networks: Tricks of the Trade, pp. 639–655, 2012.

Z. Yang, W. Cohen, and R. Salakhutdinov. Revisiting semi-supervised learning with graph embed-
dings. In International Conference on Machine Learning (ICML), 2016.

Xiaojin Zhu, Zoubin Ghahramani, and John Lafferty. Semi-supervised learning using gaussian fields
and harmonic functions. In International Conference on Machine Learning (ICML), 2003.

11

Under review as a conference paper at ICLR 2018

7 APPENDIX

7.1 ALGORITHM FOR NETWORK OF SAGE

Algorithms 4 and 5, respectively, define SAGE Hamilton et al. (2017) and Network of SAGE (N-
SAGE). Algorithm 4 assumes mean-pool aggregation by Hamilton et al. (2017), which performs
on-par to their top performer max-pool aggregation. Further, Algorithm 4 operates in full-batch
while Hamilton et al. (2017) offer a stochastic implementation with edge sampling. Nonetheless,
their proposed stochastic implementation should be wrapped in a network, though we would need
a way to approximate (e.g. sample entries) from dense Âk as k increases. We leave this as future
work.

Algorithm 4 SAGE Model (Hamilton et al., 2017)

Require: Â is a normalization of A
1: function SAGEMODEL(Â, X , L)
2: Z ← X
3: for i = 1 to L do
4: Z ← σ(

[
Z ÂZ

]
W (i))

5: Z ← L2NORMALIZEROWS(Z)

6: return Z

Algorithm 5 N-SAGE

1: function NSAGE(A, X)
2: D ← diag(A1) . Sum rows
3: Â← D−1A
4: return NETWORK(SAGEMODEL, Â,X, 2)

Using SAGE with mean-pooling aggregation is very similar to a vanilla GCN model but with three
differences. First, the choice of adjacency normalization (D−1A versus D−

1
2AD−

1
2). Second,

the skip connections in line 4, which concatenates the features with the adjacency-multiplied (i.e.
diffused) features. We believe this is analogous in intuition of incorporating Â0 in our model, which
keeps the original features. Third, the use of node-wise L2 feature normalization at line 5, which
is equivalent to applying a layernorm transformation J. Ba (2016). Nonetheless, it is worth noting
Hamilton et al. (2017)’s formulation of SAGE is flexible to allow different aggregations, such as
max-pooling or LSTM, which further deviates SAGE from GCN.

7.2 SENSITIVITY ANALYSIS

Earlier, in Table 2, we showed the test performance corresponding to the model performing best on
the validation split. The number of labeled nodes are small, and such model selection is important to
avoid overfitting. For example, there can be up to 10% relative test accuracy difference when training
the same model architecture but with different random seed. In this section, we programatically
sweep hyperparameters r, K, choice of classification network (∈ {fc, a}), and whether or not we
enable Â0, for both N-GCN and N-SAGE models.

The settings when (K = 1, r = 1, and Â0 disabled), correspond to the vanilla base model. Further,
the settings when (K = 1, r > 1, and Â0 disabled), correspond to an ensemble of the base model.
These cases are outperformed when K > 1, showing that unmodified random walks indeed help
these convolutional methods perform better, by gathering information from nearby and distant nodes.

The automatically generated tables are shown below:

K = 1 K = 2 K = 3 K = 4 K = 5
r = 1 79.0± 0.163 79.5± 0.100 79.3± 0.372 79.4± 0.234 79.4± 0.337
r = 2 79.1± 0.283 79.3± 0.241 79.4± 0.134 79.4± 0.146 79.4± 0.160
r = 4 78.9± 0.181 79.4± 0.161 79.3± 0.163 79.5± 0.302 79.5± 0.227

Table 4: N-GCNa results on Citeseer dataset, with Â0 disabled. Top-left entry corresponds to vanilla
GCN. Left column corresponds to ensemble of GCN models.

12

Under review as a conference paper at ICLR 2018

K = 1 K = 2 K = 3 K = 4 K = 5
r = 1 78.1± 0.339 79.6± 0.293 79.8± 0.189 79.7± 0.170 79.6± 0.243
r = 2 77.3± 0.125 79.7± 0.171 79.6± 0.189 79.6± 0.138 79.9± 0.177
r = 4 77.3± 0.287 79.5± 0.396 79.5± 0.219 79.7± 0.149 79.9± 0.189

Table 5: N-GCNa results on Citeseer dataset, with Â0 enabled.

K = 1 K = 2 K = 3 K = 4 K = 5
r = 1 – 78.6± 0.723 78.7± 0.407 78.7± 0.530 78.0± 0.690
r = 2 78.5± 0.353 77.9± 0.234 78.5± 0.724 78.8± 0.562 79.1± 0.267
r = 4 78.4± 0.499 78.4± 0.716 78.9± 0.306 78.9± 0.385 79.0± 0.228

Table 6: N-GCNfc results on Citeseer dataset, with Â0 disabled. Left column corresponds to ensem-
ble of GCN models.

K = 1 K = 2 K = 3 K = 4 K = 5
r = 1 76.5± 1.490 78.2± 1.290 79.2± 1.061 78.5± 0.963 78.7± 1.384
r = 2 76.1± 1.118 77.1± 1.152 78.8± 1.479 79.4± 0.754 78.7± 0.612
r = 4 76.0± 0.770 77.2± 0.785 78.7± 0.716 78.7± 0.953 79.0± 0.313

Table 7: N-GCNfc results on Citeseer dataset, with Â0 enabled.

K = 1 K = 2 K = 3 K = 4 K = 5
r = 1 76.0± 1.239 77.0± 0.856 77.3± 0.682 77.4± 0.419 77.3± 0.979
r = 2 76.4± 1.219 77.6± 0.508 77.6± 0.414 77.7± 0.586 78.0± 0.250
r = 4 76.5± 0.863 77.3± 0.198 77.8± 0.525 77.9± 0.522 77.6± 0.393

Table 8: N-SAGEa results on Citeseer dataset, with Â0 disabled. Top-left entry corresponds to
vanilla SAGE. Left column corresponds to ensemble of SAGE models.

K = 1 K = 2 K = 3 K = 4 K = 5
r = 1 73.4± 1.264 76.1± 0.306 76.8± 0.647 76.6± 0.623 77.0± 0.340
r = 2 75.2± 0.597 76.0± 0.453 76.4± 0.241 77.2± 0.306 77.3± 0.869
r = 4 74.9± 0.530 76.8± 0.535 77.0± 0.289 77.5± 0.407 77.3± 0.318

Table 9: N-SAGEa results on Citeseer dataset, with Â0 enabled.

K = 1 K = 2 K = 3 K = 4 K = 5
r = 1 – 76.3± 1.545 76.7± 1.098 78.0± 1.427 77.3± 1.038
r = 2 76.6± 1.196 77.3± 1.309 77.8± 0.746 77.5± 0.836 77.5± 0.298
r = 4 76.5± 0.602 78.1± 1.239 77.6± 0.287 76.9± 0.472 77.7± 1.119

Table 10: N-SAGEfc results on Citeseer dataset, with Â0 disabled. Left column corresponds to
ensemble of SAGE models.

K = 1 K = 2 K = 3 K = 4 K = 5
r = 1 72.9± 0.972 75.9± 0.922 75.5± 0.499 76.6± 1.641 76.8± 0.589
r = 2 75.3± 0.879 76.1± 1.237 76.6± 0.579 76.4± 0.383 76.2± 0.626
r = 4 75.3± 1.730 76.4± 1.186 76.6± 0.576 76.8± 0.450 77.4± 0.712

Table 11: N-SAGEfc results on Citeseer dataset, with Â0 enabled.

K = 1 K = 2 K = 3 K = 4 K = 5
r = 1 79.0± 0.163 79.5± 0.100 79.3± 0.372 79.4± 0.234 79.4± 0.337
r = 2 79.1± 0.283 79.3± 0.241 79.4± 0.134 79.4± 0.146 79.4± 0.160
r = 4 78.9± 0.181 79.4± 0.161 79.3± 0.163 79.5± 0.302 79.5± 0.227

Table 12: N-GCNa results on Cora dataset, with Â0 disabled. Top-left entry corresponds to vanilla
GCN. Left column corresponds to ensemble of GCN models.

13

Under review as a conference paper at ICLR 2018

K = 1 K = 2 K = 3 K = 4 K = 5
r = 1 78.1± 0.339 79.6± 0.293 79.8± 0.189 79.7± 0.170 79.6± 0.243
r = 2 77.3± 0.125 79.7± 0.171 79.6± 0.189 79.6± 0.138 79.9± 0.177
r = 4 77.3± 0.287 79.5± 0.396 79.5± 0.219 79.7± 0.149 79.9± 0.189

Table 13: N-GCNa results on Cora dataset, with Â0 enabled.

K = 1 K = 2 K = 3 K = 4 K = 5
r = 1 – 78.6± 0.723 78.7± 0.407 78.7± 0.530 78.0± 0.690
r = 2 78.5± 0.353 77.9± 0.234 78.5± 0.724 78.8± 0.562 79.1± 0.267
r = 4 78.4± 0.499 78.4± 0.716 78.9± 0.306 78.9± 0.385 79.0± 0.228

Table 14: N-GCNfc results on Cora dataset, with Â0 disabled. Left column corresponds to ensemble
of GCN models.

K = 1 K = 2 K = 3 K = 4 K = 5
r = 1 76.5± 1.490 78.2± 1.290 79.2± 1.061 78.5± 0.963 78.7± 1.384
r = 2 76.1± 1.118 77.1± 1.152 78.8± 1.479 79.4± 0.754 78.7± 0.612
r = 4 76.0± 0.770 77.2± 0.785 78.7± 0.716 78.7± 0.953 79.0± 0.313

Table 15: N-GCNfc results on Cora dataset, with Â0 enabled.

K = 1 K = 2 K = 3 K = 4 K = 5
r = 1 76.0± 1.239 77.0± 0.856 77.3± 0.682 77.4± 0.419 77.3± 0.979
r = 2 76.4± 1.219 77.6± 0.508 77.6± 0.414 77.7± 0.586 78.0± 0.250
r = 4 76.5± 0.863 77.3± 0.198 77.8± 0.525 77.9± 0.522 77.6± 0.393

Table 16: N-SAGEa results on Cora dataset, with Â0 disabled. Top-left entry corresponds to vanilla
SAGE. Left column corresponds to ensemble of SAGE models.

K = 1 K = 2 K = 3 K = 4 K = 5
r = 1 73.4± 1.264 76.1± 0.306 76.8± 0.647 76.6± 0.623 77.0± 0.340
r = 2 75.2± 0.597 76.0± 0.453 76.4± 0.241 77.2± 0.306 77.3± 0.869
r = 4 74.9± 0.530 76.8± 0.535 77.0± 0.289 77.5± 0.407 77.3± 0.318

Table 17: N-SAGEa results on Cora dataset, with Â0 enabled.

K = 1 K = 2 K = 3 K = 4 K = 5
r = 1 – 76.3± 1.545 76.7± 1.098 78.0± 1.427 77.3± 1.038
r = 2 76.6± 1.196 77.3± 1.309 77.8± 0.746 77.5± 0.836 77.5± 0.298
r = 4 76.5± 0.602 78.1± 1.239 77.6± 0.287 76.9± 0.472 77.7± 1.119

Table 18: N-SAGEfc results on Cora dataset, with Â0 disabled. Left column corresponds to ensem-
ble of SAGE models.

K = 1 K = 2 K = 3 K = 4 K = 5
r = 1 72.9± 0.972 75.9± 0.922 75.5± 0.499 76.6± 1.641 76.8± 0.589
r = 2 75.3± 0.879 76.1± 1.237 76.6± 0.579 76.4± 0.383 76.2± 0.626
r = 4 75.3± 1.730 76.4± 1.186 76.6± 0.576 76.8± 0.450 77.4± 0.712

Table 19: N-SAGEfc results on Cora dataset, with Â0 enabled.

K = 1 K = 2 K = 3 K = 4 K = 5
r = 1 79.0± 0.163 79.5± 0.100 79.3± 0.372 79.4± 0.234 79.4± 0.337
r = 2 79.1± 0.283 79.3± 0.241 79.4± 0.134 79.4± 0.146 79.4± 0.160
r = 4 78.9± 0.181 79.4± 0.161 79.3± 0.163 79.5± 0.302 79.5± 0.227

Table 20: N-GCNa results on Pubmed dataset, with Â0 disabled. Top-left entry corresponds to
vanilla GCN. Left column corresponds to ensemble of GCN models.

14

Under review as a conference paper at ICLR 2018

K = 1 K = 2 K = 3 K = 4 K = 5
r = 1 78.1± 0.339 79.6± 0.293 79.8± 0.189 79.7± 0.170 79.6± 0.243
r = 2 77.3± 0.125 79.7± 0.171 79.6± 0.189 79.6± 0.138 79.9± 0.177
r = 4 77.3± 0.287 79.5± 0.396 79.5± 0.219 79.7± 0.149 79.9± 0.189

Table 21: N-GCNa results on Pubmed dataset, with Â0 enabled.

K = 1 K = 2 K = 3 K = 4 K = 5
r = 1 – 78.6± 0.723 78.7± 0.407 78.7± 0.530 78.0± 0.690
r = 2 78.5± 0.353 77.9± 0.234 78.5± 0.724 78.8± 0.562 79.1± 0.267
r = 4 78.4± 0.499 78.4± 0.716 78.9± 0.306 78.9± 0.385 79.0± 0.228

Table 22: N-GCNfc results on Pubmed dataset, with Â0 disabled. Left column corresponds to
ensemble of GCN models.

K = 1 K = 2 K = 3 K = 4 K = 5
r = 1 76.5± 1.490 78.2± 1.290 79.2± 1.061 78.5± 0.963 78.7± 1.384
r = 2 76.1± 1.118 77.1± 1.152 78.8± 1.479 79.4± 0.754 78.7± 0.612
r = 4 76.0± 0.770 77.2± 0.785 78.7± 0.716 78.7± 0.953 79.0± 0.313

Table 23: N-GCNfc results on Pubmed dataset, with Â0 enabled.

K = 1 K = 2 K = 3 K = 4 K = 5
r = 1 76.0± 1.239 77.0± 0.856 77.3± 0.682 77.4± 0.419 77.3± 0.979
r = 2 76.4± 1.219 77.6± 0.508 77.6± 0.414 77.7± 0.586 78.0± 0.250
r = 4 76.5± 0.863 77.3± 0.198 77.8± 0.525 77.9± 0.522 77.6± 0.393

Table 24: N-SAGEa results on Pubmed dataset, with Â0 disabled. Top-left entry corresponds to
vanilla SAGE. Left column corresponds to ensemble of SAGE models.

K = 1 K = 2 K = 3 K = 4 K = 5
r = 1 73.4± 1.264 76.1± 0.306 76.8± 0.647 76.6± 0.623 77.0± 0.340
r = 2 75.2± 0.597 76.0± 0.453 76.4± 0.241 77.2± 0.306 77.3± 0.869
r = 4 74.9± 0.530 76.8± 0.535 77.0± 0.289 77.5± 0.407 77.3± 0.318

Table 25: N-SAGEa results on Pubmed dataset, with Â0 enabled.

K = 1 K = 2 K = 3 K = 4 K = 5
r = 1 – 76.3± 1.545 76.7± 1.098 78.0± 1.427 77.3± 1.038
r = 2 76.6± 1.196 77.3± 1.309 77.8± 0.746 77.5± 0.836 77.5± 0.298
r = 4 76.5± 0.602 78.1± 1.239 77.6± 0.287 76.9± 0.472 77.7± 1.119

Table 26: N-SAGEfc results on Pubmed dataset, with Â0 disabled. Left column corresponds to
ensemble of SAGE models.

K = 1 K = 2 K = 3 K = 4 K = 5
r = 1 72.9± 0.972 75.9± 0.922 75.5± 0.499 76.6± 1.641 76.8± 0.589
r = 2 75.3± 0.879 76.1± 1.237 76.6± 0.579 76.4± 0.383 76.2± 0.626
r = 4 75.3± 1.730 76.4± 1.186 76.6± 0.576 76.8± 0.450 77.4± 0.712

Table 27: N-SAGEfc results on Pubmed dataset, with Â0 enabled.

15

	Introduction
	Background
	Semi-Supervised Node Classification
	Graph Convolutional Networks
	Graph Embeddings

	Our Method
	Motivation
	Explicit Random Walks
	Network of GCNs
	Fully-Connected Classification Network
	Attention Classification Network

	Training
	GCN Replication
	Generalization to other Graph Models

	Experiments
	Datasets
	Baseline Methods
	Implementation
	Node Classification Accuracy
	Sensitivity Analysis
	Tolerance to feature noise

	Related Work
	Conclusions and Future Work
	Appendix
	Algorithm for Network of SAGE
	Sensitivity Analysis

