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ABSTRACT

Learning to communicate through interaction, rather than relying on explicit su-
pervision, is often considered a prerequisite for developing a general AI. We study
a setting where two agents engage in playing a referential game and, from scratch,
develop a communication protocol necessary to succeed in this game. We require
that messages they exchange, both at train and test time, are in the form of a
language (i.e. sequences of discrete symbols). As the ultimate goal is to ensure
that communication is accomplished in natural language, we perform preliminary
experiments where we inject prior information about natural language into our
model and study properties of the resulting protocol.

1 INTRODUCTION

With the rapid advances in machine learning in recent years, the goal of enabling intelligent agents to
communicate with each other and with humans is turning from a hot topic of philosophical debates
into a practical engineering problem. It is believed that supervised learning alone is not going to
provide a solution to this challenge (Mikolov et al., 2015). These, as well as other, considerations
have motivated previous research into set-ups where agents invent a communication protocol which
lets them succeed in a given collaborative task. For an extensive overview of earlier work in this
area, we refer the reader to Kirby (2002). We continue this line of research and specifically consider
a setting where the collaborative task is a game. Neural network models have been shown to be
able to successfully induce a communication protocol for this setting (Lazaridou et al., 2016; Jorge
et al., 2016; Foerster et al., 2016; Sukhbaatar et al., 2016). One important difference with these
previous approaches is that we assume that messages exchanged between the agents are variable-
length sequences of symbols rather than atomic categories (as in previous work). In our experiments,
we focus on a referential game. The setting of the game is slightly different from that of Lazaridou
et al. (2016). Its description can be found in the appendix 5.1.

2 MODEL

2.1 AGENTS’ ARCHITECTURES

The sender and the receiver are implemented as LSTM networks (Hochreiter & Schmidhuber,
1997). Figure 1 shows the sketch of model architecture, where diamond-shaped, dashed and solid ar-
rows represent sampling, copying and deterministic functions respectively. The inputs to the sender
are the target image t and the special token <S>, which denotes the start of a message. Given these
inputs, the sender generates next token wi in a sequence by sampling from the categorical distribu-
tion Cat(pti), where pti = softmax(Whsi + b). Here, hsi is the hidden state of sender’s LSTM and
can be calculated as hsi = LSTM(hsi−1, wi−1)

1. In the first time step we have hs0 = f(t), where f(t)
is an affine transformation of image features extracted from a convolutional neural network (CNN).
Message mt is obtained by sequentially sampling until the maximum possible length L is reached
or the special token <S> is generated.

1We omitted the cell state in the equation for brevity.
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Figure 1: Architectures of sender and receiver

The inputs to the receiver are the generated message mt and a set of images that contain the target
image t and distracting images {dk}Kk=1. Receiver interpretation of message is represented by the
last hidden state of the LSTM network hrl . The loss function for the whole system can be written as:

Lφ,θ(t) =
K∑
k=1

max[0, 1 + g(t)Thrl − g(dk)
Thrl ] (1)

Here g(·) is yet another affine transformation of image features extracted from the CNN. The energy
function g(·)Thrl can be used to define the probability distribution over a set of images. Communi-
cation between two agents is successful if the target image has the highest probability according to
this distribution.

2.2 STRAIGHT-THROUGH GUMBEL-SOFTMAX ESTIMATOR

Generating message mt requires sampling from categorical distributions over vocabulary, which
makes backpropagating the error through the message impossible. It is tempting to formulate this
game as a reinforcement learning problem. However, the number of possible messages2 is propor-
tional to |V |L. Therefore, it seems unlikely that such model can be learned with naı̈ve Monte Carlo
methods. Also, in this setup, the receiver Rθ would correspond to the non-stationary environment
in which sender Sφ acts, making the learning problem even more challenging. As a solution, we
consider replacement of one-hot encoded symbols w ∈ V with continuous relaxation w̃ obtained
from the Gumbel-softmax distribution (Jang et al., 2016; Maddison et al., 2016). As a result of this
relaxation the game becomes completely differentiable and can be trained using the backpropaga-
tion algorithm. Communicating with real values allows the sender to encode much more information
into a message comparing to using a discrete one and is unrealistic if our ultimate goal is commu-
nication in natural language. To prevent this behaviour, we discretize w̃ back with argmax in the
forward pass. Nevertheless, we use continuous relaxation in the backward pass, effectively assuming
∂L
∂w ≈

∂L
∂w̃ . This biased estimator is known as the straight-through Gumbel-softmax estimator (Jang

et al., 2016; Bengio et al., 2013). As a result of applying this trick, there is no difference in using
messages during training and testing stages, which contrasts with previous differentiable frameworks
for learning communication protocols (Foerster et al., 2016; Sukhbaatar et al., 2016).

3 EXPERIMENTS

3.1 TABULA RASA COMMUNICATION

We used the Microsoft COCO dataset (Chen et al., 2015) as a source of images. The MSCOCO
2014 validation set was used for evaluating the learned language. In our experiments images are
represented by outputs of the relu7 layer from the pretrained 16-layer VGG convolutional net-
work (Simonyan & Zisserman, 2014).

2In our experiments |V | = 10000 and L is up to 14.
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Table 1: Comparison of grounded protocol with natural language and artificial language.

Model Comm. success (%) Number of updates Omission score
With KL regularization 52.51 11600 0.258
Without regularization 95.65 27600 0.193
Imaginet 52.51 16100 0.287

Figure 2: The performance and properties of learned proto-
cols.

The model details can be found in ap-
pendix 5.2. Figure 2 shows the com-
munication success rate as a function
of the maximum message length L.
Interestingly, the number of updates
that are required to achieve training
convergence decreases when we let
the sender use longer messages. In
other words, using longer sequences
helps learn a communication protocol
faster. This behaviour is slightly sur-
prising as one could expect that it is
harder to learn the protocol when the
space of messages is larger. We also
plot the perplexity of the encoder, it
is relatively high and increasing with
sentence length. This implies redun-
dancy in the encodings: there ex-
ist multiple paraphrases that encode
the same semantic content. For addi-
tional qualitative analysis of the learned language we refer reader to appendix 5.3.

3.2 GROUNDING ARTIFICIAL LANGUAGE IN NATURAL LANGUAGE

As the ultimate goal is to ensure that communication is accomplished with a language that is un-
derstandable by humans, we should favour protocols which resemble, in some respects, a natu-
ral language. One possible solution is to use the Kullback-Leibler (KL) divergence regularization
DKL (qφ(m|t)‖pω(m)), from the estimated natural language model to the learned protocol. Details
regarding language model could be found in appendix 5.2. This regularization provides indirect
supervision by encouraging generated messages to have a high probability in natural language but
at the same time maintaining high entropy for the communication protocol.

To get an estimate of communication success when using natural language we trained receiver with
pairs of images and captions. This model is similar to Imaginet (Chrupała et al., 2015). Also,
inspired by their analysis, we report the omission score. The score quantifies the change in the
target image probability after removing the most important word in a sentence. Natural languages
have content words that name objects and encode their qualities. One can expect that a protocol
that distinguishes between content words and function words would have a higher omission score in
comparison to a protocol that distributes information evenly across tokens. As Table 1 shows, the
grounded language has the communication success rate similar to natural language. However, it has
a slightly lower omission score. The model without regularization has the lowest omission score
which probably means that symbols in the developed protocol have similar nature to characters or
syllables rather than words.

4 CONCLUSION

We have shown that agents, modeled using neural networks, can successfully invent a language that
consists of sequences of discrete tokens. Despite the common belief that it is hard to train such
models, we proposed an efficient learning strategy which relies on the straight-through Gumbel-
softmax estimator. We have performed basic analysis of the learned language and learning dynamics.
We have also conducted preliminary experiments with the grounding learned language in natural
language. Many open questions remain, so further investigation of this topic is needed.
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5 APPENDIX

5.1 REFERENTIAL GAME DESCRIPTION

1. There is a collection of images {in}Nn=1 from which target image t is sampled as well as K
distracting images {dk}Kk=1.

2. There are two agents: sender Sφ and receiver Rθ.
3. After seeing target image t, the sender has to come up with a message mt, which is rep-

resented by a sequence of symbols from the vocabulary V of a size |V |. The maximum
possible length of a sequence is L.

4. Given a message mt and a set of images, which consists of distracting images and a target
image, the goal of the receiver is to identify the target image correctly.
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5.2 MODEL SPECIFICATION

We set the following hyperparameters without tuning: embedding dimensionality is 256, the dimen-
sionality of LSTM layer is 512, vocabulary size is 10000, Gumbel-softmax distribution temperature
is 1.0, the number of distracting images is 127, batch size is 128. We used Adam (Kingma & Ba,
2014) as an optimizer, with default hyperparameters and a learning rate of 0.001. We implemented
language model pω(m) by using an LSTM recurrent neural network. Image captions of randomly
selected (50%) images from the training set were used to estimate parameters of the language model.
These images were not used for training the sender and the receiver.

5.3 QUALITATIVE ANALYSIS OF THE LEARNED LANGUAGE

To better understand the nature of the learned language, we inspected a small subset of sentences
that were produced by the model with maximum possible message length equal to 5. Figure 3
shows some samples from the MSCOCO 2014 validation set that correspond to (5747 * * *
*) code3. Images in this subset depict mainly animals. On the other hand, it seems that samples in
figure 4 do not correspond to any predefined category. This suggests that word order is crucial in the
developed language. Particularly, word 5747 on the first position encodes presence of an animal in
the image. Considering Figure 5, we can conclude that adding word 5490 on the second position
reduces possible options just to zebras, giraffes and sometimes horses. When we move token 5490
to the end of the message, we end up just with zebras in the images (Figure 6). Figure 7 shows
that message (5747 5747 7125 * *) corresponds to a particular type of bears. This suggests
that developed language implements some kind of hierarchical coding. This is interesting by itself
because the model was not constrained explicitly to use any hierarchical encoding scheme. Figures
8, 9, 10 show similar behaviour for images in a food domain.

Figure 3: Images that correspond to (5747 * * * *) code.

Figure 4: Images that correspond to (* * * 5747 *) code.

Figure 5: Images that correspond to (5747 5490 * * *) code.

3
* means any word from the vocabulary.
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Figure 6: Images that correspond to (5747 * * * 5490) code.

Figure 7: Images that correspond to (5747 5747 7125 * *) code.

Figure 8: Images that correspond to (5261 * * * *) code.

Figure 9: Images that correspond to (5261 2250 * * *) code.

Figure 10: Images that correspond to (5261 2250 5211 * *) code.

6


	Introduction
	Model
	Agents' architectures
	Straight-through Gumbel-softmax estimator

	Experiments
	Tabula rasa communication
	Grounding artificial language in natural language

	Conclusion
	Appendix
	Referential game description
	Model specification
	Qualitative analysis of the learned language


