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Abstract

MU0 is a deterministic computer that can store data in memory, manipulate it

using programs, enabling decision making. Neu0 is a neural computational core

modeled around the same principles. We create an ensemble of Neural Networks

capable of executing ARM code, and discuss generalizations of our framework.

We showcase the advantage of our technique by correctly executing malformed

instructions, and discuss e�cient memory management techniques.

1 Introduction

Recent trends such as the work done by Neelakantan et al. (2015), Reed & de Freitas (2015), Bunel

et al. (2016) explore the ability of MLPs to execute code. Each introduces an architectural trick, aug-

menting standard networks to allow for this functionality. Unlike previous works, we introduce a

general neural framework to execute code with novel memory management techniques like e�-

cient index based location addressing and caching. As noted byZaremba & Sutskever (2014), there

are considerable challenges in training MLPs to execute high level languages. We train our sys-

tem on the lower level ARM Instruction set; however, our system is language agnostic and can be

readily extended to other assembly level languages. Sophisticated instructions can be composed

from the primitives with which we augment our controller. Our architecture is a composition of

components, each component being an indeterministic equivalent of the Von Neumann architec-

ture. �is allows for interchangeability of components, such as replacing our AU with the Neural

GPU, Kaiser & Sutskever (2015). By supporting branch instructions, we allow for the execution

of non-trivial code. Furthermore, by training with random noise, we make our system robust to

mutilated instructions, allowing it to serve as a computational core to future applications, such as

Machine Translation from algorithms/pseudo-code to code, that might not yield perfect outputs.

Our contributions include Neu0
1
, a machine capable of executing ARM code. We argue for compo-

sitionality of components, as di�erent components require di�erent training procedures. Finally,

since ARM machines allow for random access of external memory based on indices, we describe a

novel and e�cient method of accessing memory that exploits integer based indexing. �ough not

required for our system, we introduce the concept of cache memory, and explain how it could be

used in a generalization of our system where content based addressing is used. To the best of our

knowledge, this is the �rst ensemble of Neural Networks that use e�cient index based location

addressing and execute ARM code.

2 Architecture

Figure 1 shows the high level architecture of our system.
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Data and code will be made available at https://github.com/Neu0/neu0
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Figure 1: High Level Architecture of Neu0 Figure 2: Controller of Neu0

2.1 Instruction Encoder

We transformed ARM instructions to vector embeddings by passing the text character by char-

acter to a deep many-to-one LSTM and storing the ultimate hidden layer activations.Zaremba &

Sutskever (2014) found that LSTMs are unable to accurately perform decimal multiplication, as was

found by us. Hence, following Bunel et al. (2016), the constants in the instruction were preloaded

into the registers prior to execution. �e forward pass steps are summarized below:

ht = fLSTM (ct, ht−1)

inst = finst(hT ) r0 = fr0(hT ) r1 = fr1(hT ) r2 = fr2(hT ) cond = fcond(hT )

where T, inst, r0, r1, r2, cond correspond to the �nal timestep of the LSTM, and the instruction,

registers, and condition probability distributions respectively.

2.2 Controller

�e controller is an LSTM that updates an environment representation. Figure 2 shows the archi-

tecture of the controller. �e controller performs two main tasks:

Step Generator: Similar to Neural Programmer-Interpreters by Reed & de Freitas (2015), each

higher level ARM instruction is broken down into a set of primitives. �e controller outputs a list

of instructions to be executed conditioned on the input instruction encoding. An example can be

seen in Figure 2, where we see the set of primitives corresponding to an ADD instruction.

Updating Environment: �e controller updates the program counter with the index of the next

instruction encoding to be read, allowing for branch instructions to be executed. �e environment

also has temporary memory locations, which the Arithmetic Unit reads from, and writes results to.

�e controller syncs these temporary locations with the register bank prior to and post execution.

2.3 Register Bank

�e reads and writes to the register bank happens as described in NTM by Graves et al. (2014).

However, we do not use an erase vector as ARM always overwrites the destination register.

2.4 Arithmetic Unit

We support three arithmetic operations {ADD,SUB,MUL}. As Neural Networks cannot directly

model multiplicative interactions of their inputs, we model multiplication as repeated addition. �e

Arithmetic unit consists of two components. �e �rst, an interface to the controller which converts

the input to a suitable form and retrieves the weighted result according to a con�dence score,

similar to the Neural Programmer by Neelakantan et al. (2015). �e second component performs

each operation. Gradient Descent performed unsatisfactorily, and model parameters were instead

obtained using the Normal Equation. Figure 3 shows the architecture of the Arithmetic Unit.

θ = (XTX)−1XT y and Result =
∑

i∈AU Ri · Ci
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Figure 3: Architecture of arithmetic unit Figure 4: Schematic of Memory

2.5 Memory and Instruction Bank

In ARM, memory is accessed by indexing. Conventionally, location based addressing is a special

case of content based addressing, as in DNTMs by Çaglar Gülçehre et al. (2016). With integers,

we use squared Euclidean distance as the similarity measure. However, as Rae et al. (2016) noted,

this scales poorly. We address this issue in two ways- �e �rst involves augmenting the memory

with a cache of size N: A memory controller accesses memory, with a so�max of size N+1, across

the location in cache and ‘N+1’ if not in cache. A ‘decay’ vector is maintained allowing for LRU to

be performed. Second- Since ARM deals with indices rather than m-dimensional address vectors,

we exploit this to create a more e�cient access mechanism. We plot a Gaussian with the index to

be read as the mean, accounting for decimal indices due to prior weighted operations. We train

an MLP to predict the standard deviation, �nding the bounds at which the Gaussian tends to zero.

�e PDF is evaluated at integers within the bounds, and a so�max with temperature is evaluated

over these to create an a�ention vector used for reads and writes. Generalizations might include

learning a GMM coupled with Active Memory as described by Kaiser & Bengio (2016) allowing

for concurrent memory accesses. Figure 4 gives an example of when 4.1 is the index to be read,

as emi�ed by the controller. Controller updates PC with index of next instruction to be executed,

and the instruction encoding is read using a Gaussian with mean as the contents of the PC

3 Results

Figure 5 demonstrates the robustness of our system in executing malformed ARM code. �e con-

tents of registers and relevant memory locations before and a�er execution of bubble sort are

shown. Stack trace and more examples are available at https://neu0.github.io.

Figure 5: Bubble Sort

Figure 6: Contents of registers before and a�er execution

Figure 7: Contents of relevant memory locations before and a�er

execution
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