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ABSTRACT

We introduce a new unsupervised reinforcement learning method for discovering
the set of intrinsic options available to an agent. This set is learned by maximizing
the number of different states an agent can reliably reach, as measured by the
mutual information between the set of options and option termination states. To
this end, we instantiate two policy gradient based algorithms, one that creates an
explicit embedding space of options and one that represents options implicitly.
Both algorithms also yield a tractable and explicit empowerment measure, which
is useful for empowerment maximizing agents. Furthermore, they scale well with
function approximation and we demonstrate their applicability on a range of tasks.

1 INTRODUCTION

What should an agent do in the absence of external rewards? A common view is that agents should
seek out novelty and try to learn a model of the environment. This is formally understood as maxi-
mizing information gain, as measured by the difference in compression of its experience before and
after learning (Schmidhuber, 1991; 2010; Bellemare et al., 2016; Houthooft et al., 2016). However,
the world can be complex and hard to model, and such a strategy might not translate into the ability
to control the environment and reach goals. An alternative strategy is to focus on aspects of the
environment that can be controlled by the agent. This notion of controllability can be measured as
the number of states that can be reliably reached by the agent within some time horizon. In this work
we provide algorithms for learning a set of closed loop options that maximize controllability.

This work builds on the empowerment literature (Salge et al., 2014; Klyubin et al., 2005; Blahut,
1972; Arimoto, 1972; Mohamed & Rezende, 2015) as it optimizes the same measure – the mu-
tual information between action choices and future states. However, it differs in important ways.
First, we utilize full state-conditional policies and show that these are critical for good control and
reaching higher levels of empowerment. Second, unlike most previous approaches (except, to an
extent (Mohamed & Rezende, 2015)), our algorithm scales to noisy, visually complex domains by
leveraging deep learning techniques for function approximation.

Another related approach to unsupervised control was proposed in (Oudeyer & Kaplan, 2009;
Baranes & Oudeyer, 2013). One important difference between their work and ours is that we don’t
require that a low dimensional option embedding space is given, rather we learn it from raw obser-
vations by maximizing controllability.

We begin presenting the algorithm by defining an option as an element Ω of a space and an associated
policy π(a|s,Ω) that chooses an action a in a state s when following Ω. The policy π has a special
termination action that terminates the option and yields a final state sf . For example, 1) Ω takes a
finite number of values Ω ∈ {1, . . . , n}. This is the simplest case in which for each i a separate
policy πi is followed. 2) Ω is a binary vector of length n. This captures a combinatorial number 2n

of possibilities. 3) Ω ∈ Rd is a d-dimensional real vector. Here the space of options is smooth, so
nearby policies behave similarly.

To maximize controllability we would like different options Ω to reach different final states sf and
be able to reach a large number of such states. Thus we want to maximize the entropy of the
distribution p(sf |s0) of states reached, but for a given Ω reach a small number of states, minimizing
the entropy of p(sf |s0,Ω). This is precisely the mutual information between options and final states,
which is the quantity we want to maximize. In this work we will instead maximize a more tractable
variational lower bound on this:
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IV B(Ω, sf |s0) = −
∑
Ω

pC(Ω|s0) log pC(Ω|s0) +
∑
Ω,sf

pJ(sf |s0,Ω)pC(Ω|s0) log q(Ω|s0, sf ). (1)

Here pC(Ω|s0) denotes the distribution of options that yields maximum coverage of the state space.
The second term ensures that different options achieve different states, whereas the first term ensures
that a wide range of Ωs is used. For a given option Ω, the distribution of states sf reached is
expressed by pJ(sf |s0,Ω). q tries to infer which option was followed. It can infer this only if the
agent is able, for different Ω’s, to reach different final states sf .

These considerations suggest the following algorithm for maximizing this objective: 1) pick option
Ω from pC(Ω|s0) and follow the policy π(a|s,Ω) reaching a state sf ; 2) measure how well this
Ω can be inferred from sf relative to Ω prior; this is our intrinsic reward rI = log q − log pC ; 3)
reinforce the actions chosen by the policy; 4) reinforce the option chosen by pC . At the same time
learn the option embedding function q by regressing it towards the option followed. This procedure
is summarized in Algorithm 1 and in fact can be directly derived by differentiating the objective (Eq.
1).

Algorithm 1 Intrinsic Control with Explicit Options
Assume an agent in a state s0

for episode = 1,M do
Sample Ω ∼ pC(Ω|s0)
Follow policy π(a|Ω, s) till termination state sf
Regress q(Ω|s0, sf ) towards Ω
Calculate intrinsic reward rI = log q(Ω|s0, sf )− log pC(Ω|s0)
Use a reinforcement learning algorithm update for π(a|Ω, s) to maximize rI .
Reinforce option prior pC(Ω|s0) based on rI .
Set s0 = sf

end for
Note: Empowerment at s is estimated by the reinforce baseline of pC , which tracks rI .

We train an agent using this algorithm on a gridworld with a discrete space of options (figure below).
Different options learned to terminate at different localized points in the environment. This is shown
in the figure below on the left, where each rectangle corresponds to a different option and the bright
spots indicate the locations where q is large. These are the locations the agent attempts to get to.
We also trained the algorithm on a modified ‘dangerous’ version of the gridworld, where the agent
has to take an action from a correct subset at different points in the environment, otherwise it would
fall into a state where it is stuck for a long time. Additionally the actions are noisy. With the open
loop algorithms considered in previous works, the agent is unable to navigate in this environment.
The bottom right of the Figure shows the exact open loop empowerment at different locations of
the environment for increasing option lengths, demonstrating that the empowerment decreases with
option length for these policies. In contrast, our agent learns to safely navigate this environment.

While algorithm 1 is formulated for an arbitrary option space, optimization proved hard in practice
when using a continuous option space. This might be remedied with methods such as experience
replay which are routinely used to stabilize reinforcement learning algorithms (Mnih et al., 2015).

We now turn to the second algorithm, which trains with much less difficulty and is able to operate
on a complex three dimensional simulated environment using raw pixels. The basic idea is to stay
in the action space but consider closed loop policies. The option Ω of the previous section defines
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Algorithm 2 Intrinsic Control with Implicit Options
Full update
Follow policy πp(at|spt ), spt = fp(spt−1, xt, at−1) resulting in experience x0, a0, . . . , xf .
For each t, regress policy πq(at|sqt ), sqt = fq(sqt−1, xt, at−1, xf ) towards action at
Calculate intrinsic reward rI =

∑
t log πq(at|sqt )− log πp(at|spt )

Reinforce the policy πp with rI .
Exploratory update
Follow policy πp(at|spt ), spt = fp(spt−1, xt, at−1) with exploration (ε or other) resulting in expe-
rience x′0, a

′
0, . . . , x

′
f .

For each t, regress policy πq(a′t|s
q
t ), sqt = fq(sqt−1, x

′
t, a
′
t−1, x

′
f ) towards action a′t

Note: Empowerment is estimated by the reinforce baseline of πp.

our action choices at different time steps, which depend on what happened in the environment at the
previous steps. The resulting algorithm is shown in Algorithm 2.

All policies are parameterized by MLPs followed by an LSTM. We demonstrate that the algorithm
learns a good control policy on a number of environments. The results are shown in the figures
below. Reading along the rows from top left to bottom right: 1) Learned trajectories in a 25×25 four
room gridworld. They are extended unlike trajectories produced by a random motion. 2) Distribution
of end states from different starting positions for options of length 25. The learned policies result
in a distribution of end states that is uniform among reachable states. 3) Visually complex three
dimensional environment where the agent achieves a controllability score of exp(5.4) = 221 states.
4) Example trajectory in a 6 × 6 world containing three movable blocks that can be pushed around
by the agent. During a given trajectory, the agent pushes different blocks to different locations and
on average achieves a controllability of approximately 1200 states. 5) This environment consists of
pairs of MNIST digits which the agent can control with 5 actions (increment, decrement, maintain
class label). Transitions are stochastic as the digits are resampled at every step from the current
class. The agent only sees an image containing both digits at every step. Thus the inputs are noisy.
The control reached is nearly all of the 100 possible control states, showing that the agent can focus
on the controllable part of the space and ignore the uncontrollable noise. 6) An agent is allowed to
learn to control a 15× 15 four room gridworld and after a period of time, a reward is turned on. The
agent is able to find the reward faster with a longer pre-training period.
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