
Published as a conference paper at ICLR 2018

A SCALABLE LAPLACE APPROXIMATION
FOR NEURAL NETWORKS

Hippolyt Ritter1∗, Aleksandar Botev1, David Barber1 2

1University College London 2Alan Turing Institute

ABSTRACT

We leverage recent insights from second-order optimisation for neural networks
to construct a Kronecker factored Laplace approximation to the posterior over the
weights of a trained network. Our approximation requires no modification of the
training procedure, enabling practitioners to estimate the uncertainty of their mod-
els currently used in production without having to retrain them. We extensively
compare our method to using Dropout and a diagonal Laplace approximation for
estimating the uncertainty of a network. We demonstrate that our Kronecker fac-
tored method leads to better uncertainty estimates on out-of-distribution data and
is more robust to simple adversarial attacks. Our approach only requires calcu-
lating two square curvature factor matrices for each layer. Their size is equal to
the respective square of the input and output size of the layer, making the method
efficient both computationally and in terms of memory usage. We illustrate its
scalability by applying it to a state-of-the-art convolutional network architecture.

1 INTRODUCTION

Neural networks are most commonly trained in a maximum a posteriori (MAP) setting, which only
yields point estimates of the parameters, ignoring any uncertainty about them. This often leads to
overconfident predictions, especially in regimes that are weakly covered by training data or far away
from the data manifold. While the confidence of wrong predictions is usually irrelevant in a research
context, it is essential that a Machine Learning algorithm knows when it does not know in the real
world, as the consequences of mistakes can be fatal, be it when driving a car or diagnosing a disease.

The Bayesian framework of statistics provides a principled way for avoiding overconfidence in the
parameters by treating them as unknown quantities and integrating over all possible values. Specifi-
cally, for the prediction of new data under a model, it fits a posterior distribution over the parameters
given the training data and weighs the contribution of each setting of the parameters to the predic-
tion by the probability of the data under those parameters times their prior probability. However, the
posterior of neural networks is usually intractable due to their size and nonlinearity.

There has been previous interest in integrating neural networks into the Bayesian framework
(MacKay, 1992; Hinton & Van Camp, 1993; Neal, 1993; Barber & Bishop, 1998), however these ap-
proaches were designed for small networks by current standards. Recent adaptations to architectures
of modern scale rely on crude approximations of the posterior to become tractable. All of (Graves,
2011; Hernández-Lobato & Adams, 2015; Blundell et al., 2015) assume independence between the
individual weights. While they achieve good results on small datasets, this strong restriction of the
posterior is susceptible to underestimating the uncertainty, in particular when optimising the vari-
ational bound. The approach in (Gal & Ghahramani, 2016) requires the use of certain stochastic
regularisers which are not commonly present in most recent architectures. Furthermore, it is not
clear if the approximate posterior defined by these regularisers is a good fit to the true posterior.

Recent work on second-order optimisation of neural networks (Martens & Grosse, 2015; Botev
et al., 2017) has demonstrated that the diagonal blocks of the curvature can be well approximated
by a Kronecker product. We combine this insight with the idea of modelling the posterior over the
weights as a Gaussian, using a Laplace approximation (MacKay, 1992) with Kronecker factored
covariance matrices. This leads to a computationally efficient matrix normal posterior distribution

∗Corresponding author: j.ritter@cs.ucl.ac.uk

1

mailto:j.ritter@cs.ucl.ac.uk

Published as a conference paper at ICLR 2018

(Gupta & Nagar, 1999) over the weights of every layer. Since the Laplace approximation is applied
after training, our approach can be used to obtain uncertainty estimates from existing networks.

2 THE CURVATURE OF NEURAL NETWORKS

Our method is inspired by recent Kronecker factored approximations of the curvature of a neural
network (Martens & Grosse, 2015; Botev et al., 2017) for optimisation and we give a high-level
review of these in the following. While the two methods approximate the Gauss-Newton and Fisher
matrix respectively, as they are guaranteed to be positive semi-definite (p.s.d.), we base all of our
discussion on the Hessian in order to be as general as possible.

2.1 NEURAL NETWORK NOTATION

We denote a feedforward network as taking an input a0 = x and producing an output hL. The inter-
mediate representations for layers λ = 1, ..., L are denoted as hλ = Wλaλ−1 and aλ = fλ(hλ). We
refer to aλ as the activations, and hλ as the (linear) pre-activations. The bias terms are absorbed into
the Wλ by appending a 1 to each aλ. The network parameters are optimised w.r.t. an error function
E(y, hL) for targets y. Most commonly used error functions, such as squared error and categorical
cross-entropy, can be interpreted as exponential family negative log likelihoods − log p(y|hL).

2.2 KRONECKER FACTORED SECOND-ORDER OPTIMISATION

Traditional second-order methods use either the Hessian matrix or a positive semi-definite approx-
imation thereof to generate parameter updates of the form ∆ = C−1g, where C is the chosen cur-
vature matrix and g the gradient of the error function parameterised by the network. However, this
curvature matrix is infeasbile to compute for modern neural networks as their number of parameters
is often in the millions, rendering the size of C of the order of several terabytes.

Recent work (Martens & Grosse, 2015; Botev et al., 2017) exploits that, for a single data point, the
diagonal blocks of these curvature matrices are Kronecker factored:

Hλ =
∂2E

∂ vec(Wλ)∂ vec(Wλ)
= Qλ ⊗Hλ (1)

where Hλ is the Hessian w.r.t. the weights in layer λ. Qλ = aλ−1a
T
λ−1 denotes the covariance of

the incoming activations aλ−1 and Hλ = ∂
2
E

∂hλ∂hλ
the pre-activation Hessian, i.e. the Hessian of the

error w.r.t. the linear pre-activations hλ in a layer. We provide the derivation for this result as well
as the recursion for calculatingH in Appendix A.

The Kronecker factorisation holds two key advantages: the matrices that need be computed and
stored are much smaller — if we assume all layers to be of dimensionality D, the two factors are
each of sizeD2, whereas the full Hessian for the weights of only one layer would haveD4 elements.
Furthermore, the inverse of a Kronecker product is equal to the Kronecker product of the inverses,
so it is only necessary to invert those two moderately sized matrices.

In order to maintain this structure over a minibatch of data, all Kronecker factored second-order
methods make two core approximations: First, they only model the diagonal blocks corresponding
to the weights of a layer, such that the curvature decomposes into L independent matrices. Second,
they assume Qλ andHλ to be independent. This is in order to maintain the Kronecker factorisation
in expectation, i.e. E [Qλ ⊗Hλ] ≈ E [Qλ] ⊗ E [Hλ], since the expectation of a Kronecker product
is not guaranteed to be Kronecker factored itself.

The main difference between the Kronecker factored second-order optimisers lies in how they ef-
ficiently approximate E [Hλ]. For exact calculation, it would be necessary to pass back an entire
matrix per data point in a minibatch, which imposes infeasible memory and computational require-
ments. KFRA (Botev et al., 2017) simply passes back the expectation at every layer, while KFAC
(Martens & Grosse, 2015) utilises the Fisher identity to only propagate a vector rather than a ma-
trix, approximating the Kronecker factors with a stochastic rank-one matrix for each data point.

2

Published as a conference paper at ICLR 2018

The diagonal blocks of the Hessian and Gauss-Newton matrix are equal for neural networks with
piecewise linear activation functions (Botev et al., 2017), thus both methods can be used to directly
approximate the diagonal blocks of the Hessian of such networks, as the Gauss-Newton and Fisher
are equivalent for networks that parameterise an exponential family log likelihood.

3 A SCALABLE LAPLACE APPROXIMATION FOR NEURAL NETWORKS

3.1 THE LAPLACE APPROXIMATION

The standard Laplace approximation is obtained by taking the second-order Taylor expansion around
a mode of a distribution. For a neural network, such a mode can be found using standard gradient-
based methods. Specifically, if we approximate the log posterior over the weights of a network given
some data D around a MAP estimate θ∗, we obtain:

log p(θ|D) ≈ log p(θ∗|D)− 1

2
(θ − θ∗)TH̄(θ − θ∗) (2)

where θ = [vec(W1), ..., vec(WL)] is the stacked vector of weights and H̄ = E [H] the average
Hessian of the negative log posterior1. The first order term is missing because we expand the func-
tion around a maximum θ∗, where the gradient is zero. If we exponentiate this equation, it is easy
to notice that the right-hand side is of Gaussian functional form for θ, thus we obtain a normal
distribution by integrating over it. The posterior over the weights is then approximated as Gaussian:

θ ∼ N (θ∗, H̄−1) (3)

assuming H̄ is p.s.d. We can then approximate the posterior mean when predicting on unseen data
D∗ by averaging the predictions of T Monte Carlo samples θ(t) from the approximate posterior:

p(D∗|D) =

∫
p(D∗|θ)p(θ|D)dθ ≈ 1

T

T∑
t=1

p(D∗|θ(t)) (4)

3.2 DIAGONAL LAPLACE APPROXIMATION

Unfortunately, it is not feasible to compute or invert the Hessian matrix w.r.t. all of the weights
jointly. An approximation that is easy to compute in modern automatic differentiation frameworks
is the diagonal of the Fisher matrix F , which is simply the expectation of the squared gradients:

H ≈ diag(F) = diag(E
[
∇θ log p(y|x)∇θ log p(y|x)T

]
) = diag(E

[
(∇θ log p(y|x))2

]
) (5)

where diag extracts the diagonal of a matrix or turns a vector into a diagonal matrix. Such diagonal
approximations to the curvature of a neural network have been used successfully for pruning the
weights (LeCun et al., 1990) and, more recently, for transfer learning (Kirkpatrick et al., 2017).

This corresponds to modelling the weights with a Normal distribution with diagonal covariance:

vec(Wλ) ∼ N (vec(W ∗λ),diag(Fλ)−1) for λ = 1, . . . , L (6)

Unfortunately, even if the Taylor approximation is accurate, this will place significant probability
mass in low probability areas of the true posterior if some weights exhibit high covariance.

1The average Hessian is typically scaled by the number of data points N . In order to keep the notation
uncluttered, we develop our basic methods in terms of the average Hessian and discuss the scaling separately.

3

Published as a conference paper at ICLR 2018

3.3 KRONECKER FACTORED LAPLACE APPROXIMATION

So while it is desirable to model the covariance between the weights, some approximations are
needed in order to remain computationally efficient. First, we assume the weights of the differ-
ent layers to be independent. This corresponds to the block-diagonal approximation in KFAC and
KFRA, which empirically preserves sufficient information about the curvature to obtain competitive
optimisation performance. For our purposes this means that our posterior factorises over the layers.

As discussed above, the Hessian of the log-likelihood for a single datapoint is Kronecker factored,
and we denote the two factor matrices as Hλ = Qλ ⊗ Hλ.

2 By further assuming independence
between Q andH in all layers, we can approximate the expected Hessian of each layer as:

E [Hλ] = E [Qλ ⊗Hλ] ≈ E [Qλ]⊗ E [Hλ] (7)

Hence, the Hessian of every layer is Kronecker factored over an entire dataset and the Laplace
approximation can be approximated by a product of Gaussians. Each Gaussian has a Kronecker
factored covariance, corresponding to a matrix normal distribution (Gupta & Nagar, 1999), which
considers the two Kronecker factors of the covariance to be the covariances of the rows and columns
of a matrix. The two factors are much smaller than the full covariance and allow for significantly
more efficient inversion and sampling (we review the matrix normal distribution in Appendix B).

Our resulting posterior for the weights in layer λ is then:

Wλ ∼MN (W ∗λ , Q̄
−1
λ , H̄−1λ) (8)

In contrast to optimisation methods, we do not need to approximate E [Hλ] as it is only calculated
once. However, when it is possible to augment the data (e.g. randomised cropping of images), it
may be advantageous. We provide a more detailed discussion of this in Appendix C.

3.4 INCORPORATING THE PRIOR AND REGULARISING THE CURVATURE FACTORS

Just as the log posterior, the Hessian decomposes into a term depending on the data log likelihood
and one on the prior. For the commonly used L2-regularisation, corresponding to a Gaussian prior,
the Hessian is equal to the precision of the prior times the identity matrix. We approximate this by
adding a multiple of the identity to each of the Kronecker factors from the log likelihood:

Hλ = N E

[
−∂

2 log p(D|θ)
∂θ2

]
+ τI ≈ (

√
N E [Qλ] +

√
τI)⊗ (

√
N E [Hλ] +

√
τI) (9)

where τ is the precision of the Gaussian prior on the weights andN the size of the dataset. However,
we can also treat them as hyperparameters and optimise them w.r.t. the predictive performance on
a validation set. We emphasise that this can be done without retraining the network, so it does not
impose a large computational overhead and is trivial to parallelise.

Setting N to a larger value than the size of the dataset can be interpreted as including duplicates
of the data points as pseudo-observations. Adding a multiple of the uncertainty to the precision
matrix decreases the uncertainty about each parameter. This has a regularising effect both on our
approximation to the true Laplace, which may be overestimating the variance in certain directions
due to ignoring the covariances between the layers, as well as the Laplace approximation itself,
which may be placing probability mass in low probability areas of the true posterior.

4 RELATED WORK

Most recent attempts to approximating the posterior of a neural network are based on formulating
an approximate distribution to the posterior and optimising the variational lower bound w.r.t. its

2We assume a uniform prior for now, such that the Hessians of the posterior and the log likelihood are equal.
We discuss how we incorporate a non-zero Hessian of a prior into the Kronecker factors in the next section.

4

Published as a conference paper at ICLR 2018

parameters. (Graves, 2011; Blundell et al., 2015; Kingma et al., 2015) as well as the expectation
propagation based approaches of (Hernández-Lobato & Adams, 2015) and (Ghosh et al., 2016)
assume independence between the individual weights which, particularly when optimising the KL
divergence, often lets the model underestimate the uncertainty about the weights. Gal & Ghahramani
(2016) interpret Dropout to approximate the posterior with a mixture of delta functions, assuming
independence between the columns. (Lakshminarayanan et al., 2016) suggest using an ensemble of
networks for estimating the uncertainty.

Our work is a scalable approximation of (MacKay, 1992). Since the per-layer Hessian of a neural
network is infeasible to compute, we suggest a factorisation of the covariance into a Kronecker
product, leading to a more efficient matrix normal distribution. The posterior that we obtain is
reminiscent of (Louizos & Welling, 2016) and (Sun et al., 2017), who optimise the parameters of a
matrix normal distribution as their weights, which requires a modification of the training procedure.

5 EXPERIMENTS

Since the Laplace approximation is a method for predicting in a Bayesian manner and not for train-
ing, we focus on comparing to uncertainty estimates obtained from Dropout (Gal & Ghahramani,
2016). The trained networks will be identical, but the prediction methods will differ. We also com-
pare to a diagonal Laplace approximation to highlight the benefit from modelling the covariances
between the weights. All experiments are implemented using Theano (Theano Development Team,
2016) and Lasagne (Dieleman et al., 2015).3

5.1 TOY REGRESSION DATASET

As a first experiment, we visualise the uncertainty obtained from the Laplace approximations on a
toy regression dataset, similar to (Hernández-Lobato & Adams, 2015). We create a dataset of 20

uniformly distributed points x ∼ U(−4, 4) and sample y ∼ N (x3, 32). In contrast to (Hernández-
Lobato & Adams, 2015), we use a two-layer network with seven units per layer rather than one
layer with 100 units. This is because both the input and output are one-dimensional, hence the
weight matrices are vectors and the matrix normal distribution reduces to a multivariate normal
distribution. Furthermore, the Laplace approximation is sensitive to the ratio of the number of data
points to parameters, and we want to visualise it both with and without hyperparameter tuning.

(a) KF Laplace (b) Diagonal Laplace (c) Full Laplace (d) HMC

Figure 1: Toy regression uncertainty. Black dots are data points, the black line shows the noiseless
function. The red line shows the deterministic prediction of the network, the blue line the mean
output. Each shade of blue visualises one additional standard deviation. Best viewed on screen.

Fig. 1 shows the uncertainty obtained from the Kronecker factored and diagonal Laplace approxi-
mation applied to the same network, as well as from a full Laplace approximation and 50, 000 HMC
(Neal, 1993) samples. The latter two methods are feasible only for such a small model and dataset.
For the diagonal and full Laplace approximation we use the Fisher identity and draw one sample per
data point. We set the hyperparameters of the Laplace approximations (see Section 3.4) using a grid
search over the likelihood of 20 validation points that are sampled the same way as the training set.

3We make our fork available at: https://github.com/BB-UCL/Lasagne

5

https://github.com/BB-UCL/Lasagne

Published as a conference paper at ICLR 2018

The regularised Laplace approximations all give an overall good fit to the HMC predictive poste-
rior. Their uncertainty is slightly higher close to the training data and increases more slowly away
from the data than that of the HMC posterior. The diagonal and full Laplace approximation re-
quire stronger regularisation than our Kronecker factored one, as they have higher uncertainty when
not regularised. In particular the full Laplace approximation vastly overestimates the uncertainty
without additional regularisation, leading to a bad predictive mean (see Appendix E for the corre-
sponding figures), as the Hessian of the log likelihood is underdetermined. This is commonly the
case in deep learning, as the number of parameters is typically much larger than the number of data
points. Hence restricting the structure of the covariance is not only a computational necessity for
most architectures, but also allows for more precise estimation of the approximate covariance.

5.2 OUT-OF-DISTRIBUTION UNCERTAINTY

For a more realistic test, similar to (Louizos & Welling, 2017), we assess the uncertainty of the
predictions when classifying data from a different distribution than the training data. For this we
train a network with two layers of 1024 hidden units and ReLU transfer functions to classify MNIST
digits. We use a learning rate of 10−2 and momentum of 0.9 for 250 epochs. We apply Dropout with
p=0.5 after each inner layer, as our chief interest is to compare against its uncertainty estimates. We
further use L2-regularisation with a factor of 10−2 and randomly binarise the images during training
according to their pixel intensities and draw 1, 000 such samples per datapoint for estimating the
curvature factors. We use this network to classify the images in the notMNIST dataset4, which
contains 28×28 grey-scale images of the letters ‘A’ to ‘J’ from various computer fonts, i.e. not
digits. An ideal classifier would make uniform predictions over its classes.

Figure 2: Predictive entropy on notMNIST ob-
tained from different methods for the forward pass
on a network trained on MNIST.

We compare the uncertainty obtained by pre-
dicting the digit class of the notMNIST images
using 1. a deterministic forward pass through
the Dropout trained network, 2. by sampling
different Dropout masks and averaging the pre-
dictions, and by sampling different weight ma-
trices from 3. the matrix normal distribution
obtained from our Kronecker factored Laplace
approximation as well as 4. the diagonal one.
As an additional baseline similar to (Blundell
et al., 2015; Graves, 2011), we compare to a
network with identical architecture with a fully
factorised Gaussian (FFG) approximate pos-
terior on the weights and a standard normal
prior. We train the model on the variational
lower bound using the reparametrisation trick
(Kingma & Welling, 2013). We use 100 sam-
ples for the stochastic forward passes and op-
timise the hyperparameters of the Laplace ap-
proximations w.r.t. the cross-entropy on the validation set of MNIST.

We measure the uncertainty of the different methods as the entropy of the predictive distribution,
which has a minimal value of 0 when a single class is predicted with certainty and a maximum of
about 2.3 for uniform predictions. Fig. 2 shows the inverse empirical cumulative distribution of the
entropy values obtained from the four methods. Consistent with the results in (Gal & Ghahramani,
2016), averaging the probabilities of multiple passes through the network yields predictions with
higher uncertainty than a deterministic pass that approximates the geometric average (Srivastava
et al., 2014). However, there still are some images that are predicted to be a digit with certainty. Our
Kronecker factored Laplace approximation makes hardly any predictions with absolute certainty
and assigns high uncertainty to most of the letters as desired. The diagonal Laplace approxima-
tion required stronger regularisation towards predicting deterministically, yet it performs similarly
to Dropout. As shown in Table 1, however, the network makes predictions on the test set of MNIST

4From: http://yaroslavvb.blogspot.nl/2011/09/notmnist-dataset.html

6

http://yaroslavvb.blogspot.nl/2011/09/notmnist-dataset.html

Published as a conference paper at ICLR 2018

with similar accuracy to the deterministic forward pass and MC Dropout when using our approxi-
mation. The variational factorised Gaussian posterior has low uncertainty as expected.

5.3 ADVERSARIAL EXAMPLES

Figure 3: Untargeted adversarial attack. Figure 4: Targeted adversarial attack.

To further test the robustness of our prediction method close to the data distribution, we perform
an adversarial attack on a neural network. As first demonstrated in (Szegedy et al., 2013), neural
networks are prone to being fooled by gradient-based changes to their inputs. Li & Gal (2017)
suggest, and provide empirical support, that Bayesian models may be more robust to such attacks,
since they implicitly form an infinitely large ensemble by integrating over the model parameters.
For our experiments, we use the fully connected net trained on MNIST from the previous section
and compare the sensitivity of the different prediction methods for two kinds of adversarial attacks.

First, we use the untargeted Fast Gradient Sign method xadv = x− η sgn(∇x maxy log p(M)(y|x))
suggested in (Goodfellow et al., 2014), which takes the gradient of the class predicted with maximal
probability by method M w.r.t. the input x and reduces this probability with varying step size η.
This step size is rescaled by the difference between the maximal and minimal value per dimension
in the dataset. It is to be expected that this method generates examples away from the data manifold,
as there is no clear subset of the data that corresponds to e.g. ”not ones”.

Fig. 3 shows the average predictive uncertainty and the accuracy on the original class on the MNIST
test set as the step size η increases. The Kronecker factored Laplace approximation achieves signifi-
cantly higher uncertainty than any other prediction method as the images move away from the data.
Both the diagonal and the Kronecker factored Laplace maintain higher accuracy than MC Dropout
on their original predictions. Interestingly, the deterministic forward pass appears to be most robust
in terms of accuracy, however it has much smaller uncertainty on the predictions it makes and will
confidently predict a false class for most images, whereas the other methods are more uncertain.

Furthermore, we perform a targeted attack that attempts to force the network to predict a specific
class, in our case ‘0’ following (Li & Gal, 2017). Hence, for each method, we exclude all data points
in the test set that are already predicted as ‘0’. The updates are of similar form to the untargeted
attack, however they increase the probability of the pre-specified class y rather than decreasing the
current maximum as x(t+1)

y = x(t)y + η sgn(∇x log p(M)(y|x(t)y)), where x(0)y = x.

We use a step size of η=10−2 for the targeted attack. The uncertainty and accuracy on the original
and target class are shown in Fig. 4. Here, the Kronecker factored Laplace approximation has
slightly smaller uncertainty at its peak in comparison to the other methods, however it appears to be
much more robust. It only misclassifies over 50% of the images after about 20 steps, whereas for the
other methods this is the case after roughly 10 steps and reaches 100% accuracy on the target class
after almost 50 updates, whereas the other methods are fooled on all images after about 25 steps.

In conjunction with the experiment on notMNIST, it appears that the Laplace approximation
achieves higher uncertainty than Dropout away from the data, as in the untargeted attack. In the
targeted attack it exhibits smaller uncertainty than Dropout, yet it is more robust to having its pre-
diction changed. The diagonal Laplace approximation again performs similarly to Dropout.

5.4 UNCERTAINTY ON MISCLASSIFICATIONS

To highlight the scalability of our method, we apply it to a state-of-the-art convolutional network
architecture. Recently, deep residual networks (He et al., 2016a;b) have been the most successful

7

Published as a conference paper at ICLR 2018

(a) Dropout Wide Resnet (b) Deterministic Wide Resnet

Figure 5: Inverse ecdf of the predictive entropy from Wide Residual Networks trained with and
without Dropout on CIFAR100. For misclassifications, curves on top corresponding to higher un-
certainty are desirable, and curves on the bottom for correct classifications.

ones among those. As demonstrated in (Grosse & Martens, 2016), Kronecker factored curvature
methods are applicable to convolutional layers by interpreting them as matrix-matrix multiplications.

We compare our uncertainty estimates on wide residual networks (Zagoruyko & Komodakis, 2016),
a recent variation that achieved competitive performance on CIFAR100 (Krizhevsky & Hinton,
2009) while, in contrast to most other residual architectures, including Dropout at specific points.
While this does not correspond to using Dropout in the Bayesian sense (Gal & Ghahramani, 2015),
it allows us to at least compare our method to the uncertainty estimates obtained from Dropout.

We note that it is straightforward to incorporate batch normalisation (Ioffe & Szegedy, 2015) into the
curvature backpropagation algorithms, so we apply a standard Laplace approximation to its param-
eters as well. We are not aware of any interpretation of Dropout as performing Bayesian inference
on the parameters of batch normalisation. Further implementation details are in Appendix G.

Again, the accuracy of the prediction methods is comparable (see Table 2 in Appendix F). For cal-
culating the curvature factors, we draw 5, 000 samples per image using the same data augmentation
as during training, effectively increasing the dataset size to 2.5×108. The diagonal approximation
had to be regularised to the extent of becoming deterministic, so we omit it from the results.

In Fig. 5 we compare the distribution of the predictive uncertainty on the test set.5 We distinguish
between the uncertainty on correct and incorrect classifications, as the mistakes of a system used
in practice may be less severe if the network can at least indicate that it is uncertain. Thus, high
uncertainty on misclassifications and low uncertainty on correct ones would be desirable, such that a
system could return control to a human expert when it can not make a confident decision. In general,
the network tends to be more uncertain on its misclassifcations than its correct ones regardless of
whether it was trained with or without Dropout and of the method used for prediction. Both Dropout
and the Laplace approximation similarly increase the uncertainty in the predictions, however this is
irrespective of the correctness of the classification. Yet, our experiments show that the Kronecker
factored Laplace approximation can be scaled to modern convolutional networks and maintain good
classification accuracy while having similar uncertainty about the predictions as Dropout.

We had to use much stronger regularisation for the Laplace approximation on the wide residual
network, possibly because the block-diagonal approximation becomes more inaccurate on deep net-
works, possibly because the number of parameters is much higher relative to the number of data.
It would be interesting to see how the Laplace approximations behaves on a much larger dataset
like ImageNet for similarly sized networks, where we have a better ratio of data to parameters and
curvature directions. However, even on a relatively small dataset like CIFAR we did not have to
regularise the Laplace approximation to the degree of the posterior becoming deterministic.

5We use the first 5, 000 images as a validation set to tune the hyperparameters of our Laplace approximation
and the final 5, 000 ones for evaluating the predictive uncertainty on all methods.

8

Published as a conference paper at ICLR 2018

6 CONCLUSION

We presented a scalable approximation to the Laplace approximation for the posterior of a neural
network and provided experimental results suggesting that the uncertainty estimates are on par with
current alternatives like Dropout, if not better. It enables practitioners to obtain principled uncer-
tainty estimates from their models, even if they were trained in a maximum likelihood/MAP setting.

There are many possible extensions to this work. One would be to automatically determine the
scale and regularisation hyperparameters of the Kronecker factored Laplace approximation using
the model evidence similar to how (MacKay, 1992) interpolates between the data log likelihood
and the width of the prior. The model evidence could further be used to perform Bayesian model
averaging on ensembles of neural networks, potentially improving their generalisation ability and
uncertainty estimates. A challenging application would be active learning, where only little data is
available relative to the number of curvature directions that need to be estimated.

ACKNOWLEDGEMENTS

This work was supported by the Alan Turing Institute under the EPSRC grant EP/N510129/1. We
thank the anonymous reviewers for their feedback and Harshil Shah for his comments on an earlier
draft of this paper.

REFERENCES

Anoop Korattikara Balan, Vivek Rathod, Kevin P Murphy, and Max Welling. Bayesian Dark Knowl-
edge. In Advances in Neural Information Processing Systems, pp. 3438–3446, 2015.

David Barber and Christopher M Bishop. Ensemble Learning for Multi-layer Networks. In Advances
in Neural Information Processing Systems, pp. 395–401, 1998.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight Uncertainty in
Neural Networks. In ICML, pp. 1613–1622, 2015.

Aleksandar Botev, Hippolyt Ritter, and David Barber. Practical Gauss-Newton Optimisation for
Deep Learning. In ICML, pp. 557 – 565, 2017.

Sander Dieleman, Jan Schlüter, Colin Raffel, Eben Olson, Søren Kaae Sønderby, Daniel Nouri, et al.
Lasagne: First release., August 2015.

Yarin Gal and Zoubin Ghahramani. Bayesian Convolutional Neural Networks with BernoulliAap-
proximate Variational Inference. arXiv preprint arXiv:1506.02158, 2015.

Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian Approximation: Representing Model
Uncertainty in Deep Learning. In ICML, pp. 1050–1059, 2016.

Soumya Ghosh, Francesco Maria Delle Fave, and Jonathan S Yedidia. Assumed Density Filtering
Methods for Learning Bayesian Neural Networks. In AAAI, pp. 1589–1595, 2016.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and Harnessing Adversarial
Examples. arXiv preprint arXiv:1412.6572, 2014.

Alex Graves. Practical Variational Inference for Neural Networks. In Advances in Neural Informa-
tion Processing Systems, pp. 2348–2356, 2011.

Roger Grosse and James Martens. A Kronecker-factored Approximate Fisher Matrix for Convolu-
tion Layers. In ICML, pp. 573–582, 2016.

Arjun K Gupta and Daya K Nagar. Matrix Variate Distributions, volume 104. CRC Press, 1999.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image
Recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016a.

9

Published as a conference paper at ICLR 2018

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity Mappings in Deep Residual
Networks. In European Conference on Computer Vision, pp. 630–645. Springer, 2016b.

José Miguel Hernández-Lobato and Ryan Adams. Probabilistic Backpropagation for Scalable
Learning of Bayesian Neural Networks. In ICML, pp. 1861–1869, 2015.

Geoffrey E Hinton and Drew Van Camp. Keeping the Neural Networks Simple by Minimizing the
Description Length of the Weights. In COLT, pp. 5–13, 1993.

Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift. In ICML, pp. 448–456, 2015.

Diederik P Kingma and Max Welling. Auto-encoding Variational Bayes. arXiv preprint
arXiv:1312.6114, 2013.

Diederik P Kingma, Tim Salimans, and Max Welling. Variational Dropout and the Local Repa-
rameterization Trick. In Advances in Neural Information Processing Systems, pp. 2575–2583,
2015.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Over-
coming Catastrophic Forgetting in Neural Networks. Proceedings of the National Academy of
Sciences, pp. 201611835, 2017.

Alex Krizhevsky and Geoffrey Hinton. Learning Multiple Layers of Features from Tiny Images.
2009.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and Scalable Predictive
Uncertainty Estimation using Deep Ensembles. arXiv preprint arXiv:1612.01474, 2016.

Yann LeCun, John S. Denker, and Sara A. Solla. Optimal Brain Damage. In Advances in Neural
Information Processing Systems, pp. 598–605, 1990.

Yingzhen Li and Yarin Gal. Dropout Inference in Bayesian Neural Networks with Alpha-
divergences. arXiv preprint arXiv:1703.02914, 2017.

Christos Louizos and Max Welling. Structured and Efficient Variational Deep Learning with Matrix
Gaussian Posteriors. In ICML, pp. 1708–1716, 2016.

Christos Louizos and Max Welling. Multiplicative Normalizing Flows for Variational Bayesian
Neural Networks. In ICML, pp. 2218–2227, 2017.

David J. C. MacKay. A Practical Bayesian Framework for Backpropagation Networks. Neural
Computation, 4(3):448–472, 1992.

James Martens and Roger Grosse. Optimizing Neural Networks with Kronecker-factored Approxi-
mate Curvature. In ICML, pp. 2408–2417, 2015.

Radford M Neal. Bayesian Learning via Stochastic Dynamics. In Advances in Neural Information
Processing Systems, pp. 475–482, 1993.

Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A Simple Way to Prevent Neural Networks from Overfitting. Journal of Machine Learn-
ing Research, 15(1):1929–1958, 2014.

Shengyang Sun, Changyou Chen, and Lawrence Carin. Learning Structured Weight Uncertainty in
Bayesian Neural Networks. In Artificial Intelligence and Statistics, pp. 1283–1292, 2017.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing Properties of Neural Networks. arXiv preprint arXiv:1312.6199,
2013.

Theano Development Team. Theano: A Python Framework for Fast Computation of Mathematical
Expressions. arXiv e-prints, abs/1605.02688, May 2016.

Sergey Zagoruyko and Nikos Komodakis. Wide Residual Networks. arXiv preprint
arXiv:1605.07146, 2016.

10

Published as a conference paper at ICLR 2018

Appendices

A DERIVATION OF THE ACTIVATION HESSIAN RECURSION

Here, we provide the basic derivation of the factorisation of the diagonal blocks of the Hessian in
Eq. 1 and the recursive formula for calculatingH as presented in (Botev et al., 2017).

The Hessian of a neural network with parameters θ as defined in the main text has elements:

[H]ij =
∂2

∂θi∂θj
E(θ) (10)

For a given layer λ, the gradient w.r.t. a weight Wλ
a,b is:

∂E

∂Wλ
a,b

=
∑
i

∂hλi

∂Wλ
a,b

∂E

∂hλi
= aλ−1b

∂E

∂hλa
(11)

Keeping λ fixed and differentiating again, we find that the per-sample Hessian of that layer is:

[Hλ](a,b),(c,d) ≡
∂2E

∂Wλ
a,b∂W

λ
c,d

= aλ−1b aλ−1d [Hλ]a,c (12)

where

[Hλ]a,b =
∂2E

∂hλa∂h
λ
b

(13)

is the pre-activation Hessian.

We can reexpress this in matrix notation as a Kronecker product as in Eq. 1:

Hλ =
∂2E

∂ vec (Wλ)∂ vec (Wλ)
=
(
aλ−1a

T
λ−1

)
⊗Hλ (14)

The pre-activation Hessian can be calculated recursively as:

Hλ = BλW
T
λ+1Hλ+1Wλ+1Bλ +Dλ (15)

where the diagonal matrices B and D are defined as:

Bλ = diag (f ′λ(hλ)) (16)

Dλ = diag (f ′′λ (hλ)
∂E

∂aλ
) (17)

f ′ and f ′′ denote the first and second derivative of the transfer function. The recursion is initialised
with the Hessian of the error w.r.t. the linear network outputs.

For further details and on how to calculate the diagonal blocks of the Gauss-Newton and Fisher
matrix, we refer the reader to (Botev et al., 2017) and (Martens & Grosse, 2015).

11

Published as a conference paper at ICLR 2018

B MATRIX NORMAL DISTRIBUTION

The matrix normal distribution (Gupta & Nagar, 1999) is a multivariate distribution over an entire
matrix of shape n × p rather than just a vector. In contrast to the multivariate normal distribution,
it is parameterised by two p.s.d. covariance matrices, U : n × n and V : p × p, which indicate the
covariance of the rows and columns respectively. In addition it has a mean matrix M : n× p.

A vectorised sample from a matrix normal distribution X ∼MN (M,U, V) corresponds to a sam-
ple from a normal distribution vec(X) ∼ N (vec(M), U ⊗ V). However, samples can be drawn
more efficiently as X = M + AZB with Z ∼ MN (0, I, I), and AAT = U and BTB = V . The
sample Z corresponds to a sample from a normal distribution of length np that has been reshaped to
a n× p matrix. This is more efficient in the sense that we only need to calculate two matrix-matrix
products of small matrices, rather than a matrix-vector product with one big one.

C APPROXIMATION OF THE EXPECTED ACTIVATION HESSIAN

While the square root of Qλ is calculated during the forward pass on all layers,H requires an addi-
tional backward pass. Strictly speaking, it is not essential to approximate E [H] for the Kronecker
factored Laplace approximation, as in contrast to optimisation procedures the curvature only needs
to be calculated once and is thus not time critical. For datasets of the scale of ImageNet and the
networks used for such datasets, it would still be impractically slow to perform the calculation for
every data point individually. Furthermore, as most datasets are augmented during training, e.g. ran-
dom cropping or reflections of images, the curvature of the network can be estimated using the same
augmentations, effectively increasing the size of the dataset by orders of magnitude. Thus, we make
use of the minibatch approximation in our experiments — as we make use of data augmentation —
in order to demonstrate its practical applicability.

We note that E [H] can be calculated exactly by running KFRA (Botev et al., 2017) with a minibatch-
size of one, and then averaging the results. KFAC (Martens & Grosse, 2015), in contrast, stochas-
tically approximates the Fisher matrix, so even when run for every datapoint separately, it cannot
calculate the curvature factor exactly.

In the following, we also show figures for the adversarial experiments in which we calculate the
curvature per datapoint and without data augmentation:

Figure 6: Untargeted adversarial attack for Kronecker factored Laplace approximation with the
curvature calculated with and without data augmentation/approximating the activation Hessian.

Fig. 6 and Fig. 7 show how the Laplace approximation with the curvature estimated from 1000 ran-
domly sampled binary MNIST images and the activation Hessian calculated with a minibatch size
of 100 performs in comparison to the curvature factor being calculated without any data augmen-
tation with a batch size of 100 or exactly. We note that without data augmentation we had to use
much stronger regularisation of the curvature factors, in particular we had to add a non-negligible
multiple of the identity to the factors, whereas with data augmentation it was only needed to ensure
that the matrices are invertible. The Kronecker factored Laplace approximation reaches particularly
high uncertainty on the untargeted adversarial attack and is most robust on the targeted attack when
using data augmentation, suggesting that it is particularly well suited for large datasets and ones

12

Published as a conference paper at ICLR 2018

Figure 7: Targeted adversarial attack for Kronecker factored Laplace approximation with the curva-
ture calculated with and without data augmentation/approximating the activation Hessian.

where some form of data augmentation can be applied. The difference between approximating the
activation Hessian over a minibatch and calculating it exactly appears to be negligible.

D MEMORY AND COMPUTATIONAL REQUIREMENTS

If we denote the dimensionality of the input to layer λ as Dλ−1 and its output as Dλ, the curvature
factors correspond to the two precision matrices with Dλ−1(Dλ−1+1)

2 and Dλ(Dλ+1)
2 ‘parameters’ to

estimate, since they are symmetric. So across a network, the number of curvature directions that
we are estimating grows linearly in the number of layers and quadratically in the dimension of the
layers, i.e. the number of columns of the weight matrices. The size of the full Hessian, on the other
hand, grows quadratically in the number of layers and with the fourth power in the dimensionality
of the layers (assuming they are all the same size).

Once the curvature factors are calculated, which only needs to be done once, we use their Cholesky
decomposition to solve two triangular linear systems when sampling weights from the matrix normal
distribution. We use the same weight samples for each minibatch, i.e. we do not sample a weight
matrix per datapoint. This is for computational efficiency and does not change the expectation.

One possibility to save computation time would be to sample a fixed set of weight matrices from the
approximate posterior — in order to avoid solving the linear system on every forward pass — and
treat the networks that they define as an ensemble. The individual ensemble members can be evalu-
ated in parallel and their outputs averaged, which can be done with a small overhead over evaluating
a single network given sufficient compute resources. A further speed up can be achieved by dis-
tilling the predictive distributions of the Laplace network into a smaller, deterministic feedforward
network as successfully demonstrated in (Balan et al., 2015) for posterior samples using HMC.

E COMPLEMENTARY FIGURES FOR THE TOY DATASET

Fig. 8 shows the different Laplace approximations (Kronecker factored, diagonal, full) from the
main text without any hyperparameter tuning. The figure of the uncertainty obtained from samples
using HMC is repeated. Note that the scale is larger than in the main text due to the high uncertainty
of the Laplace approximations.

The Laplace approximations are increasingly uncertain away from the data, as the true posterior
estimated from HMC samples, however they all overestimate the uncertainty without regularisation.
This is easy to fix by optimising the hyperparameters on a validation set as discussed in the main
text, resulting in posterior uncertainty much more similar to the true posterior. As previously dis-
cussed in (Botev et al., 2017), the Hessian of a neural network is usually underdetermined as the
number of data points is much smaller than the number of parameters — in our case we have 20 data
points to estimate a 78×78 precision matrix. This leads to the full Laplace approximation vastly
overestimating the uncertainty and a bad predictive mean. Both the Kronecker factored and the di-
agonal approximation exhibit smaller variance than the full Laplace approximation as they restrict
the structure of the precision matrix. Consistently with the other experiments, we find the diagonal

13

Published as a conference paper at ICLR 2018

(a) KF Laplace (b) Diagonal Laplace

(c) Full Laplace (d) HMC

Figure 8: Toy regression uncertainty. Black dots are data points, the black line shows the underlying
noiseless function. The red line shows the deterministic prediction of the trained network, the blue
line the mean output. Each shade of blue visualises one additional standard deviation.

Laplace approximation to place more mass in low probability areas of the posterior than the Kro-
necker factored approximation, resulting in higher variance on the regression problem. This leads
to a need for greater regularisation of the diagonal approximation to obtain acceptable predictive
performance, and underestimating the uncertainty.

F PREDICTION ACCURACY

This section shows the accuracy values obtained from the different predictions methods on the feed-
forward networks for MNIST and the wide residual network for CIFAR100. The results for MNIST
are shown in Table 1 and the results for CIFAR in Table 2.

In all cases, neither MC Dropout nor the Laplace approximation significantly change the classifica-
tion accuracy of the network in comparison to a deterministic forward pass.

14

Published as a conference paper at ICLR 2018

Table 1: Test accuracy of the feedforward network trained on MNIST

Prediction Method Accuracy
FFG 98.88%
Deterministic 98.86%
MC Dropout 98.85%
Diagonal Laplace 98.85%
KF Laplace 98.80%

Table 2: Accuracy on the final 5, 000 CIFAR100 test images for a wide residual network trained
with and without Dropout.

Accuracy
Prediction Method Dropout Deterministic
Deterministic 79.12% 79.18%
MC Dropout 79.20% -
KF Laplace 79.10% 79.36%

G IMPLEMENTATION DETAILS FOR RESIDUAL NETWORKS

Our wide residual network has n=3 block repetitions and a width factor of k=8 on CIFAR100
with and without Dropout using hyperparameters taken from (Zagoruyko & Komodakis, 2016): the
network parameters are trained on a cross-entropy loss using Nesterov momentum with an initial
learning rate of 0.1 and momentum of 0.9 for 200 epochs with a minibatch size of 128. We decay
the learning rate every 50 epochs by a factor of 0.2, which is slightly different to the schedule used
in (Zagoruyko & Komodakis, 2016) (they decay after 60, 120 and 160 epochs). As the original
authors, we use L2-regularisation with a factor of 5×10−4.

We make one small modification to the architecture: instead of downsampling with 1×1 convolu-
tions with stride 2, we use 2×2 convolutions. This is due to Theano not supporting the transforma-
tion of images into the patches extracted by a convolution for 1×1 convolutions with stride greater
than 1, which we require for our curvature backpropagation through convolutions.

We apply a standard Laplace approximation to the batch normalisation parameters — a Kronecker
factorisation is not needed, since the parameters are one-dimensional. When calculating the curva-
ture factors, we use the moving averages for the per-layer means and standard deviations obtained
after training, in order to maintain independence between the data points in a minibatch.

We need to make a further approximation to the ones discussed in Section 2.2 when backpropagating
the curvature for residual networks. The residual blocks compute a function of the form res(x) =
x + fφ(x), where fφ typically is a sequence of convolutions, batch normalisation and elementwise
nonlinearities. This means that we would need to pass back two curvature matrices, one for each
summand. However, this would double the number of backpropagated matrices for each residual
connection, hence the computation time/memory requirements would grow exponentially in the
number of residual blocks. Therefore, we simply add the curvature matrices after each residual
connection.

15

	Introduction
	The Curvature of Neural Networks
	Neural Network Notation
	Kronecker Factored Second-Order Optimisation

	A Scalable Laplace Approximation for Neural Networks
	The Laplace Approximation
	Diagonal Laplace Approximation
	Kronecker Factored Laplace Approximation
	Incorporating the Prior and Regularising the Curvature Factors

	Related Work
	Experiments
	Toy Regression Dataset
	Out-of-Distribution Uncertainty
	Adversarial Examples
	Uncertainty on Misclassifications

	Conclusion
	Derivation of the Activation Hessian Recursion
	Matrix Normal Distribution
	Approximation of the Expected Activation Hessian
	Memory and Computational Requirements
	Complementary Figures for the Toy Dataset
	Prediction Accuracy
	Implementation Details for Residual Networks

