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ABSTRACT

Learning from limited exemplars (few-shot learning) is a fundamental, unsolved
problem that has been laboriously explored in the machine learning community.
However, current few-shot learners are mostly supervised and rely heavily on a
large amount of labeled examples. Unsupervised learning is a more natural proce-
dure for cognitive mammals and has produced promising results in many machine
learning tasks. In the current study, we develop a method to learn an unsupervised
few-shot learner via self-supervised training (UFLST), which can effectively gen-
eralize to novel but related classes. The proposed model consists of two alter-
nate processes, progressive clustering and episodic training. The former generates
pseudo-labeled training examples for constructing episodic tasks; and the later
trains the few-shot learner using the generated episodic tasks which further opti-
mizes the feature representations of data. The two processes facilitate with each
other, and eventually produce a high quality few-shot learner. Using the bench-
mark dataset Omniglot, we show that our model outperforms other unsupervised
few-shot learning methods to a large extend and approaches to the performances
of supervised methods. Using the benchmark dataset Market1501, we further
demonstrate the feasibility of our model to a real-world application on person re-
identification.

1 INTRODUCTION

Few-shot learning, which aims to accomplish a learning task by using very few training examples, is
receiving increasing attention in the machine learning community. The challenge of few-shot learn-
ing lies on that traditional techniques such as fine-tuning would normally incur overfitting (Wang
et al., 2018). To overcome this difficulty, a set-to-set meta-learning(episodic learning) paradigm was
proposed (Vinyals et al., 2016). In such a paradigm, the conventional mini-batch training is replaced
by the episodic training, in term of that a batch of episodic tasks, each of which having the same
setting as the testing environment, are presented to the learning model; and in each episodic task, the
model learns to predict the classes of unlabeled points (the query set) using very few labeled exam-
ples (the support set). By this, the learning model acquires the transferable knowledge (optimized
feature representations) across tasks, and due to the consistency between the training and testing
environments, the model is able to generalize to novel but related tasks. Although this set-to-set
few-shot learning paradigm has made great progress, in its current supervised form, it requires a
large number of labeled examples for constructing episodic tasks, which is often infeasible or too
expensive in practice. So, can we build up a few-shot learner in the paradigm of episodic training
using only unlabeled data?

It is well-known that humans have the remarkable ability to learn a concept when given only several
exposures to its instances, for example, young children can effortlessly learn and generalize the
concept of “giraffe” after seeing a few pictures of giraffes. While the specifics of the human learning
process are complex (trial-based, perpetual, multi-sourced, and simultaneous for multiple tasks)
and yet to be solved, previous works agree that its nature is progressive and unsupervised in many
cases (Dupoux, 2018). Given a set of unlabeled items, humans are able to organize them into
different clusters by comparing one with another. The comparing or associating process follows
a coarse-to-fine manner. At the beginning of learning, humans tend to group items based on fuzzy-
rough knowledge such as color, shape or size. Subsequently, humans build up associations between
items using more fine-grained knowledge, i.e., stripes of images, functions of items or other domain
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Figure 1: The scheme of our model UFLST, which consists of two alternate processes: clustering
and episodic training. At each round, unlabeled data points are clustered based on extracted features,
and pseudo labels are assigned according to cluster identities. After clustering, a set of episodic tasks
are constructed by sampling from the pseudo-labeled data, and the few-shot learner is trained, which
further optimizes feature representations. The two processes are repeated.

knowledge. Furthermore, humans can extract representative representations across categories and
apply this capability to learn new concepts (Wang et al., 2014b).

In the present study, inspired by the unsupervised and progressive characteristics of human learning,
we propose an unsupervised model for few-shot learning via a self-supervised training procedure
(UFLST). Different from previous unsupervised learning methods, our model integrates unsuper-
vised learning and episodic training into a unified framework, which facilitates feature extraction
and model training iteratively. Basically, we adopt the episodic training paradigm, taking advan-
tage of its capability of extracting transferable knowledge across tasks, but we use an unsupervised
strategy to construct episodic tasks. Specifically, we apply progressive clustering to generate pseudo
labels for unlabeled data, and this is done alternatively with feature optimization via few-shot learn-
ing in an iterative manner (Fig. 1). Initially, unlabeled data points are assigned into several clusters,
and we sample a few training examples from each cluster together with their pseudo labels (the
identities of clusters) to construct a set of episodic tasks having the same setting as the testing
environment. We then train the few-shot learner using the constructed episodic tasks and obtain
improved feature representations for the data. In the next round, we use the improved features to re-
cluster data points, generating new pseudo labels and constructing new episodic tasks, and train the
few-shot learner again. The above two steps are repeated till a stopping criterion is reached. After
training, we expect that the few-shot learner has acquired the transferable knowledge (the optimized
feature representations) suitable for a novel task of the same setting as in the episodic training. Us-
ing benchmark datasets, we demonstrate that our model outperforms other unsupervised few-shot
learning methods and approaches to the performances of fully supervised models.

2 RELATED WORKS

In the paradigm of episodic training, few-shot learning algorithms can be divided into two main
categories: “learning to optimize” and “learning to compare”. The former aims to develop a learning
algorithm which can adapt to a new task efficiently using only few labeled examples or with few
steps of parameter updating (Finn et al., 2017; Ravi & Larochelle, 2016; Mishra et al., 2017; Rusu
et al., 2018; Nichol & Schulman, 2018; Andrychowicz et al., 2016), and the latter aims to learn a
proper embedding function, so that prediction is based on the distance (metric) of a novel example
to the labeled instances (Vinyals et al., 2016; Snell et al., 2017; Ren et al., 2018; Sung et al., 2018;
Liu et al., 2018). In the present study, we focus on the “learning to compare” framework, although
the other framework can also be integrated into our model.

Only very recently, people have tried to develop unsupervised few-shot learning models. Hsu et al.
(2018) proposed a method called CACTUs, which uses progressive clustering to leverage feature
representations before carrying out episodic training. This is different from our model, in term of
that we carry out progressive clustering and episodic training concurrently, and the two processes
facilitate with each other. Khodadadeh et al. (2018) proposed a method called UMTRA, which uti-
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lizes the statistical diversity properties and domain-specific augmentations to generate training and
validation data. Antoniou & Storkey (2019) proposed a similar model called AAL, which uses data
augmentations of the unlabeled support set to generate the query data. Both methods are different
from our model, in term of that we use a progressive clustering strategy to generate pseudo labels
for constructing episodic tasks.

The idea of self-supervised training is to artificially generate pseudo labels for unlabeled data, which
is useful when supervisory signals are not available or too expensive (de Sa, 1994). Progressive
(deep) clustering is a promising method for self-supervised training, which aims to optimize feature
representations and pseudo labels (cluster assignments) in an iterative manner. This idea was first
applied in NLP tasks, which tries to self-train a two-phase parser-reranker system using unlabeled
data (McClosky et al., 2006). Xie et al. (2016) proposed a Deep Embedded Clustering network to
jointly learn cluster centers and network parameters. Caron et al. (2018) further proposed strategies
to solve the degenerated solution problem in progressive clustering. Fan et al. (2018) and Song et al.
(2018) applied the progressive clustering idea to the person re-identification task, both of which aim
to transfer the extracted feature representations to an unseen domain. None of these studies have
integrated progressive clustering and episodic training in few-shot learning as we do in this work.

3 METHOD

In this section, we describe the model UFLST in detail. Let us first introduce some notations. Denote
the model at the training round t as M t, {xi} the unlabeled dataset with the number of examples N ,

and {zi}t is the corresponded feature vector with dimentionalityD, which is given by fθt : x
Mt

−−→ z,
where fθt representing the feature extracter and θt the training parameters of M t. {z̃i}t and {x̃i}t
represent, respectively, the selected features and unlabeled data after removing outliers from the
clustering results, and {ỹi}t the corresponding pseudo labels.

3.1 PROGRESSIVE CLUSTERING

3.1.1 K-RECIPROCAL JACCARD DISTANCE

To cluster unlabeled data points, we adopt the k-reciprocal Jaccard distance (KRJD) metric to mea-
sure the distance between data points (Qin et al., 2011; Zhong et al., 2017), and it is done in the
feature space rather than the raw pixel space. First, we calculate the k-reciprocal nearest neighbours
of each feature point, which are given by,

R(z, k) = {zj |(zj ∈ N(z, k)) ∩ (z ∈ N(zj , k))}, (1)

where N(z, k) denotes the k nearest neighbours of z. R(z, k) imposes that z and each element of
R(z, k) are mutually k nearest neighbours of each other. Second, we compute KRJD between two
feature points, which is given by

Jij = 1− |R(zi, k) ∩R(zj , k)|
|R(zi, k) ∪R(zj , k)|

. (2)

Compared to the Euclidean distance, KRJD takes into account the reciprocal relationship between
data points, and hence is a stricter rule measuring whether two feature points matches or not. We
find that KRJD is crucial to our model, which outperforms the Euclidean metric as demonstrated in
Fig. 2 (more comparisons of two metrics are given in Appendix A).

3.1.2 DENSITY-BASED SPATIAL CLUSTERING ALGORITHM

For the clustering strategy, we choose the density-based spatial clustering algorithm (DBSCAN) (Es-
ter et al., 1996), which performs better than other methods in our model. The reasons are: 1) other
clustering methods such as k-means and hierarchical clustering are useful to find spherical shaped or
convex clusters in the embedding space, while DBSCAN works well for arbitrarily shaped clusters;
2) DBSCAN can detect outliers as noise points, which is very useful at the beginning of training
when the distribution of data points in the embedding space is highly noisy; 3) DBSCAN does not
need to specify the number of clusters to be generated, which is appealing for unsupervised learning.
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Figure 2: Comparing the performances of KRJD and the Euclidean metric. Top 10 neighbours
of a chosen query character from Omniglot are shown. Black box: the query character. Green
box: the positive characters in the neighbourhood of the query character. Red box: the negative
characters in the neighbourhood of query character. (A) The ranking result using Euclidean metric.
(B) The ranking result using KRJD. The number under each image represents its true class. KRJD
outperforms the Euclidean metric, in term of it includes more positive examples in the ranking list.

After removing noisy points (outliers) as done in DBSCAN, pseudo labels (i.e., cluster identities) of
data points {x̃i}t can be expressed as,

{ỹi}t = DBSCAN(ε,ms, J), (3)

where ε denotes the maximum distance for two points to be considered as in the same neighborhood,
ms the minimum number of points huddled together for a region to be considered as dense, and J
the KRJD matrix. The value of ε relies on the cluster density of feature points, which is set to be the
mean distance of top P minimum distances in KRJD in this study (see Appendix B).

3.2 EPISODIC TRAINING

3.2.1 CONSTRUCTING EPISODIC TASKS

After each round of clustering, we construct a number of episodic tasks, denoted as T =
{T1, T2, ..., TS} with S the number of tasks, from the pseudo-labeled data set {x̃i, ỹi}t. For each
episodic task, we randomly sample NC classes and NE examples per class. Notably, the setting of
each episodic task follows that of the test environment to be performed after training.

We will apply two different ways to implement few-shot learning (see below). One uses the proto-
type loss, which aims to learn the prototypes of each class and discriminate a novel example based
on its distances to the prototypes. In this case, we further split NE into a support set S and a query
set Q, i.e., NE = NS +NQ. Following Snell et al. (2017), we choose a larger value of NC in train-
ing than that in testing, but keeps NS the same. The other way to implement few-shot learning is
to use the triplet loss or the hardtriplet loss, which separates examples from different classes with a
positive marginm. In this case, no splitting support and query data is needed. To mine hard negative
examples in triplets, we also use a larger NC in training than that in testing.

3.2.2 LOSS FUNCTIONS

Two types of loss functions are used in the present study, and both of them are in the framework of
“learning to compare” and contribute to simple inductive bias of our model. One is the prototype
loss, which is written as

Lproto(z, cp; θ) =
exp(−‖z − cp‖22)∑
k exp(−‖z − ck‖22)

, (4)

where ck is the prototype of class k given by ck =
∑
zi∈Sk

(zi)/Sk, and z a query point. In
implementation, we choose to minimize the negative log value of Eq. 4, i.e., Llog

proto(z, ck; θ) =
− logLproto(z, ck; θ), as the log value better reflects the geometry of the loss function, making it
easy to select a learning rate to minimize the loss function.
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Algorithm 1 Unsupervised Few-shot Learning via Self-supervised Training (UFLST)
Input: Unlabeled dataset {xi}, initialized model parameters θ0
Output: Trained model parameters θT

1: t = 0
2: repeat
3: Clustering:
4: Extracting features {zi}t of {xi} using the feature extractor fθt .
5: Computing K-reciprocal nearest neighbours R(zi, k)t of each zi.
6: Calculating Jaccard distance matrix J based on {R(zi, k)}t.
7: Clustering data using DBSCAN and generating pseudo labels {yi}t.
8: Removing outliers and obtaining the pseudo-labeled dataset {x̃i, ỹi}t.
9: Episodic Training:

10: s = 0
11: repeat
12: Constructing a episodic task T s by randomly sampling NC classes with NE examples per

class from {x̃i, ỹi}t.
13: Updating model parameters θt by training the few-shot learner on T s.
14: s = s+ 1
15: until s = S
16: t = t+ 1
17: until t = T

The other is the triplet loss (Weinberger & Saul, 2009), which has been widely used in face recogni-
tion and image retrieval. The triplet loss Ltriplet consists of several triplets, each of which includes
a query feature z, a positive feature z+ and a negative feature z−, and is written as

Ltriplet(z, z
+, z−; θ) = max(0, ‖z − z+‖22 − ‖z − z−‖22 +m), (5)

where m controls the margin of two classes, and the hinge term plays the role of correcting triplets,
so that the difference between the similarities of positive and negative examples to the query point is
larger than a marginm. However, in the above form, positive pairs in those “already correct” triplets
will no longer be pulled together due to the hard cutoff. We therefore replace the hinge term by a
soft-margin formulation, which gives

Ltriplet−SM (z, z+, z−; θ) = log
[
1 + exp(‖z − z+‖22 − ‖z − z−‖22 +m)

]
. (6)

Eq. 6 is similar to Eq. 5, but it decays exponentially instead of having a hard cutoff and tends to be
numerically more stable (Hermans et al., 2017) (see Appendix C for more details).

We find that in general our model achieves a better performance using the prototype loss than using
the triplet loss. However, by including hard example mining when constructing triplets, referred
to as the hardtriplet loss hereafter, the model performance is improved significantly and becomes
better that using the prototype loss. The relationships between these loss functions are analyzed in
Appendix D. The pseudo code of our model is summarized in Algorithm 1.

4 EXPERIMENTS

4.1 DATASETS

We evaluate our model on two benchmark datasets, which are Omniglot (Lake et al., 2015) and
Market1501 (Zheng et al., 2015).

Omniglot contains 1623 different handwritten characters from 50 different alphabets. There are 20
examples in each class and each of them was drawn by a different human subject via Amazon’s
Mechanical Turk. Following Vinyals et al. (2016), we split data into two parts: 1200 characters for
training and 423 for testing, but we did not augment data with rotations (this is unnecessary in our
model), and instead of resizing images to 28× 28, we resized them to 32× 32.

Market-1501 is a person re-identification (Re-ID) dataset containing 32668 images with 1501 iden-
tities captured from 6 cameras. The dataset is split into three parts: 12936 images with 751 identities
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forming the training set, 19732 images with 750 identities forming the gallery set, and another 3368
images forming the query set. All images were resized to 256×128. Except normalization, no other
pre-processing was applied.

4.2 IMPLEMENTATION DETAILS

When training on the Omniglot dataset, we chose the model architecture to be the same as that
in Vinyals et al. (2016) , which consists of four stacked layers. Each layer comprises 64-filter 3× 3
convolution, followed by a batch normalization, a ReLU nonlinearity, and 2×2 max-pooling. When
training on the market1501 dataset, due to high variances of pose and luminance, we chose to use a
highly expressive model (Xiong et al., 2018), which consists of a Resnet50 pretrained on ImageNet
as a backbone, and a batch normalization layer after the global max-pooling layer to prevent overfit-
ting. Our evaluation protocol on market1501 is different from that in Zheng et al. (2015), where they
reported Cumulative Matching Characteristic (CMC) and the mean average precision (mAPs); while
we consider the performance of 1-shot learning, which mimics the typical single query condition in
a person Re-ID task.

When training with the triplet loss, we set the margin between positive and negative examples to be
0.5, and the number of training rounds T = 20. To avoid overfitting, the model is fine-tuned for
only 50 epochs in each round. We used Adam with momentum to update the model parameters, and
the learning rate is set to 0.005 with an exponential decay after 25 epochs. The mini-batch size is
128, which consists of 32 classes and 4 examples per class in each episodic task. When constructing
triplets with hard example mining, we didn’t mine hard negative examples across the whole dataset
which is infeasible, rather we did only in the current episodic task. When training with the prototype
loss, we used more classes (higher way) during training (NC = 60 in Omniglot and NC = 30 in
Market1501), which leads to better performances as empirically observed in Snell et al. (2017).
Other hyper-parameters are set to be the same as training with the triplet loss.
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Figure 3: Behaviors of progressive clustering. (A) Visualizing clustering results over training rounds
by T-SNE. 10 characters from the Futurama alphabets in the Omniglot dataset were selected. (B)
NMI vs. training round. (C) Classification accuracy vs. training round.

4.3 PERFORMANCE OF PROGRESSIVE CLUSTERING

We first check the behavior of progressive clustering via visualizing 10 hand-written characters from
the Futurama alphabets in the Omniglot dataset using T-SNE (Maaten & Hinton, 2008). Overall, we
observe that as learning progresses, the organization of data points is improved continuously, indicat-
ing that our model “discovers” the underlying structure of data gradually. As illustrated in Fig. 3A,
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initially, all data points are intertwined with each other and no structure exists. Over training, clus-
ters gradually emerge, in the sense of that data points from the same class are grouped together and
the margins between different classes are enlarged. Appendix E presents a more detailed illustra-
tion of the clustering process. We quantitatively measure the clustering quality by computing the
Normalized Mutual Information (NMI) between real labels {ŷi}t (i.e., the ground truth) and pseudo
labels {ỹi}t, which is given by,

NMI
(
{ŷi}t, {ỹi}t

)
=

I({ŷi}t, {ỹi}t)√
H({ŷi}t)H({ỹi}t)

, (7)

where I(·, ·) is the mutual information between {ŷi}t and {ỹi}t, and H(·) the entropy. The value
of NMI lies in [0, 1], with 1 standing for perfect alignment between two sets. Note that NMI is
independent of the permutation of labeling orders. As shown in Fig. 3B, the value of NMI increases
with the training round and gradually reaches to a high value close to 1. Remarkably, the value of
NMI well predicts the classification accuracy of the learning model (comparing Fig. 3B and 3C).
These results strongly suggest that the combination of progressive clustering and episodic training in
our model is able to discover the underlying structure of data manifold and extract the representative
features of data points necessary for the few-shot classification task.

4.4 RESULTS ON OMNIGLOT

Table 1 presents the performances of our model on the Omniglot dataset compared with other meth-
ods. We note that using the triplet loss, our model already outperforms other state-of-the-art unsu-
pervised few-shot learning methods, including CACTUs (Hsu et al., 2018), UMTRA (Khodadadeh
et al., 2018), and AAL (Antoniou & Storkey, 2019), to a large extend. Using the prototype loss, the
performance of our model is further improved. The best performance of our model is achieved when
using the hardtriplet loss. Remarkably, the best performance of our model approaches to that of two
supervised models, which are the upper bounds for unsupervised methods.

5-way Acc. 20-way Acc.
1-shot 5-shot 1-shot 5-shot

UMTRA (Khodadadeh et al., 2018) 77.80 92.74 62.20 77.50
CACTUs-MAML (Hsu et al., 2018) 68.84 87.78 48.09 73.36
CACTUs-ProtNets (Hsu et al., 2018) 68.12 83.58 47.75 66.27

AAL-MAML++ (Antoniou & Storkey, 2019) 88.40 97.96 70.21 88.32
AAL-ProtoNets (Antoniou & Storkey, 2019) 84.66 89.14 68.79 74.28

UFLST-Tripletloss 88.68 96.65 73.21 90.11
UFLST-Prototypeloss 96.51 99.23 90.27 97.22

UFLST-HardTripletloss 97.03 99.19 91.28 97.37
MAML (Finn et al., 2017) (Supervised) 98.7 99.9 95.8 98.9

ProtoNets (Snell et al., 2017) (Supervised) 98.8 99.7 96.0 98.9

Table 1: Performances of different unsupervised few-shot learning models on Omniglot under dif-
ferent settings.

4.5 RESULTS ON MARKET1501

We also applied our model to a real-world application on person Re-ID. In reality, labeled data is
extremely lacking for person Re-ID, and unsupervised learning becomes crucial. Table 2 presents
the performances of our model on the benchmark datset Market1501. There is no reported unsu-
pervised few-shot learning result on this dataset in the literature. Rahimpour & Qi (2018) report
the supervised results under the 100-way 1-shot scenario. To evaluate our model, we trained a su-
pervised model adapted from Xiong et al. (2018). We find that the model performance using the
hardtriplet loss is much better than that using the prototype loss. This is due to that large variations
in the appearance and environment of detected pedestrians lead to that noisy samples may be chosen
as the prototypes, which deteriorates learning; while the hardtriplet loss focuses on correcting highly
noisy examples that violate the margin and hence alleviates the problem. Overall, we observe that
our model achieves encouraging performances compared to the supervised method, in particular,
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in the scenario of low-way classification, which suggest that our model is feasible in practice for
person Re-ID when annotated labels are not unavailable.

5-way 10-way 15-way 20-way 50-way 100-way
UFLST-Tripetloss 72.8 63.0 56.2 53.4 42.5 35.4

UFLST-Prototypeloss 88.3 81.2 75.8 73.0 62.5 54.0
UFLST-HardTripletloss 91.4 86.9 81.6 80.4 70.1 62.1
Our supervised model 96.8 94.7 92.5 91.1 83.7 77.3

ARM (Rahimpour & Qi, 2018) - - - - - 76.99

Table 2: Performances of our model on Market1501 with different settings. The supervised model
is adapted from Xiong et al. (2018). Only 1-shot learning is considered to mimic the typical single
query condition in person Re-ID applications.

4.6 EFFECT OF THE SIZE OF THE UNLABELED DATASET

We also evaluate how our model relies on the number of unlabeled examples. Table 3 presents the
results on the Omniglot dataset with varying number of training examples. Overall, the model per-
formance is improved when the number of training examples increases. Notably, by using only a
quarter of the unlabeled data, our model already achieves performances comparable to other unsu-
pervised few-shot learning methods (comparing UFLST-300 with those in Table 1). This demon-
strates the feasibility of our model when the number of unlabeled examples is not large.

5-way Acc. 20-way Acc.
Number of Classes 1-shot 5-shot 1-shot 5-shot

UFLST-200 82.83 92.97 65.85 83.73
UFLST-300 86.03 95.05 70.52 87.60
UFLST-400 91.30 97.27 78.64 92.50
UFLST-500 95.27 98.86 87.02 96.05
UFLST-1200 97.03 99.19 91.28 97.37

Table 3: Performances of our model on Omniglot using different numbers of unlabeled training
examples. The hardtriplet loss is used.

5 DISCUSSION

In this study, we have proposed an unsupervised model UFLST for few-shot learning via self-
training. The model consists of two processes, progressive clustering and episodic training, which
are executed iteratively. Other unsupervised methods also consider the two processes, but they are
performed separately, in term of that unsupervised clustering for feature extraction is accomplished
before applying episodic learning. This separation has a shortcoming, since there is no guarantee
that the extract features by unsupervised clustering are suitable for the followed few-shot learning.
Here, our model carries out the two processes in an alternate manner, which allows them to facilitate
with each other, such that feature representation and model generalization are optimized concur-
rently, and eventually it produces a high quality few-shot learner. To our knowledge, our work is
the first one that integrates progressive clustering and episodic training for unsupervised few-shot
learning.

On the Omniglot dataset, our model outperforms other state-of-the-art unsupervised few-shot learn-
ing methods to large extend and approaches to the performances of supervised modes. On the
Market1501 dataset, our model also achieves encouraging performances compared to a supervised
method. The high effectiveness of our model makes us think about why it works. Few-shot learn-
ing in essence is to extract good representations of data suitable for prediction by using very few
training examples. To resolve this challenge, the episodic learning paradigm aims to create a set
of episodic few-shot learning scenarios having the same setting as the testing environment, so that
the model learns to extract good feature representations that are transferable to novel but related
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tasks. To this end, the real labels of data are helpful but not essential, and we can construct pseudo-
labeled examples to train the model. But crucially, as demonstrated by this study, the construction
of pseudo-labeled examples must go along with the episodic training, so that the extracted features
of data really matches the few-shot learning task. Notably, this unsupervised and progressive way
of learning agrees with the nature of human on few-shot learning.
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Michael Steinbach, Levent Ertöz, and Vipin Kumar. The challenges of clustering high dimensional
data. In New directions in statistical physics, pp. 273–309. Springer, 2004.

Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip HS Torr, and Timothy M Hospedales.
Learning to compare: Relation network for few-shot learning. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 1199–1208, 2018.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks for one
shot learning. In Advances in neural information processing systems, pp. 3630–3638, 2016.

Jiang Wang, Yang Song, Thomas Leung, Chuck Rosenberg, Jingbin Wang, James Philbin, Bo Chen,
and Ying Wu. Learning fine-grained image similarity with deep ranking. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 1386–1393, 2014a.

Rui Wang, Jun-Yun Zhang, Stanley A Klein, Dennis M Levi, and Cong Yu. Vernier perceptual
learning transfers to completely untrained retinal locations after double training: A piggybacking
effect. Journal of Vision, 14(13):12–12, 2014b.

Yu-Xiong Wang, Ross Girshick, Martial Hebert, and Bharath Hariharan. Low-shot learning from
imaginary data. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 7278–7286, 2018.

Kilian Q Weinberger and Lawrence K Saul. Distance metric learning for large margin nearest neigh-
bor classification. Journal of Machine Learning Research, 10(Feb):207–244, 2009.

10

http://arxiv.org/abs/1806.09613


Under review as a conference paper at ICLR 2020

Junyuan Xie, Ross Girshick, and Ali Farhadi. Unsupervised deep embedding for clustering analysis.
In International conference on machine learning, pp. 478–487, 2016.

Fu Xiong, Yang Xiao, Zhiguo Cao, Kaicheng Gong, Zhiwen Fang, and Joey Tianyi Zhou. Towards
good practices on building effective cnn baseline model for person re-identification. arXiv preprint
arXiv:1807.11042, 2018.

Bo Yang, Xiao Fu, Nicholas D Sidiropoulos, and Mingyi Hong. Towards k-means-friendly spaces:
Simultaneous deep learning and clustering. In Proceedings of the 34th International Conference
on Machine Learning-Volume 70, pp. 3861–3870. JMLR. org, 2017.

Liang Zheng, Liyue Shen, Lu Tian, Shengjin Wang, Jingdong Wang, and Qi Tian. Scalable person
re-identification: A benchmark. In Proceedings of the IEEE international conference on computer
vision, pp. 1116–1124, 2015.

Zhun Zhong, Liang Zheng, Donglin Cao, and Shaozi Li. Re-ranking person re-identification with
k-reciprocal encoding. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1318–1327, 2017.

A K-RECIPROCAL JACCARD DISTANCE (KRJD)

A clustering algorithm operating on the raw data space or a shallow linear embedded space is known
to be ineffective when the dimensionality of data is high, suffering from the so called “curse of
dimensionality” problem (Steinbach et al., 2004). Recent studies on learning representations with
deep neural networks have made promising progress for clustering algorithms (Xie et al., 2016;
Caron et al., 2018; Yang et al., 2017; Shaham et al., 2018). Although these studies alleviate the
problem of choosing data representations, it still needs to choose a suitable distance metric. For
some datasets, such as MNIST (LeCun et al., 1998) and STL (Coates et al., 2011), it is adequate to
use the Euclidean distance in the feature space to cluster data well. However, for other datasets, such
as Omniglot (Lake et al., 2015) and Market1501 (Zheng et al., 2015), where the number of classes is
large but the number of examples in each class is small, the distribution of data points in the feature
space is quite uneven. In such a case, the Euclidean or Cosine distance does not work well. To solve
this problem, we adopt to use the k-reciprocal Jaccard distance (KRJD) metric originally proposed
for object retrieval Qin et al. (2011) to measure the distance between two data points..

The Jaccard distance compares the members of two sets to judge which elements are shared or
distinct. For two sets A and B, the Jaccard distance is calculated to be,

J(A,B) =
|A ∩B|
|A ∪B|

, (8)

where the numerator is the number of elements shared by two sets, and the denominator the number
of elements in either set. The Jaccard distance is a measurement of the similarity between two sets
of data and is in the range of [0, 1], where the lower its value, the more similar two sets are.

The Jaccard distance is originally used for two sets with discrete elements. To apply to a group of
data points in the feature space, we adopt KRJD from Zhong et al. (2017). Denote the group of
data points as Z, where each row is the feature of a data point. KRJD transfers Z into a discrete
k-reciprocal ranking list R by first calculating the k nearest neighbours (KNN) of each element in Z
and then re-ranking them. Once R is available, we apply Eq. 8 to calculate the Jaccard distance of
Z. Denote the k nearest neighbours of the feature point zi to be

N(zi, k) = {z0i , z1i , ..., zki }. (9)
Then, the k-reciprocal nearest neighbours (KRNN) of zi is obtained by re-ranking the KNN list,
which is written as,

R(zi, k) = {zj |(zj ∈ N(zi, k)) ∩ (zi ∈ N(zj , k))}. (10)

Compared to KNN, KRNN is a more strict and accurate measurement of ranking, so that more
positive examples appear in the top k ranking list, as demonstrated in Fig. 4 and Fig. 5. After
obtaining KRNN of each point, we calculate KRJD between two points by

Jij = 1− |R(zi, k) ∩R(zj , k)|
|R(zi, k) ∪R(zj , k)|

. (11)
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(A)

(B)

(C)

Figure 4: Top 10 neighbours of a chosen query character from Omniglot dataset. Black box: the
query character. Green box: the positive characters in the neighbourhood of the query character.
Red box: the negative characters in the neighbourhood of query character. The number under each
image represents its true class. Upper panels in (A), (B) and (C): the ranking result using the Eu-
clidean metric. Lower panels in (A), (B) and (C): the ranking result using KRJD. The KRJD metric
outperforms the Euclidean metric, in term of it includes more positive examples in the ranking list.
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(A)

(B)

(C)

Figure 5: Top 10 neighbours of a chosen query image from the Market1501 dataset. Black box: the
query image. Green box: the positive images in the neighbourhood of the query image. Red box: the
negative images in the neighbourhood of query image. The number under each image represents its
true class. Upper panels in (A), (B) and (C): the ranking results using the Euclidean metric. Lower
panels in (A), (B) and (C): the ranking results using KRJD.
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B THE PARAMETER OF ε IN DBSCAN

The parameter ε in DBSCAN specifies how close two points should be for them to be considered as
in the same cluster, and its value relies heavily on the underlying cluster density of feature points.
In the present study, we choose ε to be the mean of top P minimum distances of the KRJD matrix
J , which is given by,

ε =

∑
top(J, P )

P
. (12)

To determine the value of P , we set P = ρ|{x̃i}|, where ρ is a hyper-parameter representing the
portion of points selected over the whole set {x̃i}. Increasing ρ equals to increasing ε, which implies
that more points will be assigned into a single cluster, and consequently this decreases the number
of clusters obtained. Decreasing ρ has the opposite effect.

Table 4 presents the effects of different values of ρ on the model performances. We see that when ρ
is small, the performance is not good, since there are too many clusters and the number of examples
in each cluster is small, which makes it hard to construct episodic tasks having enough examples to
train the model; when the value of ρ is too large, the model performance is also bad, since in this
case, it is hard to generate sufficiently different episodic tasks. For large ρ, we may reduce the value
of NC to alleviate the problem (note that in our model, the learning scenario affects the clustering
behavior).

5-way Acc. 20-way Acc.
1-shot 5-shot 1-shot 5-shot

ρ = 1× 10−5, NC = 60 78.88 92.73 59.49 81.50
ρ = 2× 10−5, NC = 60 82.85 94.82 64.83 85.61
ρ = 3× 10−5, NC = 60 91.43 97.79 78.48 93.04
ρ = 4× 10−5, NC = 60 97.57 99.35 92.62 97.82
ρ = 5× 10−5, NC = 60 97.03 99.19 91.28 97.37
ρ = 6× 10−5, NC − 60 97.64 99.34 93.39 98.06
ρ = 7× 10−5, NC = 60 58.35 79.24 34.17 58.33
ρ = 8× 10−5, NC = 60 58.10 78.95 33.90 58.12
ρ = 7× 10−5, NC = 30 97.16 99.12 91.28 97.48
ρ = 8× 10−5, NC = 20 97.49 99.25 92.14 97.72

Table 4: Effects of the ρ value in DBSCAN on model performances. The hyper-parameters are given
in Sec. 4.2.

C COMPARING THE TRIPLET LOSS AND THE SOFT-MARGIN TRIPLET LOSS

In Sec. 3.2.2, we propose to use the soft-margin version of the triplet loss to replace the conventional
one with the hard cutoff. This concerns that when the hard cutoff triplet loss stops to pull together
those “already correct” positive pairs, the soft-margin triplet loss continues to optimize those pairs.
We also empirically find that the soft-margin triplet loss tends to be numerically more stable during
training. Table 5 presents the model performances using the two loss functions.

D RELATIONSHIPS BETWEEN THE LOSS FUNCTIONS

In Sec. 4.4 and 4.5, we observe that the model trained with the prototype loss has a better perfor-
mance than that with triplet loss, and by mining hard examples in the triplets, using the hardtriplet
loss, the model achieves the best performance. Here, we give analysis on the relationships between
these loss functions.
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5-way Acc. 20-way Acc.
1-shot 5-shot 1-shot 5-shot

Omniglot
Hard-cutoff(m=0.5) 95.22 99.00 88.14 96.48
Hard-cutpff(m=1.0) 96.44 99.15 89.80 96.99
Soft-margin(m=0.5) 96.60 99.15 90.19 97.14
Soft-margin(m=1.0) 97.03 99.19 91.28 97.37

Market1501
Hard-cutoff(m=0.5) 91.00 98.07 77.84 93.88
Hard-cutoff(m=1.0) 91.91 98.10 79.70 93.78
Soft-margin(m=0.5) 93.70 98.49 82.70 95.00
Soft-margin(m=1.0) 92.34 98.32 80.95 94.41

Table 5: Comparison of the soft-margin triplet loss and the hard cutoff triplet loss on two datasets
with margin m = 0.5 and m = 1.0.

Consider a NC-way 1-shot episodic learning scenario, where a prototype ck is the support point zk,
the prototypical loss is written as

Llog
proto(z, zk; θ) = − log

exp(−‖z − zp‖22)∑
k exp(−‖z − zk‖22)

,

= − log
1

1 +
∑
k 6=p exp(‖z − zp‖22 − ‖z − zk‖22)

,

= log

1 +∑
k 6=p

exp(‖z − zp‖22 − ‖z − zk‖22)

 .
(13)

During training, we construct each episodic task by randomly sampling NC classes and NE exam-
ples per class. When using the prototype loss (Eq. 13), a query point z is pulled towards the corre-
sponded support point zp, and meanwhile, z is pushed away from all other support points {zk}k 6=p;
whereas, when using the triplet soft-margin loss (Eq. 6), the query point z is only pushed away from
one of other support points z−. This implies that in each update, Ltriplet−SM only interacts with a
single negative example from one of other classes and ignores many other negative examples. When
NC is small, optimizing the model with the two loss functions has no big difference. For example,
when NC = 2 and m = 0, Eq. 6 and 13 become exactly the same. However, when NC becomes
larger, the possible number of triplets grows cubically with NE and linearly with NC , which makes
it difficult to select non-trivial triplets. In such a situation, optimizing on these uninformative triplets
leads to the problem that the model gets stuck into a local optimum and suffers slow convergence.
This justifies why the model has a inferior performance using the triplet loss compared to using the
prototype loss.

The inefficiency of the conventional triplet loss motivate us to mine hard triplets to alleviate its
shortcomings (Wang et al., 2014a; Cui et al., 2016; Hermans et al., 2017). Mining hard negative
examples across the whole dataset is infeasible, since it is too time-costing to evaluate all embedding
vectors in the deep learning framework. So, we choose to do hard negative example mining within
a batch, i.e., we select the hardest positive and the hardest negative examples when forming the
triplets, and obtain

Lhardtriplet−SM = log

[
1 + exp( max

zp∈{z+}
‖z − zp‖22 − min

zn∈{z−}
‖z − zn‖22 +m)

]
. (14)

Compared to Eq. 13 which pushes a query point away from all other support points from differ-
ent classes, Eq. 14 focuses on pulling the hardest positive example closer and pushing the hardest
negative example away at the same time. By this, we get a better performance than that using the
prototype loss.

Another improvement can be made by using m > 0, as a positive margin makes different classes
become more separable. At the beginning of training, when data points are intertwined with each
other, a positive margin push points belonging to different pseudo classes away quicker than m = 0.
Table 6 shows the effect of m value on the model performance.
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5-way Acc. 20-way Acc.
margin 1-shot 5-shot 1-shot 5-shot
m = 0 96.59 99.14 90.35 97.11
m = 0.3 96.09 98.95 89.43 96.65
m = 0.5 96.60 99.15 90.19 97.14
m = 1.0 97.03 99.19 91.28 97.37
m = 3.0 96.00 98.96 88.30 96.56

Table 6: The model performances using the hardtriplet loss with different m values on Omniglot.

E CLUSTERING BEHAVIORS OF DBSCAN

Following Fig. 3 in the main text, we further illustrate the clustering behavior of DBSCAN on Om-
niglot in more detail. As shown in Fig. 6, at the first few rounds of learning, feature points {zi}t are
unstructured and noisy, they are intertwined with each other, and DBSCAN tends to cluster all data
points into a few dominant clusters. Along with learning, the number of clusters keeps increasing,
and the number of data points in each cluster becomes more evenly distributed. Eventually, the
number of clusters generated at the final training round is around 1100, which is close to the the real
number of 1200 in the Ominglot dataset, indicating that our model, which combining progressive
clustering and episodic learning, is able to discover the underlying structure of the data manifold.

Round1, # of clusters: 586

Round2, # of clusters: 709

Round3, # of clusters: 790

Round4, # of clusters: 832

Round5, # of clusters: 895

Clusters

C
o

u
n

ts

Figure 6: Clusters generated by DBSCAN over training rounds. The results of the first 5 rounds are
shown. For the convenience of visualization, we only display 50 clusters and the number of data
points in each of them.

F THE FREQUENCY OF CLUSTERING DURING TRAINING

Number of Update Epochs 1 2 5 10 20 30 40
UFLST-Tripetloss 97.43 97.51 96.91 97.03 97.44 97.80 97.93

Table 7: The frequency of clustering during training. Experiments are carried on the Omniglot
dataset. “Number of Update Epochs” means how many epochs are taken before the clustering.
Experiments are carried out on Omniglot dataset, under the 5-way 1-shot learning scenario.

Here we investigate the effect of clustering frequency during training. That is, how many epochs
are taken before updating the clustering in each round? We find that our model is very robust to
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the frequency term. We get 97.43% accuracy under the 5-way 1-shot scenario when the model is
trained with an extremely low clustering frequency value, e.g., only trained with one epoch before
clustering. Also, we get 97.93% when trained with 40 epoch before clustering (Table 7).

G RESULTS ON MINI-IMAGENET

(5,1) (5,5) (5,20) (5, 50)
Training fram scratch 25.17 33.90 39.56 41.45

BiGAN knn-nearest neighbors 25.56 31.10 37.31 43.60
BiGAN linear classifier 27.08 33.91 44.00 50.41

BiGAN MLP with dropout 22.91 29.06 40.06 48.36
BiGAN cluster matching 24.63 29.49 33.89 36.13
BiGAN CACTUs MAML 36.24 51.28 61.33 66.91

BiGAN CACTUs ProtoNets 36.62 50.16 59.56 63.27
DeepCluster knn-nearest neighbors 28.90 42.25 56.44 63.90

DeepCluster linear classifier 29.44 39.79 56.19 65.28
DeepCluster MLP with dropout 29.03 39.67 52.71 60.95
DeepCluster cluster matching 22.20 23.50 24.97 26.87
DeepCluster CACTUs MAML 39.90 53.97 63.84 69.64

DeepCluster CACTUs ProtoNets 39.18 53.36 61.54 63.55
UMTRA without data Augmentation 26.49 - - -

UMTRA+Shift+random flip 30.16 - - -
UMTRA+Shift+random flip +randomly change to grayscale 32.80 - - -

UMTRA+Shift+random flip+random rotation+color distortions 35.09 - - -
UMTRA+AutoAugment 39.93 50.73 61.11 67.15
AAL-MAML+++ CHV 33.06 40.75 - -

AAL-MAML+++ CHVR 33.21 40.34 - -
AAL-MAML+++ CHV + CUT 33.34 39.44 - -

AAL-MAML+++ CHV + DROP 30.86 40.41 - -
AAL-MAML+++ CHVW 33.30 46.98 - -

AAL-MAML+++ CHVWG 34.57 49.18 - -
AAL-MAML+++ CHVR + CUT 33.09 40.11 - -

AAL-MAML+++ CHVR + DROP 31.70 39.38 - -
AAL-MAML+++ CHV + DROP + CUT 31.55 38.76 - -

AAL-MAML+++ CHVR + DROP + CUT 31.44 39.87 - -
AAL-ProtoNets+ CHV 37.67 40.29 - -

AAL-ProtoNets+ CHV + CUT 36.38 40.89 - -
AAL-ProtoNets+ CHV + CUT + DROP 33.13 36.64 - -

AAL-ProtoNets+ CHVR + CUT + DROP 31.93 36.45 - -
AAL-ProtoNets+ CHVR + CUT 33.92 39.87 - -
AAL-ProtoNets+ CHV + DROP 32.12 36.12 - -

AAL-ProtoNets+ CHVR + DROP 31.13 36.83 - -
AAL-ProtoNets+ CHVR 34.28 39.83 - -

UFLST without data Augmentation 33.77 45.03 53.35 56.72
MAML (Finn et al., 2017) (Supervised) 46.81 62.13 71.03 75.54

ProtoNets (Snell et al., 2017) (Supervised) 46.56 62.29 70.05 72.04

Table 8: Performances of different unsupervised few-shot learning models on Mini-ImageNet under
different settings. The accuracy with std of our model is :33.77% ± 0.70%, 45.03% ± 0.73%,
53.35%± 0.59%, 56.72%± 0.67% on 5-way 1-shot, 5-way 5-shot, 5-way 20-shot, 5-way 50-shot,
respectively.

Overall, training a few shot learner on the Mini-ImageNet dataset under the unsupervised setting
is very tricky. All the three aforementioned approaches adopt domain specific knowledge and data
augmentation tricks in their training. For example, UMTRA uses the statistical likelihood of picking
different classes for the training data of Ti in case of K = 1 and large number of classes, and
an augmentation function T fors the validation data. CACTUs relies on an unsupervised feature
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learning algorithm to provide a statistical likelihood of difference and sameness in the training and
validation data of Ti. The choice of the right augmentation function for UMTRA and AAL, the right
feature embedding approach for CACTUs, and the other hyper-parameters have a strong impact on
the performance.

The model architecture trained on the Mini-ImageNet dataset is exactly the same as on the Omniglot
dataset, i.e., the 4-layer convnet described in Sec.4.2. We only report the results by training without
any data augmentation. We achieve 33.77% and 44.03% under the 5-way 1-shot and 5-way 5-shot
scenario respectively. Compare to the model training from scratch (25.17% under the 5-way 1-shot
scenario), our model has a gain of 8.6%. The best 5-way 1-shot accuracy in the CACTUs model
is 39.18%. However, comparing to the CACTUs model is unfair because they used the AlexNet or
the VGG16 to first learn a very good feature embedder for downstream feature clustering process,
while our model is only composed of a 4-layer convenet. Both of the best results in the UMTRA
model and the ALL model are acquired by using fancy data augmentations, such as shifting, random
flipping, color distortions, image-Warping and image-pixel dropout (see Khodadadeh et al. (2018);
Antoniou & Storkey (2019) for more details) while we don’t use any data augmentation tricks here.
It is noteworthy that our model outperforms the UMTRA trained without any data augmentation to
a large extent (33.77% vs. 26.49%).

Compared to the results on Omniglot and Market1501, the results on the Mini-ImageNet is not the
state-of-the-art. The underline reason may come from three aspects. (1) For a fair comparison to
other unsupervised few-shot learning models, we use the 4-layer convnet. However, the in-class
variations of the Mini-ImageNet is very large, which is hard for such a small network to capture
the semantic meanings of images. (2) In unsupervised learning, it is hard to choose suitable hyper-
parameters, such as the clustering frequency, DBSCAN-related parameters, and the learning rate. (3)
The ground truth for the class number of Mini-ImageNet is small 1(64 for training, 16 for validating
and 20 for testing). But, for constructing episodic tasks, we prefer to over-segment the dataset,
and this over-segmentation tend to assign data belonging to the same class into different clusters,
leading to a degenerate performance. Our model performs very well on Omniglot and Maket1501,
which may be attributed to that both datasets have large class numbers and the number of examples
in each class is small. This type of dataset is very suitable for constructing episodic tasks to learn
a few-shot learner. In our future work, we will explore more domain specific knowledge and data
augmentation strategies to improve the accuracy on the MiniImageNet dataset and extend our model
to more datasets.
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