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ABSTRACT

A key problem in neuroscience, and life sciences more generally, is that data is
generated by a hierarchy of dynamical systems. One example of this is in in-vivo
calcium imaging data, where data is generated by a lower-order dynamical system
governing calcium flux in neurons, which itself is driven by a higher-order dynam-
ical system of neural computation. Ideally, life scientists would be able to infer
the dynamics of both the lower-order systems and the higher-order systems, but
this is difficult in high-dimensional regimes. A recent approach using sequential
variational auto-encoders demonstrated it was possible to learn the latent dynam-
ics of a single dynamical system for computations during reaching behaviour in
the brain, using spiking data modelled as a Poisson process. Here we extend this
approach using a ladder method to infer a hierarchy of dynamical systems, al-
lowing us to capture calcium dynamics as well as neural computation. In this
approach, spiking events drive lower-order calcium dynamics, and are themselves
controlled by a higher-order latent dynamical system. We generate synthetic data
by generating firing rates, sampling spike trains, and converting spike trains to
fluorescence transients, from two dynamical systems that have been used as key
benchmarks in recent literature: a Lorenz attractor, and a chaotic recurrent neural
network. We show that our model is better able to reconstruct Lorenz dynamics
from fluorescence data than competing methods. However, though our model can
reconstruct underlying spike rates and calcium transients from the chaotic neural
network well, it does not perform as well at reconstructing firing rates as basic
techniques for inferring spikes from calcium data. These results demonstrate that
VLAEs are a promising approach for modelling hierarchical dynamical systems
data in the life sciences, but that inferring the dynamics of lower-order systems
can potentially be better achieved with simpler methods.

1 INTRODUCTION

Many datasets in the life sciences are generated by a hierarchy of dynamical systems, wherein
lower-order dynamical systems that directly generate the data are driven by higher-order dynamical
systems that are not observable. This problem is outlined in figure 1A, in which noisy observations
x depend on the state z1 of a low-order dynamical system that is perturbed by inputs u1. The state
of this dynamical system is also coupled to the state z2 of a higher-order dynamical system, which
can be perturbed independently by inputs u2.

One example of such a system in in-vivo two-photon calcium imaging from neuroscience. Calcium
imaging provides systems neuroscientists with the ability to observe the activity of hundreds of
neurons simultaneously during behavioural experiments. Such experiments have allowed neurosci-
entists to ask questions about the underlying computations and algorithms that neural circuits are im-
plementing in perception, decision-making, memory, and many other processes. Such experiments
can be characterized as observing a hierarchical dynamical system (Fig 1B) in which measurable
calcium fluorescence is primarily determined by dynamics based on voltage-gated calcium channels
and calcium binding to fluorescence dyes, and the rate of fluorescence transients controlled by the
underlying computation.
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Figure 1: A) Hierarchy of dynamical systems, B) Schema of calcium and Lorenz dynamics, C)
Schema of our hierarchical model. Latent dynamics model in blue, spike inference and calcium
dynamics model in red.

Recent applications of sequential variational autoencoders to neural data analysis has seen great
success in inferring underlying computations in populations of cells in macaque and human motor
cortex Pandarinath et al. (2018). By characterizing neural computation as low-dimensional dy-
namic factors in a non-hierarchical dynamical systems, Pandarinath et al. (2018) showed that these
dynamic factors trained to generate the inhomogeneous intensity functions explaining the rate of
spikes assumed to follow a Poisson process. Crucially, these low-dimensional factors could also
decode reaching behaviour of macaques and humans with much higher fidelity than any other di-
mensionality reduction method.

Although this is a significant advance in our ability to analyze neural data in the form of spikes
trains, two-photon calcium imaging poses the additional problem of identifying latent spike trains in
fluorescence traces. This problem has been independently addressed in a number of different ways,
including deconvolution Friedrich et al. (2017) and variational inference Speiser et al. (2017).

If we continue to model the frequency of events as being generated by a Poisson process, this can
be seen as hierarchy of dynamical systems (Fig 1A), in which low dimensional dynamics generate
spike probabilities that in turn drive fluctuations in biophysical dynamics of calcium activity (Fig
1B. Here we propose a method that extends LFADS to accommodate calcium activity using this
hierarchical dynamical systems approach, in which we can infer both the latent dynamics and the
latent spike trains from the observed calcium fluorescence signal.
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2 MODEL

The model is a variational ladder autoencoder (VLAE) (Zhao et al., 2017) with recurrent neural
networks (RNNs) that supports uncovering latent dynamical systems (Fig 1C, full directed acyclic
graph in Fig A1). It can be seen as a unification of two recent applications of variational autoen-
coders (VAEs) in neuroscience: 1) Latent Factor Analysis for Dynamical Systems (LFADS) (Pan-
darinath et al., 2018) and 2) DeepSpike, a VAE approach to inferring spike counts from calcium
imaging data (Speiser et al., 2017). We choose the VLAE approach since it has been shown to avoid
the problem of trying to reconstruct the data solely from the lower-order features by separating
latent variables via divergent deterministic pathways in the encoder, and convergent deterministic
pathways in the generator (Sønderby et al., 2016; Zhao et al., 2017). Model hyperparameters are
shown in table A1.

The inferred dynamical system underlying the frequency of calcium events in the data is identical to
that of LFADS (Fig 1C, blue modules). The prior distribution of initial conditions g0 and external
inputs ut are modelled as Gaussian distributions P (g0) = N (µg0 , σ

2
g0), and P (ut) = N (µut

, σ2
ut

).
The underlying dynamical system ġ = G(gt, ut) is modelled by a Gated Recurrent Unit (GRU)
taking the initial hidden state g0 and inputs ut. Low dimensional factors ft are calculated as a linear
transformation of the generator hidden state ft = W facgt. These factors are used to reconstruct
the Poisson process intensity function with a fully connected layer and exponential non-linearity
λt = exp(0.5(Wλft + bλ))

Inferred spike counts st are generated by sampling zt from Gaussian distributions P (zt) =
N (µzt , σ

2
zt) and projecting these through an affine transformation and non-linearity along with the

factors from the deeper layer, i.e., st = Φ(Ws[ft, zt]+bs), where Φ(x) = ReLU(exp(x)−1) (Fig-
ure 1C blue modules). We assume a simple model of calcium dynamics: ẏ = −yt/τy + αyst + βy
where the parameters τy, αy, βy are measured from the data, however it is a topic for future research
to fit the calcium dynamics simultaneously. In our synthetic data, these are valued at 0.4 s, 1, and
0 respectively. The value of τy is chosen as it is the known decay time constant of GCamP6, a
commonly used calcium fluorescence indicator used in calcium imaging experiments.

2.1 ENCODING MODEL

The calcium fluorescence signal xt is mapped onto the parameters of the variational posterior dis-
tributions Q(zt|x), Q(g0|x), Q(ut|x). These distributions are all modelled as Gaussians, with the
mean and standard deviations parameterized by a stack of bidirectional GRUs, E1

gen, E2
gen, E1

con,
E2
con. The final hidden states of E1

gen and E2
gen are mapped onto the parameters of Q(z0|x) and

Q(g0|x) respectively with fully connected layers. The hidden states E1
con and E2

con are concate-
nated and passed as inputs to single direction GRUs C1 and C2. The hidden states of C1 and C2

are concatenated at each time step t with st−1 and ft−1. Subsequently these concatenated activities
are mapped onto the parameters of Q(zt|x) and Q(ut|x) with fully connected layers.

2.2 LOSS FUNCTION AND TRAINING

One of the advantages of using VLAEs is that the evidence lower bound (ELBO) formulation is the
same as for VAEs despite the hierarchical latent space (Zhao et al., 2017). As such, our cost function
remains very similar to that of LFADS.

L = −Ez∼Q(z|x)[log(x|y)]

− Ez,g0,u∼Q(z,g0,u|x)[log(s|λ)]

+DKL(Q(z, g0, u|x)|P (z, g0, u))

+ ||W gg||2 + ||s||1 (1)

Where W gg is the weight matrix in the GRU that take g as input. The likelihood function
P (xt|yt) is modelled as a Gaussian distribution xt ∼ N (yt, σ

2
y), where σ2

y is learned. Although
st is not discrete, P (st|λt) is treated as an approximate Poisson process st ∼ Poisson(λt) =

sλt
t exp(−λt)/Γ(st + 1). This is an inductive bias to ensure that the inferred spike trains in the
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lower-order dynamic system is constrained to follow the dynamics of the higher-order dynamic sys-
tem. The latent variables are treated as independent, with hierarchy imposed in the deterministic
paths, i.e., Q(z, g0, u|x) = Q(z|x)Q(g0|x)Q(u|x)

Parameters of our model were optimized with ADAM, with an initial learning rate of 0.01, which
decreased by a factor of 0.95 whenever plateaus in training error were detected. As in LFADS
training, KL and L2 terms in the cost function were ‘warmed up’, i.e., had a scaling factor being 0
and 1 applied that gradually increased. Warm-up for the deeper parameters (blue modules in Figure
1) was delayed until warm-up for shallower parameters was completed (red modules in Figure 1).

3 RESULTS

Figure 2: A) Example calcium fluorescence traces, B) Example Poisson intensity functions, C)
Example spike trains, D) Inferred dynamics. Red: Ground-truth, Blue: Reconstructed, E-H Scatter
plots of reconstructions and ground truth

3.1 LORENZ SYSTEM

The model was tested on synthetic data with Lorenz dynamics embedded in the frequency of cal-
cium fluorescence transients, as described by Zhao & Park (2017), where generated spikes were
convolved with an exponential kernel with a time constant of 0.4 ms, and white noise added to
the resulting traces. We measure the performance of the model in three ways: 1) uncovering the
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Table 1: Comparison of model performance on synthetic Lorenz dataset. A hyphen indicates it is
not possible to compare, as the model does not infer this variable. The top row is italicized as it
is considered the upper limit on performance in this task with LFADS since there is no additional
observation noise from fluorescence.

Goodness-of-fit (R2)

Data Model End-to-end Lorenz Rates Spikes Fluorescence

Spikes LFADS - .978 .970 - -
Fluorescence Oasis + LFADS No .924 .946 .950 -
Fluorescence Gaussian LFADS Yes .898 .771 - .001
Fluorescence Edgeworth LFADS Yes .614 .097 - .001
Fluorescence Ladder LFADS Yes .962 .943 .697 .850

underlying Lorenz dynamics, 2) reconstructing the rates of calcium transients an inhomogeneous
Poisson intensity functions, 3) reconstructing the spike counts contributing to increases in the cal-
cium fluorescence signal. The model was compared against a ground-truth where the spike counts
are known, and LFADS is used to reconstruct the latent dynamics and intensity function, and against
a model where spike counts are extracted using a deconvolution algorithm (Friedrich et al., 2017)
before using LFADS to reconstruct the rates and intensity function (OASIS + LFADS). It was also
tested against a model that used a 1-D convolution of the intensity function to reconstruct either the
first two (Gaussian-LFADS) or four (Edgeworth-LFADS) time-varying moments of fluorescence, as
used previously in estimating the intensity functions of filtered Poisson processes in neuroscience
(Brigham & Destexhe, 2015).

Figure 2 shows examples of performance of our model in reconstructing the fluorescence traces (Fig
2A), Poisson intensity functions (Fig 2B), spikes (Fig 2C) and Lorenz dynamics (Fig 2D). Visually,
the model provides very close fit to the fluorescence traces, intensity functions, and Lorenz dynam-
ics. The model also captures spike-timing, although these spike trains appear smoothed. Table 1
compares the R2 goodness-of-fit on reconstructing held-out validation data with ground-truth latent
dynamic structure. Of all approaches, our model easily performs best at reconstructing fluorescence
traces. It should be noted that the reason the Gaussian and Edgeworth LFADS models perform so
poorly at reconstructing fluorescence is that it only attempts to reconstruct the time-varying moments
of fluorescence as a 1-D convolution of the intensity function, which stems from the approximation
of exponential-kernel shot noise processes (Brigham & Destexhe, 2015). Additionally, our model
almost performs as well as LFADS in reconstructing the Lorenz dynamics. It is to be expected that
LFADS performs better than our method, since there is an additional source of observation noise in
our synthetic dataset generating fluorescence transients from spikes. Notably, our model does not
perform as well as the deconvolution method OASIS in reconstructing spike trains, however this
does not impact the ability of our model to reconstruct the latent dynamics. In fact, constraining the
reconstructed spikes by the latent dynamics may mitigate any errors in spike train reconstruction that
occur by deconvolution, since the deconvolution algorithm may erroneously drop spikes during high
rates, whereas our model should be less likely to do so. It will be necessary to assess this possibility
further.

It should be noted that the deconvolution algorithm performs much better at reconstructing spike
trains in our synthetic dataset than in real datasets where ground-truth spiking is known (Pachitariu
et al., 2018). To our knowledge, there are no known dual recordings of population 2-photon calcium
imaging with ground-truth electrophysiology in a subpopulation of neurons in-vivo during behaviour
driven by hypothesized low-dimensional dynamics that we would be able to validate this with. Nev-
ertheless, since the relationship between calcium dynamics and somatic spiking is highly non-linear,
especially in dendrites, it remains to be seen how useful it is to faithfully reproduce unseen spike
trains in calcium fluorescence activity.

3.2 CHAOTIC RECURRENT NETWORK

The model was then tested on synthetic data generated from a 50 cell recurrent neural network with
chaotic dynamics, and an external perturbation at a random time, as described in Pandarinath et al.
(2018), with parameters adjusted to make the data more representative of firing rates and time scales
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observed in calcium imaging experiments. Spike trains were transformed into fluorescence signals
using the same procedure as with the Lorenz system dataset.

Figure 3: A) Example calcium fluorescence traces, B) Example spike trains, C) Example Poisson
intensity functions, D) Inferred latent dynamics, E) Inferred input. The black arrow indicates the
true timing of external perturbation. Red: Ground-truth, Blue: Reconstructed

Figure 3A-C shows examples that illustrates the performance of our model in reconstructing fluores-
cence traces (Fig 3A), spike trains (Fig 3B), and intensity functions (Fig 3C). Visually, the fluores-
cence traces and spike trains have been reconstructed reasonably well, whereas reconstructions of
the the intensity functions are highly noisy. The latent dynamics represented by the factors (Fig 3D)
and external inputs (Fig 3E) also show a lot of noise. This appears to be due to difficulty in inferring
external inputs, in which it is not clear whether the timing of external perturbation has been accu-
rately inferred, despite a slight transient at roughly the time of the perturbation in the example. Table
2 compares the R2 goodness-of-fit on reconstructing held-out validation data, which demonstrates
that our model performs very well in reconstructing the fluorescence signal and does reasonably
well at reconstructing spikes. However, in this more complex benchmark where the deeper dynamic
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system is perturbed by external input, the pre-processing of fluorescence transients with the OASIS
deconvolution algorithm reconstructs firing rates far better than our method.

Table 2: Comparison of model performance on synthetic chaotic recurrent network dataset. A
hyphen indicates it is not possible to compare, as the model does not infer this variable. The top row
is italicized as it is considered the upper limit on performance in this task with LFADS since there
is no additional observation noise from fluorescence.

Goodness-of-fit (R2)

Data Model End-to-end Rates Spikes Fluorescence

Spikes LFADS - 0.839 - -
Fluorescence Oasis + LFADS No 0.808 0.956 -
Fluorescence Gaussian LFADS Yes 0.656 - 6.27 × 10−6

Fluorescence Edgeworth LFADS Yes 0.706 - 6.55 × 10−6
Fluorescence Ladder LFADS Yes 0.719 0.520 0.811

4 DISCUSSION

We present a hierarchical recurrent variational autoencoder model capable of reconstructing latent
dynamics, latent spike trains, and calcium fluorescence traces in a benchmark synthetic dataset. Of
the four methods tested, our model is the only one capable of reconstructing all three. Furthermore,
our model performed best in reconstructing latent dynamics in our synthetic dataset We will need to
assess our model on further synthetic benchmark data to assess the validity of our approach.

Since our model is trained end-to-end, it should be possible to extend to reconstructing raw 2-photon
imaging videos, which could enable us to train models to uncover latent dynamics from arbitrarily
shaped neuronal structures. This would of great use to neuroscientists who are largely restricted to
techniques that extract fluorescence traces from regions of interest with somatic shapes, whereas the
morphological diversity of dendrites is much greater.

An additional advantage of using our hierarchical model is that we can obtain measures of the
uncertainty in both the latent dynamics, and the latent spike trains. The correlation in uncertainty
between layers of this hierarchy may be what allows superior inference of the latent dynamics,
despite less accurate reconstructions of the spike trains than OASIS, which provides no measure of
uncertainty. We hope to improve our model to better capture the relationships between layers of this
hierarchy in future.

We describe a use-case in neuroscience (2-photon calcium imaging data) for which this model may
be very useful. However, we are keen to investigate the general case of hierarchical dynamical
systems and their utility in uncovering structure in datasets outside this domain.
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A APPENDIX

Table A1: Glossary of variables, with descriptions and dimensionality across two synthetic datasets
Dimensions

Variable Description Lorenz Chaotic RNN

xt Calcium fluorescence signal 30 50
eg1t Latent spikes embedding initial condition encoder state 128 400
eg2t Latent dynamics embedding initial condition encoder state 64 200
ec1t Latent spike embedding input encoder state 128 256
ec2t Latent dynamics embedding input encoder state - 128
c1t Latent spike embedding controller state 128 256
c2t Latent dynamics embedding controller state - 128
zt Latent spike embedding 100 250
gt Latent dynamics embedding 64 200
ut Latent inputs embedding 0 1
ft Latent dynamic factors 3 20
st Latent spikes 30 50
yt Mean fluorescence signal 30 50
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Figure A1: Directed acyclic graph for hierarchical model. Solid arrows denote deterministic map-
pings, open arrows denote sampling steps.
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