
Under review as a conference paper at ICLR 2019

PROBABILISTIC MODEL-BASED DYNAMIC
ARCHITECTURE SEARCH

Anonymous authors
Paper under double-blind review

ABSTRACT

The architecture search methods for convolutional neural networks (CNNs) have
shown promising results. These methods require significant computational re-
sources, as they repeat the neural network training many times to evaluate and
search the architectures. Developing the computationally efficient architecture
search method is an important research topic. In this paper, we assume that the
structure parameters of CNNs are categorical variables, such as types and connec-
tivities of layers, and they are regarded as the learnable parameters. Introducing
the multivariate categorical distribution as the underlying distribution for the struc-
ture parameters, we formulate a differentiable loss for the training task, where the
training of the weights and the optimization of the parameters of the distribution
for the structure parameters are coupled. They are trained using the stochastic
gradient descent, leading to the optimization of the structure parameters within
a single training. We apply the proposed method to search the architecture for
two computer vision tasks: image classification and inpainting. The experimental
results show that the proposed architecture search method is fast and can achieve
comparable performance to the existing methods.

1 INTRODUCTION

Convolutional neural networks (CNNs) make remarkable progress in various computer vision tasks.
As researchers have developed deeper architectures and new components to improve performance,
the architecture of CNNs is becoming complicated. Since numerous modules exist to construct CNN
architectures, designing the appropriate CNN architecture for a target problem is critical. However,
finding a better combination of basic modules for CNNs, e.g., convolutional and pooling layers,
requires tremendous trial and error.

In this context, the methods for designing deep neural network architectures are actively proposed.
Most existing methods treat the structure parameters, such as the type of layer and the connectivity,
as hyper-parameters and optimize them by reinforcement learning (Zoph & Le, 2017) or evolu-
tionary algorithms (Real et al., 2017; Suganuma et al., 2017). These methods search for a better
architecture that maximizes the performance for validation data in the hyper-parameter optimization
manner, i.e., they need neural network training for an architecture evaluation. This approach has suc-
ceeded in finding the state-of-the-art CNN architectures; however, it is computationally inefficient
in general. Reducing the computational cost of the architecture search is critical for practical usage.
Several pieces of research have focused on reducing the computational cost of architecture search
(Liu et al., 2018b; Pham et al., 2018) by reusing the trained weights on different architectures and
simultaneously optimizing the weights and the structure parameters. Another practical requirement
is that the architecture search methods have fewer hyper-parameters to reduce the total effort of the
architecture search process.

This work aims to develop an efficient architecture search method with fewer hyper-parameters. As
neural network architectures can be represented by a sequence of categorical variables (Pham et al.,
2018; Suganuma et al., 2017; 2018), we consider the neural networks consist of categorical vari-
ables of the structure parameters and continuous variables of the weights. Introducing multivariate
categorical distribution as the underlying distribution for the structure parameters, we formulate an
expected loss function under the distribution that is differentiable with respect to (w.r.t.) both the
weights and the parameters of the distribution. We iteratively update the weights and the param-

1



Under review as a conference paper at ICLR 2019

eters of the distribution to the gradient steps within a single training, realizing a computationally
efficient architecture search. The idea of the proposed method is based on Shirakawa et al. (2018),
which instantiates the algorithm using the multivariate Bernoulli distribution and has proofed the
concept on the simple neural network structure optimization. We extend their work and make it pos-
sible to search flexible architectures. We call the algorithm proposed in this paper the probabilistic
model-based dynamic architecture search (PDAS). The straightforward probabilistic modeling of
the architectures adopted in this work leads to the simple update rule of the parameters of the distri-
bution, which relates to the stochastic natural gradient method (Ollivier et al., 2017). Moreover, we
establish the parameter-adaptive architecture search method by injecting the learning rate adaptation
mechanism of the stochastic natural gradient proposed in Nishida et al. (2018).

We apply the PDAS to search the architectures for two computer vision tasks: image classification
and inpainting. The experimental results show that the PDAS is fast and can achieve comparable
performance to the existing architecture search methods on both tasks.

The contribution of this paper is as follows: (1) we derive the algorithm for categorical distribution
and make it possible to apply the framework proposed in Shirakawa et al. (2018) to the architecture
search spaces represented by categorical variables. To the best of our knowledge, the natural gradi-
ent of categorical distribution has not been introduced in the context of stochastic natural gradient
methods. (2) we show that PDAS, which has fewer hyper-parameters than efficient neural archi-
tecture search (ENAS) (Pham et al., 2018), is fast and can reach state-of-the-art performance. The
intrinsic hyper-parameters of PDAS are the sample size and the learning rate, but the learning rate
can be adaptive.

2 PROBABILISTIC MODEL-BASED DYNAMIC ARCHITECTURE SEARCH

Formulation: Following Shirakawa et al. (2018), we consider the neural network φ(W,M) hav-
ing two different sets of parameters: the connection weights W ∈ W and the structure parameters
M ∈ M. We assume that the weights are real-valued and differentiable for loss function; however,
the structure parameters can be discrete, i.e., the loss function is not differentiable w.r.t. these param-
eters. Our original objective is minimizing the loss L(W,M) =

∫
D l(z,W,M)p(z)dz, whereD and

l(z,W,M) indicate the dataset and the loss function value of a datum z, respectively. Introducing
a family of probability distributions pθ(M) of M parametrized by a real-valued vector θ ∈ Θ, we
formulate a minimization of the expected loss under pθ(M), namely

G(W, θ) =

∫
M
L(W,M)pθ(M)dM , (1)

where dM is a reference measure onM. That is, we try to minimize the loss L(W,M) indirectly
by minimizing G(W, θ). This formulation is inspired from the recently-introduced black-box opti-
mization framework called Information Geometric Optimization (Ollivier et al., 2017). The point is,
one can choose the family of probability distributions so that G is differentiable w.r.t. both W and
θ. It allows us to employ a gradient descent to optimize W and θ simultaneously within a single
training process.

We apply a stochastic gradient descent to minimize G onW×Θ equipped with the Fisher metric on
Θ. That is, we take the vanilla gradient w.r.t.W and the natural gradient (Amari, 1998) w.r.t. θ.They
can be approximated by Monte-Carlo using λ samples drawn from pθ(M) and mini-batch loss
L(W,M) ≈ L̄(W,M) = N̄−1

∑N̄
k l(zk,W,M) with mini-batch size N̄ . Then, we get

∇WG(W, θ) ≈ 1

λ

λ∑
n=1

∇W L̄(W,Mn) , (2)

∇̃θG(W, θ) ≈ 1

λ

λ∑
n=1

L̄(W,Mn)∇̃θ ln pθ(Mn) , (3)

where ∇̃θ ln pθ(M) = F−1(θ)∇θ ln pθ(M) is the natural gradient of the log-likelihood ln pθ(M),
and F (θ) is the Fisher information matrix of pθ(M). Shirakawa et al. (2018) proposed the frame-
work that simultaneously optimizes both W and θ by using approximated gradients of (2) and (3),
and they instantiated the algorithm using the multivariate Bernoulli distribution. In other words,

2



Under review as a conference paper at ICLR 2019

they used the binary vector to select the network components, such as the unit, layer, and type of
activation.

Categorical Parameters: In this paper, we consider categorical parameters as they can represent
more flexible network architecture than binary parameters. We extend the previous work by intro-
ducing the multivariate categorical distribution as pθ(M). We denote theD-dimensional categorical
variables by h = (h1, . . . , hD)T and the number of categories for the i-th variable by Ki (> 1). Let
us introduce the one-hot representation of hi, denoted as mi ∈ {0, 1}Ki , where the entries of mi

are all zero but for the hi-th entry, which is one. Our structure parameter vector M is then written
as M = (m1, . . . ,mD)T.

We introduce the multivariate categorical distribution pθ as the underlying distribution forM , whose
probability mass is pθ(M) =

∏D
i=1

∏Ki

j=1 (θij)
mij , where θij ∈ [0, 1] represents the probability of

mij to be 1 and must satisfy
∑Ki

j=1 θij = 1. The natural gradient of the log-likelihood for the above
distribution is given by ∇̃θ ln pθ(M) = M − θ, since the natural gradient of the log-likelihood for
an exponential family with sufficient statistics T (M) with the expectation parameterization θ =

E[T (M)] is known to be ∇̃θ ln pθ(M) = T (M) − θ and the above parametrized distribution is an
exponential family with the expectation parameterization. See Appendix A for details.

With this natural gradient of log-likelihood, we get the update rule of θ as follows:

θ(t+1) = θ(t) +
ηθ
λ

λ∑
n=1

un(Mn − θ(t)) , (4)

where ηθ is the learning rate. As done in Ollivier et al. (2017); Shirakawa et al. (2018), we trans-
form the loss value L̄(W,Mn) into the utility un to make the update invariant for the scale of the
objective values. We use the following ranking-based utility transformation: un = 1 for best dλ/4e
samples, un = −1 for worst dλ/4e samples, and un = 0 otherwise. The update rule (4) is the
generalization of the case for Bernoulli distribution and ensures

∑Ki

j=1 θ
(t+1)
ij = 1. The parameters

of the distribution are initialized by θ(0)
ij = K−1

i if we have no prior knowledge. Moreover, we set
the lower bound for θij as θmin

i = (D(Ki − 1))−1 to leave open the possibility of generating all
values (see Appendix B for details).

Learning Rate Adaptation for Stochastic Natural Gradient Ascent: The update formula (4) re-
quires two hyper-parameters, namely the learning rate ηθ and the number λ of Monte-Carlo samples.
For Bernoulli distribution, Shirakawa et al. (2018) set λ = 2 and ηθ = D−1, the former of which is
the minimum requirement to use a ranking-based utility transformation. As Bernoulli distribution is
a special case of the categorical distribution with Ki = 2 for all i, the learning rate setting may be
generalized as ηθ =

(∑D
i (Ki − 1)

)−1
. However, as is not difficult to imagine, an adequate value

for ηθ depends heavily on problem characteristic and stage of optimization. Nishida et al. (2018)
proposed to adapt ηθ so as to keep the signal-to-noise ratio of successive parameter updates. It has
been shown that the adaptive learning rate typically speeds up the convergence of the parameter vec-
tors in the case of Bernoulli distributions. The adaptation mechanism can be applied to an arbitrary
exponential family with expectation parameterization, which includes our categorical distribution.
We employ this learning rate adaptation in our experiments. See Appendix C for details. From the
preliminary experiment in the classification task, we confirmed that the learning rate adaptation im-
proves the quality and stability of the architecture search. In the learning rate adaptation, the sample
size λ is fixed to two. From the viewpoint of stochastic approximation theory, the small learning
rate has a similar effect of the large sample size. Therefore, even if the sample size equals two, we
can optimize the distribution parameters properly with the appropriate small learning rate. In fact,
we observed that the learning rate decreases by the learning rate adaptation mechanism.

Overall Algorithm: The overall algorithm of PDAS is displayed in Algorithm 1. We calculate
the gradients of W and θ using different mini-batches from a dataset. ENAS (Pham et al., 2018)
and differentiable architecture search (DARTS) (Liu et al., 2018b), the methods for optimizing the
structure parameters within a single training, use different datasets for the weight and structure
parameter optimizations as well. Following these studies, we split the training dataset into halves

3



Under review as a conference paper at ICLR 2019

Algorithm 1 PDAS with learning rate adaptation

Require: training data D = {DW ,Dθ}
1: Initialize the weight and distribution parameters as W (0) and θ(0) and the parameters used in

the learning rate adaptation
2: for t = 0 · · ·T do
3: Sample M1 and M2 independently from pθ(t)
4: Compute (2) using M1, M2, and a mini-batch from DW
5: Update W (t) by a SGD method
6: Update θ(t) by (4) using M1, M2, and a mini-batch from Dθ with updated W
7: Update η(t)

θ by the learning rate adaptation mechanism (See Appendix C for details)
8: end for
9: Get the structure parameters as M∗ = argmaxM pθ(T )(M)

10: Re-train the weights using the fixed architecture represented by M∗

as D = {DW ,Dθ}. The gradients (2) and (3) are calculated using mini-batches from DW and Dθ,
respectively, and the parameter updates are performed alternately. As each dataset is sampled from
the original one, the losses of mini-batch samples from both datasets approximate the original loss
of all of the data if the dataset size is sufficiently large. Therefore, even if we use split datasets, we
can view that the losses in the equations of (2) and (3) approximate the original loss.1 Note that
we do not need the back-propagation for calculating (3). Namely, the computational cost of the θ
update is less than that of W .

After the optimization of W and θ, we can get the most likely structure parameters as M∗ =
argmaxM pθ(M), which is obtained trivially for the multivariate categorical distribution. Given the
optimized structure parameters M∗, we re-train the neural network represented by M∗ with initial-
ized weights. In the re-training stage, we can exclude the redundant weights (the weight parameters
in the unused layer modules) and no longer need to update them. Re-training the obtained archi-
tecture is a commonly used technique (Brock et al., 2018; Liu et al., 2018b; Pham et al., 2018) to
improve final performance. We have experimentally observed that the re-training of W can improve
the predictive performance.

3 RELATED WORK

The ordinary architecture search methods (Real et al., 2017; Suganuma et al., 2017; Zoph & Le,
2017) for deep neural networks repeat the following steps: the architecture generation, the weight
training, and the architecture evaluation. Since the weight training of deep neural networks is time-
consuming, the overall process requires a tremendous computational cost. Several techniques are
introduced to reduce the training cost, such as inheriting the trained weights to the next candidate ar-
chitectures (Real et al., 2017) and stopping the weight training based on the performance prediction
(Baker et al., 2018). In contrast, our method is computationally more efficient than these approaches
because it only needs the training twice (including the re-training).

The existing methods similar to our method are SMASH (Brock et al., 2018) and ENAS (Pham
et al., 2018). SMASH randomly samples an architecture in memory-bank representation and deter-
mines its weights by a meta-network called HyperNet. Instead of training the weights in the gener-
ated network, the HyperNet is trained through back-propagation. Differently from our method, the
probability distribution of network architectures does not change in SMASH, and it still needs the
meta-network design. ENAS is a method based on the neural architecture search (NAS) (Zoph &
Le, 2017). NAS defines a recurrent neural network, called the controller, that generates a sequence
of categorical variables representing architecture for the main task and optimizes the controller us-
ing the policy gradient method in a hyper-parameter optimization manner. ENAS shares the weight
parameters in all generated architectures and optimizes the weights and the controller parameters
alternatively.

1We can formulate the update rules with different datasets by starting from different original objectives for
the weight and distribution parameters as done in ENAS.

4



Under review as a conference paper at ICLR 2019

Our method is similar to ENAS from the viewpoint of optimizing both of the weights and distribution
parameters in a single training. The main difference between PDAS and ENAS is the probabilistic
model of architectures, i.e., PDAS uses the categorical distribution, and ENAS uses the recurrent
neural network. Since our method uses the categorical distribution, the modeling of architectures is
intuitive and simple, and all we need is to design the categorical variables for representing architec-
tures. As a result, we do not need to design the architecture of the controller neural network that
is required for ENAS. In addition, the simple modeling of architecture makes it possible to derive
the natural gradient in PDAS. As ENAS uses the LSTM network as the controller, it cannot derive
the analytical natural gradient. Also, our method does not require to design the special operator for
architecture search, such as crossover and mutation used in the evolutionary algorithms (Real et al.,
2017). By injecting the learning adaptation mechanism (Nishida et al., 2018), we can further reduce
the effort of the hyper-parameter tuning for PDAS. This property is convenient in practice. In the
experiments, we always use the same hyper-parameter setting for PDAS. Another attractive property
of PDAS is that the promising architecture is determined easily after the training described before,
whereas it is difficult in ENAS.

4 EXPERIMENT AND RESULT

We apply the proposed method, the probabilistic model-based dynamic architecture search (PDAS),
to the task of finding better architectures for image classification and inpainting. In the architecture
search, two research directions exist: developing an efficient search method (Liu et al., 2018b; Pham
et al., 2018) and designing a search space (Liu et al., 2018a; Zoph et al., 2018). Since PDAS is a
search framework for neural network architectures, we concentrate on evaluating PDAS in terms of
search efficiency: the quality of found architecture and the computational cost. Therefore, the exper-
iment adopts the search spaces provided in the previous works, Pham et al. (2018) for classification
and Suganuma et al. (2018) for inpainting. All experiments are run using a single NVIDIA GTX
1080Ti GPU, and PDAS is implemented using PyTorch 0.4.1 (Paszke et al., 2017).

4.1 IMAGE CLASSIFICATION

Dataset: We use the CIFAR-10 dataset which consists of 50,000 and 10,000 RGB images of 32
× 32, for training and testing. All images are standardized in each channel by subtracting the mean
and then dividing by the standard deviation. We adopt the standard data augmentation for each
training mini-batch: padding 4 pixels on each side, followed by choosing randomly cropped 32 ×
32 images and by performing random horizontal flips on the cropped images. We also apply the
cutout (DeVries & Taylor, 2017) to the training data.

Search Space: The search space is based on the one in Pham et al. (2018) and the author’s code2,
which consists of models obtained by connecting two motifs (called normal cell and reduction cell)
repeatedly. An example of the overall model structure can be found in Appendix D. Each cell
consisted of B (= 5) nodes and receives the outputs of the previous two cells as inputs. Each node
receives two inputs from previous nodes, applies an operation to each of the inputs, and adds them.
Our search space includes 5 operations: identity, 3 × 3 and 5 × 5 separable convolutions (Chollet,
2017), and 3 × 3 average and max poolings. The separable convolutions are applied twice in the
order of ReLU-Conv-BatchNorm. We select a node by 4 categorical variables representing 2 outputs
of the previous nodes and 2 operations applied to them. Consequently, we treat 4B-dimensional
categorical variables for each cell. After deciding B nodes, all unused outputs of the nodes are
concatenated as the output of the cell. In the reduction cell, all operations applied to the inputs of
the cell have a stride of 2. The number of the categorical variables is D = 40, and the dimension of
θ becomes 180.

Training Detail: In the architecture search phase, we optimize W and θ for 200 epochs with
mini-batch size of 64. We stack 2 normal cells (N = 2) and set the number of channels at the first
cell to 16. For the purpose of absorbing effect of the dynamic change in architecture, we fix affine
parameters of batch normalizations. We use SGD with a momentum of 0.9 to optimize W . The
learning rate changes from 0.025 to 0 followed the cosine schedule (Loshchilov & Hutter, 2017).

2https://github.com/melodyguan/enas

5

https://github.com/melodyguan/enas


Under review as a conference paper at ICLR 2019

Table 1: Comparison with other architecture search methods on CIFAR-10. The notation “+c/o”
indicates the cutout (DeVries & Taylor, 2017). The search cost indicates the GPU days for the ar-
chitecture search, i.e., without the re-training cost. The result of the architecture randomly sampled
from our search space is also listed as RANDOM.

Method Search Cost Params Test Error
(GPU days) (M) (%)

NAS (Zoph & Le, 2017) 16.8–22.4K 7.1 4.47
EAS (DenseNet) (Cai et al., 2018) 20 10.7 3.44
SMASHv2 (Brock et al., 2018) 1.5 16.0 4.03

NASNet-A + c/o (Zoph et al., 2018) 2000 3.3 2.65
NAONet + c/o (Luo et al., 2018) 200 128 2.07
NAONet-WS (Luo et al., 2018) 0.4 3.7 3.53
RENASNet + c/o (Chen et al., 2018) 6.0 3.5 2.98 (±0.08)
DARTS first order + c/o (Liu et al., 2018b) 1.5 2.9 2.94
DARTS second order + c/o (Liu et al., 2018b) 4 3.4 2.83 (±0.06)
ENAS + c/o (Pham et al., 2018) 0.45 4.6 2.89

RANDOM + c/o − 3.21 4.12 (±0.44)
PDAS + c/o 0.24 3.20 2.98 (±0.12)

We apply weight decay of 3 × 10−4 and clip the norm of gradient at 5. In the re-training phase,
we optimize W for 600 epochs with mini-batch size of 80. We stack 6 normal cells (N = 6) and
increase the number of channels at the first cell so that the model of the obtained architecture M∗
has nearly three million weight parameters. In contrast to the architecture search phase, we make all
batch normalizations have learnable affine parameters because the architecture no longer changes.
We apply the ScheduledDropPath (Zoph et al., 2018) dropping out each path between nodes, and
the drop path rate linearly increases from 0 to 0.3 during the training. We also add the auxiliary
classifier (Szegedy et al., 2016) with the weight of 0.4 that is connected from the second reduction
cell. The total loss is a weighted sum of the losses of the auxiliary classifier and output layer. Other
settings are the same as the architecture search phase. We conducted the experiment five times and
report the average values.

Result and Discussion: Table 1 shows the comparison with other architecture search methods.
Since the search space of the first three methods is different from the one used in PDAS, we should
not directly compare the test errors to PDAS. At least, we can say that NAS and EAS require much
more computational cost than PDAS because they repeat training the model many times to optimize
network architecture. Although the search cost of SMASH is reasonable, PDAS is still faster than
SMASH.

The other conventional methods adopt search spaces similar to PDAS.3 Compared with these meth-
ods, our method is the fastest and shows a comparable error rate to ENAS, DARTS, and RENASNet.
The architecture search of PDAS is realized by optimizing θ using (4), and its computational cost is
small, whereas ENAS updates the controller recurrent network that generates the structure parame-
ters. This might be one reason that PDAS is fast. DARTS models the architecture by the mixture of
all possible operations and connections and optimizes the weights and the continuous structure pa-
rameters (mixture coefficients) by the gradient-based optimization. In the architecture search phase,
DARTS requires to compute all possible operations and connections to calculate the gradient. In
contrast, since PDAS computes the gradient using a few sampled structures, it is computationally
more efficient than DARTS. The error rates of NASNet and NAONet outperform our method, but
they have enormous search costs if they are implemented on a single GPU. We observe PDAS can
take a good balance between the test error rate and search cost. The method denoted RANDOM
uses the architecture randomly sampled from our search space. The result shows that PDAS can find
the better architecture in a reasonable computational time by optimizing the structure parameters in
the single training.

3The setting, e.g., types of operations, channel sizes, and the number of normal cells N differs among the
methods.

6



Under review as a conference paper at ICLR 2019

We observed that the value of θ converges to a certain category, and the average value of maxj θij ,
implying the convergence of the parameters of the distribution approaches 0.9 at 50th epoch. The
architecture of the best model obtained by PDAS appears in Appendix E. We note that PDAS has
fewer hyper-parameters and can be used by only providing the categorical variables for representing
the architecture, whereas, other methods still leave the controller network design or strategy param-
eter tuning. As our algorithm is based on the stochastic natural gradient method, we can easily add
the improving techniques, such as the learning rate adaptation used in PDAS.

4.2 INPAINTING

The inpainting task is one of the image restoration tasks, restoring a clean image from a damaged
image with large missing regions (e.g., masks). Suganuma et al. (2018) have shown the potential of
the architecture search by the evolutionary algorithm for image restoration tasks including inpaint-
ing. In this section, we apply the PDAS to the problem of architecture search for inpainting and
evaluate its performance. We refer the experimental setting employed in Suganuma et al. (2018).

Dataset and Evaluation Measure: We use three benchmark datasets: the CelebFaces Attributes
Dataset (CelebA) (Liu et al., 2015), the Stanford Cars Dataset (Cars) (Krause et al., 2013), and the
Street View House Numbers (SVHN) (Netzer et al., 2011). The CelebA is a large-scale human face
image dataset that contains 202,599 RGB images. We select 101,000 and 2,000 images for training
and test, respectively, in the same way as Suganuma et al. (2018). All images were cropped to
properly contain the entire face by using the provided bounding boxes and resized to 64× 64 pixels.
The Cars is a middle-scale cars image dataset that contains 16,185 RGB images, and it consists of
8,144 and 8,041 images for training and testing, respectively. Similar to the CelebA, all images
were cropped by using the provided bounding boxes and resized to 64 × 64 pixels. The SVHN is
a large-scale house-number image dataset that contains 99,289 RGB images without extra training
data, and it consists of 73,257 and 26,032 images for training and testing, respectively. The images
of SVHN were resized to 64 × 64 pixels. All images are normalized by dividing by 255, and we
perform data augmentation of random horizontal flipping on the training images.

We test three different masks based on Suganuma et al. (2018); Yeh et al. (2017); a central square
block mask (Center); a random pixel mask, as 80% of all the pixels were randomly masked (Pixel);
and a half image mask, as a randomly selected vertical or horizontal half of the image (Half). The
mask was randomly generated for each training mini-batch and each test image.

Following Suganuma et al. (2018), we use two standard evaluation measures: the peak-signal to
noise ratio (PSNR) and the structural similarity index (SSIM) (Wang et al., 2004) to evaluate the
restored images. Higher values of these measures indicate a better image restoration.

Search Space: The search space we use is based on Suganuma et al. (2018). We employ the CAE,
which is similar to the RED-Net (Mao et al., 2016), as a base architecture. The RED-Net consists
of a chain of convolution layers and symmetric deconvolution layers as the encoder and decoder
parts, respectively. The encoder and decoder parts perform the same counts of downsampling and
upsampling with a stride of 2, and a skip connection between the convolutional layer and the mir-
rored deconvolution layer can exist. For simplicity, each layer employs either a skip connection
or a downsampling, and the decoder part is employed in the same manner. In the skip connected
deconvolution layer, the input feature maps from the encoder part are added to the output of decon-
volution operation followed by ReLU. In the other layers, the ReLU activation is performed after the
convolution and deconvolution operations. We prepare six types of layers: the combination of the
kernel sizes {1× 1, 3× 3, 5× 5} and the existence of the skip connection. The layers with different
settings do not share weight parameters.

Since we consider the symmetric CAE, it is enough to represent the encoder part; we only need to
determine the encoder part of the CAE by the categorical variables, and then the decoder part is
automatically decided according to the encoder part. We consider Nc hidden layers and the output
layer. We encode the type, channel size, and connections of each hidden layer. The kernel size
and stride of the output deconvolution layer are fixed with 3 × 3 and 1, respectively; however, the
connection is determined by a categorical variable. The numbers of categories for the hidden layer
type and the output channel size are 6 and 3, respectively. We select the output channel size of each
layer from {64, 128, 256}. To ensure the feed-forward architecture and to control the network depth,

7



Under review as a conference paper at ICLR 2019

Table 2: Comparison of PSNR and SSIM in the inpainting tasks. CE and SII indicate the context
encoder (Pathak et al., 2016) and the semantic image inpainting (Yeh et al., 2017), which are CNN-
based methods. E-CAE means the model obtained by the architecture search method using the
evolutionary algorithm (Suganuma et al., 2018). BASE is the same depth of the best architecture
obtained by E-CAE but having the 64 channels and 3×3 filters in each layer with a skip connection.
Note that CE and SII used human-designed architecture, while E-CAE and PDAS (Ours) are the
models obtained by the architecture search. The values of CE, SII, BASE, and E-CAE are referenced
from Suganuma et al. (2018).

PSNR [dB] / SSIM

Dataset Mask CE SII BASE E-CAE PDAS

CelebA
Center 28.5 / 0.912 19.4 / 0.907 27.1 / 0.883 29.9 / 0.934 28.5 / 0.896
Pixel 22.9 / 0.730 22.8 / 0.710 27.5 / 0.836 27.8 / 0.887 26.9 / 0.871
Half 19.9 / 0.747 13.7 / 0.582 11.8 / 0.604 21.1 / 0.771 20.3 / 0.771

Cars
Center 19.6 / 0.767 13.5 / 0.721 19.5 / 0.767 20.9 / 0.846 19.8 / 0.751
Pixel 15.6 / 0.408 18.9 / 0.412 19.2 / 0.679 19.5 / 0.738 18.9 / 0.677
Half 14.8 / 0.576 11.1 / 0.525 11.6 / 0.541 16.2 / 0.610 15.7 / 0.596

SVHN
Center 16.4 / 0.791 19.0 / 0.825 29.9 / 0.895 33.3 / 0.953 32.4 / 0.945
Pixel 30.5 / 0.888 33.0 / 0.786 40.1 / 0.899 40.4 / 0.969 42.6 / 0.986
Half 21.6 / 0.756 14.6 / 0.702 12.9 / 0.617 24.8 / 0.848 24.2 / 0.854

the connection of i-th layer is only allowed to be connected from (i− 1) to max(0, i− b)-th layers,
where b (b > 0) is called the level-back parameter. Namely, the categorical variable representing
the connection of i-th layer has max(i, i − b) categories. Obviously, the first hidden layer always
connects with the input, and we can ignore this part. With this representation, it has the possibility to
exist the inactive layers which do not connect to the output layer. Therefore, this model can represent
variable length architectures by the fixed length categorical variables. The illustration of an example
of the decoded CAE and corresponding categorical variables is displayed in Appendix D. We choose
Nc = 20 and the level-back parameter b = 5. With this setting, the number of categorical variables
is D = 60, and the dimension of θ becomes 274.

Training Detail: We use the mean squared error (MSE) as the loss L and the mini-batch size of
N̄ = 16. The weight parameter W is optimized by SGD with a momentum of 0.9. The learning
rate changes from 0.025 to 0 followed the cosine schedule (Loshchilov & Hutter, 2017) without
restart mechanism. We apply gradient clipping with the norm of 5 to prevent too long gradient step.
The maximum numbers of iterations are 50K and 500K in the architecture search and re-training
phases, respectively. The number of iterations for re-training is the same setting as in Suganuma
et al. (2018).

Result and Discussion: Table 2 shows the comparison of PSNR and SSIM. The human-designed
CNN-based methods (CE and SII) and the architecture search method (E-CAE) proposed in Sug-
anuma et al. (2018) are listed. Also, the architecture having the same depth of the best architecture
obtained by E-CAE but having the 64 channels and 3 × 3 filters in each layer with a skip con-
nection (BASE). The performance of PDAS is better than CE, SII, and BASE on almost dataset
and mask types. Furthermore, PDAS shows good performance for all settings, as is the case with
E-CAE. Compared with E-CAE, the performance of PDAS is a bit worse; however, PDAS outper-
forms E-CAE for SVHN with the random pixel mask, regarding both of PSNR and SSIM. PDAS
shows the intermediate performance between BASE and E-CAE. Suganuma et al. (2018) reported
that E-CAE spent approximately 12 GPU days (3 days with 4 GPUs) for the architecture search and
re-training. However, the average computational time of PDAS is approximately 7 hours for the
architecture search and 13 hours for the re-training (totally 0.83 GPU days). Since the performance
and search cost have a trade-off relation in general, PDAS is a reasonable and promising architecture
search method. In the architecture search, one of the important points for the final performance is
the search space design, e.g., the design of modules and the encoding scheme of the architecture.
Practical users can spend the spare time of PDAS to try other search spaces.

8



Under review as a conference paper at ICLR 2019

5 CONCLUSION

We proposed an efficient architecture search method called PDAS that optimizes the parameters
of the categorical distribution based on the stochastic natural gradient method during weight train-
ing. Our probabilistic modeling of the architecture is straightforward, and the derived algorithm
has fewer hyper-parameters and can incorporate the learning rate adaptation mechanism. The ex-
perimental results for the image classification and inpainting tasks have shown that PDAS is fast
and achieves comparable performance to the existing methods. In the future, we will apply PDAS
to other neural network architecture searches (e.g., the recurrent networks) and large-scale datasets
(e.g., ImageNet). Regarding the extension of PDAS, the distribution of continuous variables can
be introduced to PDAS; then we will be able to optimize the architecture represented by mixed
variables (e.g., categorical and continuous variables).

REFERENCES

Shun-ichi Amari. Natural Gradient Works Efficiently in Learning. Neural Computation, 10(2):
251–276, 1998.

Bowen Baker, Otkrist Gupta, Ramesh Raskar, and Nikhil Naik. Accelerating Neural Architecture
Search using Performance Prediction. In International Conference on Learning Representations
(ICLR) Workshop, 2018.

Andrew Brock, Theo Lim, J.M. Ritchie, and Nick Weston. SMASH: One-Shot Model Architec-
ture Search through HyperNetworks. In International Conference on Learning Representations
(ICLR), 2018.

Han Cai, Tianyao Chen, Weinan Zhang, Yong Yu, and Jun Wang. Efficient Architecture Search by
Network Transformation. In Thirty-Second AAAI Conference on Artificial Intelligence (AAAI),
pp. 2787–2794, 2018.

Yukang Chen, Qian Zhang, Chang Huang, Lisen Mu, Gaofeng Meng, and Xinggang Wang. Rein-
forced Evolutionary Neural Architecture Search. arXiv preprint:1808.00193, 2018.

Francois Chollet. Xception: Deep Learning with Depthwise Separable Convolutions. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1800–1807, 2017.

Terrance DeVries and Graham W. Taylor. Improved Regularization of Convolutional Neural Net-
works with Cutout. arXiv preprint:1708.04552, 2017.

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3D Object Representations for Fine-
Grained Categorization. In IEEE International Conference on Computer Vision Workshops (IC-
CVW), pp. 554–561, 2013.

Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fernando, and Koray Kavukcuoglu. Hier-
archical Representations for Efficient Architecture Search. In International Conference on Learn-
ing Representations (ICLR), 2018a.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable Architecture Search.
arXiv preprint:1806.09055, 2018b.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep Learning Face Attributes in the Wild.
In IEEE International Conference on Computer Vision (ICCV), pp. 3730–3738, 2015.

Ilya Loshchilov and Frank Hutter. SGDR: Stochastic Gradient Descent with Warm Restarts. In
International Conference on Learning Representations (ICLR), 2017.

Renqian Luo, Fei Tian, Tao Qin, Enhong Chen, and Tie-Yan Liu. Neural Architecture Optimization.
arXiv preprint:1808.07233, 2018.

Xiao-Jiao Mao, Chunhua Shen, and Yu-Bin Yang. Image Restoration Using Very Deep Convo-
lutional Encoder-Decoder Networks with Symmetric Skip Connections. In Advances in Neural
Information Processing Systems (NIPS), pp. 2802–2810, 2016.

9



Under review as a conference paper at ICLR 2019

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y. Ng. Reading
Digits in Natural Images with Unsupervised Feature Learning. In Advances in Neural Information
Processing Systems (NIPS) Workshop on Deep Learning and Unsupervised Feature Learning,
2011.

Kouhei Nishida, Hernan Aguirre, Shota Saito, Shinichi Shirakawa, and Youhei Akimoto. Param-
eterless Stochastic Natural Gradient Method for Discrete Optimization and its Application to
Hyper-Parameter Optimization for Neural Network. arXiv preprint:1809.06517, 2018.

Yann Ollivier, Ludovic Arnold, Anne Auger, and Nikolaus Hansen. Information-Geometric Opti-
mization Algorithms: A Unifying Picture via Invariance Principles. Journal of Machine Learning
Research, 18(1):564–628, 2017.

Adam Paszke, Gregory Chanan, Zeming Lin, Sam Gross, Edward Yang, Luca Antiga, and Zachary
Devito. Automatic differentiation in PyTorch. In Autodiff Workshop in Thirty-first Conference on
Neural Information Processing Systems (NIPS), 2017.

Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and Alexei A Efros. Context
Encoders: Feature Learning by Inpainting. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 2536–2544, 2016.

Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le, and Jeff Dean. Efficient Neural Architec-
ture Search via Parameter Sharing. In The 35th International Conference on Machine Learning
(ICML), volume 80, pp. 4095–4104, 2018.

Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Suematsu, Jie Tan,
Quoc V. Le, and Alexey Kurakin. Large-Scale Evolution of Image Classifiers. In The 34th
International Conference on Machine Learning (ICML), volume 70, pp. 2902–2911, 2017.

Shinichi Shirakawa, Yasushi Iwata, and Youhei Akimoto. Dynamic Optimization of Neural Net-
work Structures Using Probabilistic Modeling. In Thirty-Second AAAI Conference on Artificial
Intelligence (AAAI), pp. 4074–4082, 2018.

Masanori Suganuma, Shinichi Shirakawa, and Tomoharu Nagao. A Genetic Programming Approach
to Designing Convolutional Neural Network Architectures. In The Genetic and Evolutionary
Computation Conference (GECCO), pp. 497–504, 2017.

Masanori Suganuma, Mete Ozay, and Takayuki Okatani. Exploiting the Potential of Standard Con-
volutional Autoencoders for Image Restoration by Evolutionary Search. In The 35th International
Conference on Machine Learning (ICML), volume 80, pp. 4778–4787, 2018.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking
the Inception Architecture for Computer Vision. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 2818–2826, 2016.

Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. Image Quality Assessment: From Error
Visibility to Structural Similarity. IEEE Transactions on Image Processing, 13(4):600–612, 2004.

Raymond A Yeh, Chen Chen, Teck Yian Lim, Alexander G Schwing, Mark Hasegawa-Johnson, and
Minh N Do. Semantic Image Inpainting with Deep Generative Models. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 6882–6890, 2017.

Barret Zoph and Quoc V. Le. Neural Architecture Search with Reinforcement Learning. In Interna-
tional Conference on Learning Representations (ICLR), 2017.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. Learning Transferable Archi-
tectures for Scalable Image Recognition. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 8697–8710, 2018.

10



Under review as a conference paper at ICLR 2019

A DERIVATION OF THE NATURAL GRADIENT

We derive the natural gradient of the log-likelihood associated with our categorical distributions. We
first reduce the number of parameters by D, number of variables, by forcing the parameter value for
the last category of each variable, namely θiKi

= 1−
∑Ki−1
k=1 θik. It does not decrease the degrees

of freedom of the family of distributions. We let the reduced parameter and corresponding random
variable denoted by θ̄ and M̄ , respectively. The probability mass reads

pθ̄(M̄) =

D∏
i=1

Ki−1∏
j=1

(θij)
mij

1−
Ki−1∑
j=1

θij


(

1−
∑Ki−1

j=1 mij

)
. (5)

We continue to represent the deleted variables and parameters as miKi and θiKi for the simple
notation. The element of derivative of log-likelihood is given by∇θij ln pθ̄(M̄) =

mij

θij
− miKi

θiKi
.

The Fisher information matrix, E[∇θ̄ ln pθ̄(M)∇θ̄ ln pθ̄(M)T], is a block-diagonal matrix whose
i-th diagonal block Fi(θ̄) (i = 1, . . . , D) is of form

Fi(θ̄) = diag(θ̄i)
−1 +

1

θiKi

11T , (6)

where diag(θ̄i) is the diagonal matrix whose diagonal elements are the corresponding elements of
θ̄i = (θi1, . . . , θiKi−1) and 1 is the vector consisting of 1 for all entries. Then, it is easy to see that
its inverse is again block-diagonal, and each block reads (thanks to the Sherman-Morrison formula)

F−1
i (θ̄) = diag(θ̄i)− θ̄iθ̄T

i . (7)

The natural gradient, the product of the inverse Fisher information matrix and the vanilla gradient,
can be written as

∇̃θ̄ ln pθ̄(M) = F−1(θ̄)∇θ̄ ln pθ̄(M) = M̄ − θ̄ . (8)

With the learning rate ηθ, the θ̄ update rule is written as

θ̄(t+1) = θ̄(t) +
ηθ
λ

λ∑
n=1

un(M̄n − θ̄(t)) . (9)

The update of θ(t+1)
iKi

= 1−
∑Ki−1
k=1 θ

(t+1)
ik reads

θ
(t+1)
iKi

= θ
(t)
iKi

+
ηθ
λ

λ∑
n=1

un((miKi)n − θ
(t)
iKi

) . (10)

As a consequence, the θ update rule is reduced to (4).

B RESTRICTION FOR THE RANGE OF θ

To guarantee a small yet positive probability for all combinations of categorical variables, the param-
eters are projected into a subset of the domain of the parameters, namely,

[
θmin
i := 1

D(Ki−1) , 1−
1
D

]
for each i = 1, . . . , D, where D is the number of categorical variables and Ki > 1 is the number of
categories for i-th variable. To realize this, we apply the following steps after θ update by (4):

θij ← max{θij , θmin
i } for all i and j, then (11)

θij ← θij+
1−

∑Ki

k=1 θik∑Ki

k=1

(
θik − θmin

i

) (θij − θmin
i

)
. (12)

The first line guarantees θij ≥ θmin
i . The second line ensures

∑Ki

j=1 θij = 1, while keeping θij ≥
θmin
i .

11



Under review as a conference paper at ICLR 2019

C LEARNING RATE ADAPTATION

The learning rate adaptation proposed by Nishida et al. (2018) is adopted to achieve the parameter-
free algorithm and improve the search efficiency. Let s be the accumulation of the parameter update
and γs be its normalization factor, initialized as s(0) = 0 and γ(0)

s = 0, respectively. We denote
the estimated natural gradient in (4) as ∇̃(t)

λ = 1
λ

∑λ
n=1 un(M̄n − θ̄(t)). Note that M and θ are

over-parametrized by the one degree of freedom as mentioned in the natural gradient derivation. We
hence consider M̄ and θ̄ as we considered above. Then, they are updated as

s(t+1) = (1− η(t)
θ )s(t) +

√
η

(t)
θ (2− η(t)

θ )
F (θ(t))

1
2 ∇̃(t)

λ

Tr(F (θ(t))Cov[∇̃(t)
λ ])

1
2

γ(t+1)
s = (1− η(t)

θ )2γ(t)
s + η

(t)
θ (2− η(t)

θ ) .

The estimated natural gradient is scaled w.r.t. the Fisher information matrix and its estimation co-
variance. As we can not compute the covaraince matrix analytically, we approximate it by the expec-
tation under the assumption that un and Mn are uncorrelated, leading to Tr(F (θ(t))Cov[∇̃(t)

λ ]) =

2−1
∑D
i=1(Ki − 1), where we used the fact λ = 2, u1 = 1 and u2 = −1. See Nishida et al. (2018)

for its rationale. The learning rate is updated based on the length of s(t+1), namely,

η
(t+1)
θ = ηmin ∨ η(t)

θ exp(η
(t)
θ (‖s(t+1)‖2/α− γ(t+1)

s )) ∧ ηmax , (13)

where α = 1.5 is the threshold parameter, ηmin and ηmax are the minimum and maximum learning
rate, which are ηmin = 0 and ηmax = (

∑D
i=1(Ki − 1))−1/2, respectively. The learning rate is

initialized as η(0)
θ = ηmax.

The above procedure requires to compute the square root of F (θ(t)), which is feasible since it is
positive definite. As the Fisher information matrix is a block-diagonal, and each block is of size
Ki−1, a naive computation of F (θ(t))

1
2 requiresO(

∑D
i=1(Ki−1)3). This is usually not expensive

as D � Ki. An alternative way that we employ in this paper is to replace F (θ(t))
1
2 with a tractable

factorization A with F (θ(t)) = AAT. Our choice of A is the block-diagonal matrix whose i-th
block is square, of size Ki − 1, and

Ai = diag(θ̄i)
− 1

2 +
1

(
√
θiKi

+ θiKi
)
1
√
θ̄i

T
, (14)

where
√
θ̄i is a vector whose j-th element is the square root of θ̄ij . Then, the product of A and

a vector can be computed in O(
∑D
i=1(Ki − 1)). In our preliminary study we did not obverse any

significant performance difference by this approximation.

D OVERALL MODEL STRUCTURE FOR CLASSIFICATION AND INPAINTING
TASKS

norm
al

cell

norm
al

cell

norm
al

cell

reduction
cell

reduction
cell

im
age

softm
ax

×
𝑁

×
𝑁

×
𝑁

Figure 1: Overall model structure for the classification task in Section 4.1. We optimize the archi-
tecture of the normal and reduction cells by PDAS. In the re-training phase, we construct the CNN
using the optimized cell architecture with an increased number of cells N .

12



Under review as a conference paper at ICLR 2019

Layer	2
Inactive	variable

Input

Output
layer

Decoder	part

3x3	DeConv (256) 1x1	SkipDeConv (128) 3x3	DeConv (64)

3x3	Conv	(256) 1x1	SkipConv (128) 3x3	Conv	(64) 5x5	SkipConv (128)

5x5	SkipDeConv (128)

(3x3,	256,	Layer	0)

Layer	0 Layer	1 Layer	3 Layer	4

(1x1	with	Skip,	128,	Layer	0) (3x3,	64,	Layer	1) (5x5	with	Skip,	128,	Layer	3)

Layer	5

(Layer4)

Variable	setting	for	encoder	part:	(Layer	type,	Channel	size,	Connected	layer)
Variable	setting	for	output	 layer:	(Connected	layer)

Figure 2: A conceptual example of the decoded symmetric CAE architecture and the corresponding
categorical variables. The decoder part is automatically decided from the encoder structure as a
symmetric manner.

E SUPPLEMENTARY EXPERIMENTAL RESULTS

input -2

node 0

identity

node 1

identity sep5x5

node 2

avg_pool

node 3

identity
max_pool

input -1

identity

max_pool

node 4

sep3x3 sep5x5

output

input -2

node 0

avg_pool identity

node 3

identity node 4

max_pool max_pool

input -1

node 1

max_pool node 2

avg_poolmax_pool

sep5x5identity

output

normal cell reduction cell

Figure 3: The best cell structures discovered by PDAS in the classification task.

13


	Introduction
	Probabilistic Model-Based Dynamic Architecture Search
	Related Work
	Experiment and Result
	Image Classification
	Inpainting

	Conclusion
	Derivation of the Natural Gradient
	Restriction for the range of 
	Learning Rate Adaptation
	Overall Model Structure for Classification and Inpainting Tasks
	Supplementary Experimental Results

