
Automatic Inference of Sound
Correspondence Patterns Across Multiple
Languages

Sound correspondence patterns play a crucial role for linguistic reconstruction. Linguists
use them to prove language relationship, to reconstruct proto-forms, and for classical
phylogenetic reconstruction based on shared innovations.Cognate words which fail to
conform with expected patterns can further point to various kinds of exceptions in sound
change, such as analogy or assimilation of frequent words. Here we present an automatic
method for the inference of sound correspondence patterns across multiple languages based
on a network approach. The core idea is to represent all columns in aligned cognate sets as
nodes in a network with edges representing the degree of compatibility between the nodes.
The task of inferring all compatible correspondence sets can then be handled as the well-
known minimum clique cover problem in graph theory, which essentially seeks to split the
graph into the smallest number of cliques in which each node is represented by exactly
one clique. The resulting partitions represent all correspondence patterns which can be
inferred for a given dataset. By excluding those patterns which occur in only a few cognate
sets, the core of regularly recurring sound correspondences can be inferred. Based on this
idea, the paper presents a method for automatic correspondence pattern recognition, which
is implemented as part of a Python library which supplements the paper. To illustrate the
usefulness of the method, various tests are presented, and concrete examples of the output
of the method are provided. In addition to the source code, the study is supplemented by
a short interactive tutorial that illustrates how to use the new method and how to inspect
its results.

1. Introduction

One of the fundamental insights of early historical linguistic research was that – as
a result of systemic changes in the sound system of languages – genetically related
languages exhibit structural similarities in those parts of their lexicon which were
commonly inherited from their ancestral languages. These similarities surface in form
of correspondence relations between sounds from different languages in cognate words.
English th [θ], for example, is usually reflected as d in German, as we can see from
cognate pairs like English thou vs. German du, or English thorn and German Dorn.
English t, on the other hand, is usually reflected as z [ts] in German, as we can see
from pairs like English toe vs. German Zeh, or English tooth vs. German Zahn. The
identification of these regular sound correspondences plays a crucial role in historical
language comparison, serving not only as the basis for the proof of genetic relationship
(Dybo and Starostin 2008; Campbell and Poser 2008) or the reconstruction of proto-
forms (Hoenigswald 1960, 72-85, Anttila 1972, 229-263), but (indirectly) also for classical
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subgrouping based on shared innovations (which would not be possible without identified
correspondence patterns).

Given the increasing application of automatic methods in historical linguistics after
the “quantitative turn” (Geisler and List 2013, 111) in the beginning of this millennium,
scholars have repeatedly attempted to either directly infer regular sound correspon-
dences across genetically related languages (Kondrak 2009, 2003; Brown, Holman, and
Wichmann 2013; Kay 1964) or integrated the inference into workflows for automatic
cognate detection (Guy 1994; List 2012a, 2014; List, Greenhill, and Gray 2017). What is
interesting in this context, however, is that almost all approaches dealing with regular
sound correspondences, be it early formal – but classically grounded – accounts (Grimes
and Agard 1959; Hoenigswald 1960) or computer-based methods (Kondrak 2003, 2002;
List 2014) only consider sound correspondences between pairs of languages.

A rare exception can be found in the work of Anttila (1972, 229-263), who presents
the search for regular sound correspondences across multiple languages as the basic tech-
nique underlying the comparative method for historical language comparison. Anttila’s
description starts from a set of cognate word forms (or morphemes) across the languages
under investigation. These words are then arranged in such a way that corresponding
sounds in all words are placed into the same column of a matrix. The extraction of
regularly recurring sound correspondences in the languages under investigation is then
based on the identification of similar patterns recurring across different columns within
the cognate sets. The procedure is illustrated in Figure 1, where four cognate sets in
Sanskrit, Ancient Greek, Latin, and Gothic are shown, two taken from Anttila (1972,
246) and two added by me.

Two points are remarkable about Anttila’s approach. First, it builds heavily on the
phonetic alignment of sound sequences, a concept that was only recently adapted in
linguistics (Covington 1996; Kondrak 2000; List 2014), building heavily on approaches
in bioinformatics and computer science (Wagner and Fischer 1974; Needleman and
Wunsch 1970), although it was implicitly always an integral part of the methodology
of historical language comparison (compare Fox 1995, 67f, Dixon and Kroeber 1919).
Second, it reflects a concrete technique by which regular sound correspondences for
multiple languages can be detected and employed as a starting point for linguistic
reconstruction. If we look at the framed columns in the four examples in Figure 1, which
are further labeled alphabetically, for example, we can easily see that the patterns A, E,
and F are remarkably similar, with the missing reflexes in Gothic in the patterns E and
F as the only difference. The same holds, however, for columns C, E, and F. Since A and
C differ regarding the reflex sound of Gothic (u vs. au), they cannot be assigned to the
same correspondence set at this stage, and if we want to solve the problem of finding the
regular sound correspondences for the words in the figure, we need to make a decision
which columns in the alignments we assign to the same correspondence sets, thereby
‘imputing’ missing sounds where we miss a reflex. Assuming that the “regular” pattern
in our case is reflected by the group of A, E, and F, we can make predictions about the
sounds missing in Gothic in E and F, concluding that, if ever we find the missing reflex
in so far unrecognised sources of Gothic in the future, we would expect a -u- in the words
for ‘daughter-in-law’ and ‘red’.1

1 If we ever found a new Gothic text in which these words are attested but do not contain a -u- where
we expect it, this would force us to revise our hypothesis, but as long as we lack the data, we trust
in the predictive power of our investigation.
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We can easily see how patterns of sound correspondences across multiple languages
can serve as the basis for linguistic reconstruction. Strictly speaking, if two alignment
columns are identical (ignoring missing data to some extent), they need to reflect the
same proto-sound. But even if they are not identical, they could be assigned to the same
proto-sound, provided that one can show that the differences are conditioned by phonetic
context. This is the case for Gothic au [o] in pattern C, which has been shown to go
back to u when preceding h (Meier-Brügger 2002, 210f). As a result, scholars usually
reconstruct Proto-Indo-European *u for A, C, E, and F.

A B C D E F

Sanskrit y u g a m dh u h i (tar) s n u ṣ (ā) - r u dh (iras)

Greek z u g o n th u g a (ter-) - n u - (os) e r u th (rós)

Latin i u g u m Ø Ø Ø Ø (Ø) - n u r (us) - r u b (er)

Gothic j u k - - d au h - (tar) Ø Ø Ø Ø (Ø) Ø Ø Ø Ø (Ø)

Gloss 'yoke' 'daughter' 'daughter-in-law' 'red'

Figure 1
Regular sound correspondences across four Indo-European languages, illustrated with help of
alignments along the lines of Anttila (1972: 246). In contrast to the original illustration, lost
sounds are displayed with help of the dash “-” as a gap symbol, while missing words (where no
reflex in Gothic or Latin could be found) are represented by the “Ø” symbol.

While it seems trivial to identify sound correspondences across multiple languages
from the few examples provided in Figure 1, the problem can become quite complicated
if we add more cognate sets and languages to the comparative sample. Especially the
handling of missing reflexes for a given cognate set becomes a problem here, as missing
data makes it difficult for linguists to decide which alignment columns to group with each
other. This can already be seen from the examples given in Figure 1, where we have two
possibilities to group the patterns A, C, E, and F.

The goal of this paper is to illustrate how a manual analysis in the spirit of Anttila
can be automatized and fruitfully applied – not only in purely computational approaches
to historical linguistics, but also in computer-assisted frameworks that help linguists to
explore their data before they start carrying out painstaking qualitative comparisons
(List 2016b). In order to illustrate how this problem can be solved computationally, I
will first discuss some important general aspects of sound correspondences and sound
correspondence patterns in Section 2, introducing specific terminology that will be
needed in the remainder. In Section 3, I will show that the problem of finding sound
correspondences across multiple languages can be modeled as the well-known clique-cover
problem in an undirected network (Bhasker and Samad 1991). While this problem is hard
to solve in an exact way computationally,2 fast approximate solutions exist (Welsh and
Powell 1967) and can be easily applied. Based on these findings, I will introduce a fully
automated method for the recognition of sound correspondence patterns across multiple
languages in Section 4. This method is implemented in form of a Python library and can
be readily applied to multilingual wordlist data as it is also required by software packages
such as LingPy (List, Greenhill, and Forkel 2017) or software tools such as EDICTOR
(List 2017). In Section 5, I will then illustrate how the method can be applied and
evaluate its performance both qualitatively and quantitatively. The application of the

2 Both the clique-cover problem and its inverse problem, the graph coloring problem, have been
shown to be np-complete (Bhasker and Samad 1991).
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new method is further explained in an accompanying interactive tutorial available from
the supplementary material, which also shows how an extended version of the EDICTOR
interface can be used to inspect the inferred correspondence patterns interactively. The
supplementary material also provides code and data as well as instructions on how to
replicate all tests carried out in this study.

2. Preliminaries on Sound Correspondence Patterns

In the introduction, I have tried to emphasize that the comparative method is itself less
concerned with regular sound correspondences attested for language pairs, but for all
languages under consideration. In the following, I want to substantiate this claim further,
while at the same time introducing some major methodological considerations and ideas
which are important for the development of the new method for sound correspondence
pattern recognition that I want to introduce.

2.1 From Sound Correspondences to Sound Correspondence Patterns

Sound correspondences are most easily defined for pairs of languages. Thus, it is straight-
forward to state that German [d] regularly corresponds to English [θ], that German [ts]
regularly corresponds to English [t], and that German [t] corresponds to English [d].
We can likewise expand this view to multiple languages by adding another Germanic
language, such as, for example, Dutch to our comparison, which has [d] in the case of
German [d] and English [θ], [t] in the case of German [ts] and English [t], and [d]
in the case of German [t] and English [d]. Examples for all forms are given along with
proto-forms in Proto-Germanic in Table 1.

Gloss Proto-Germanic German English Dutch
‘dead’ *daudaz daudaz tot toːt dead dɛd doot doːt
‘deed’ *dēdiz deːdiz Tat taːt deed diːd daad daːt
‘thick’ *þekuz θekuz dick dɪk thick θɪk dik dɪk
‘thorn’ *þurnuz θurnuz Dorn dɔrn thorn θɔːn doorn doːrn
‘tongue’ *tungōn tuŋgoːn Zunge tsʊŋə tongue tʌŋ tong tɔŋ
‘tooth’ *tanþs tanθs Zahn tsaːn tooth tuːθ tand tɑnt

Table 1
Comparing correspondence patterns for Proto-Germanic reflexes of *d-, *þ-, and *t- in
German, English, and Dutch (Germanic proto-forms follow Kroonen 2013).

The more languages we add to the sample, however, the more complex the picture will
get, and while we can state three (basic) patterns for the case of English, German, and
Dutch, given in our example, we may get easily more patterns, due to secondary sound
changes in the different languages, although we would still reconstruct only three sounds
in the proto-language ([θ, t, d]). Thus, there is a one-to-n relationship between what we
interpret as a proto-sound of the proto-language, and the regular correspondence patterns
which we may find in our data. While we will reserve the term sound correspondence for
pairwise language comparison, we will use the term sound correspondence pattern (or
simply correspondence pattern) for the abstract notion of regular sound correspondences
across a set of languages which we can find in the data. If the words upon which we base
our inference of correspondence patterns are strictly cognate (i.e., they have not been
borrowed and not undergone “irregular” changes like assimilation or analogy), a given
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correspondence pattern points directly to a proto-sound in the ancestral language. A
given proto-sound, however, may be reflected in more than one correspondence pattern,
which can be ideally resolved by inferring the phonetic context that conditions the change
from the proto-language to individual descendants.

2.2 Correspondence Patterns and Proto-Forms

Scholars like Meillet (1908, 23) have stated that the core of historical linguistics is not
linguistic reconstruction, but the inference of correspondence patterns, emphasizing that
‘reconstructions are nothing else but the signs by which one points to the correspon-
dences in short form’. 3 However, given the one-to-n relation between proto-sounds and
correspondence patterns, it is clear, that this is not quite correct. Having inferred regular
correspondence patterns in our data, our reconstructions will add a different level of
analysis by further clustering these patterns into groups which we believe to reflect one
single sound in the ancestral language.

That there are usually more than just one correspondence pattern for a reconstructed
proto-sound is nothing new to most practitioners of linguistic reconstruction. Unfortu-
nately, however, linguists do rarely list all possible correspondence patterns exhaustively
when presenting their reconstructions, but instead select the most frequent ones, leaving
the explanation of weird or unexpected patterns to comments written in prose. A first
and important step of making a linguistic reconstruction system transparent, however,
should start from an exhaustive listing of all correspondence patterns, including irregular
patterns which occur very infrequently but would still be accepted by the scholars as
reflecting true cognate words.

2.3 Correspondence Patterns in the Classical Literature

What scholars do instead is providing tables which summarise the correspondence
patterns in a rough form, e.g., by showing the reflexes of a given proto-sound in the
descendant languages in a table, where multiple reflexes for one and the same language
are put in the same cell. An example, taken with modifications4 from Clackson (2007, 37),
is given in Table 2. In this table, the major reflexes of Proto-Indo-European stops in 11
languages representing the oldest attestations and major branches of Indo-European, are
listed. This table is a very typical example for the way in which scholars discuss, propose,
and present correspondence patterns in linguistic reconstruction (Brown et al. 2011;
Holton et al. 2012; Jacques 2017; Beekes 1995). The shortcomings of this representation
become immediately transparent. Neither are we told about the frequency by which a
given reflex is attested to occur in the descendant languages, nor are we told about the
specific phonetic conditions which have been proposed to trigger the change where we
have two reflexes for the same proto-sound. While scholars of Indo-European tend to know
these conditions by heart, it is perfectly understandable why they would not list them.
However, when presenting the results to outsiders to their field in this form, it makes
it quite difficult for them to correctly evaluate the findings. A sound correspondence
table may look impressive, but it is of no use to people who have not studied the data
themselves.

3 My translation, original text: ‘Les «restitutions» ne sont rien autre chose que les signes par lesquels
on exprime en abrégé les correspondances’.

4 We added phonetic transcriptions, preceding the original sound given by the author, separated by a
slash.
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PIE Hittite Sanskrit Greek Latin Gothic ...
*p p p p p f b ...
*b b p b b b p ...
*bʰ b p bʱ/bh pʰ/ph f b b ...
*t t t t t θ/þ d ...
*d d t d d d t ...
*dʰ d t dʰ/dh h tʰ/th f d b d ...
... ... ... ... ... ... ...
*kʷ kʷ/ku k c k p t kʷ/qu hʷ/hw g ...
*gʷ kʷ/u g j g b d gʷ/gu u q ...
*gʷʰ kʷ/ku gʷ/gu gʱ/gh h pʰ/ph tʰ/th kʰ/kh f gʷ/gu u g b ...

Table 2
Sound correspondence patterns for Indo-European stops, following Clackson (2007, 37).

A further problem in the field of linguistic reconstruction is that scholars barely
discuss workflows or procedures by which sound correspondence patterns can be inferred.
For well-investigated language families like Indo-European or Austronesian, which have
been thoroughly studied for hundreds of years, it is clear that there is no direct need to
propose a heuristic procedure, given that the major patterns have been identified long ago
and the research has reached a stage where scholarly discussions circle around individual
etymologies or higher levels of linguistic reconstruction, like semantics, morphology and
syntax.5 For languages whose history is less well known and where historical language
reconstruction has not even reached a stage of reconstruction where a majority of scholars
agrees, however, a procedure that helps to identify the major correspondence patterns
underlying a given dataset, would surely be incredibly valuable.

2.4 Correspondence Patterns and Alignments

In order to infer correspondence patterns, the data must be available in aligned form
(for details on alignments, see List 2014, 61-118), that is, we must know which of the
sound segments that we compare across cognate sets are assumed to go back to the
same ancestral segment. This is illustrated in Figure 2 where the cognate sets from Table
1 are presented in aligned form, following the alignment annotations of LingPy (List,
Greenhill, and Forkel 2017) and EDICTOR (List 2017), in representing zero-matches
with the dash ("-") as a gap symbol, and using brackets to indicate unalignable parts
in the sequences. Scholars at times object to this claim, but it should be evident, also
from reading the account by Anttila (1972) mentioned above, that without alignment
analyses, albeit implicit ones that are never provided in concrete, no correspondence
patterns could be proposed. Even if alignments are never mentioned in the entire book
of Clackson (2007), the correspondence patterns shown in Table 2 directly reflect them,
since each example that one could give for the data underlying a given correspondence
pattern in the descendant languages would require the identification of unique sounds in
each of the reflexes that confirm this pattern.

5 For examples, compare the very detailed etymological discussions by Meier-Brügger (2002, 173-187).
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Proto-Germanic

German

English

Dutch

Proto-Germanic

German

English

Dutch

'dead' 'thick' 'tongue'

'deed' 'thorn' 'tooth'

d au d ( a z )

t oː t ( - - )

d ɛ d ( - - )

d oː t ( - - )

θ e k ( u z )

d ɪ k ( - - )

θ ɪ k ( - - )

d ɪ k ( - - )

t u ŋ ( g oː )

ts ʊ ŋ ( - ə )

t ʌ ŋ ( - - )

t ɔ ŋ ( - - )

d eː d ( i z )

t aː t ( - - )

d iː d ( - - )

d a: t ( - - )

θ u r n ( u z )

d ɔ r n ( - - )

θ ɔː - n ( - - )

d oː r n ( - - )

t a n θ ( s )

ts aː n - ( - )

t uː - θ ( - )

t ɑ n t ( - )

Figure 2
Alignment analyses of the six cognate sets from Table 1. Brackets around subsequences
indicate that the alignments cannot be fully resolved due to secondary morphological changes.

It is important to keep in mind that strict alignments can only be made of cognate
words (or parts of cognate words) that are directly related. The notion of directly related
word (parts) is close to the notion of orthologs in evolutionary biology (List 2016a) and
refers to words or word parts whose development have not been influenced by secondary
changes due to morphological processes.6 If we compare German gehen [geː.ən] ‘to go’
with English go [gəʊ], for example, it would be useless to align the verb ending -en in
German with two gap characters in English, since we know well that English lost most
of its verb endings independently. We can, however, align the initial sound and the main
vowel.

Following evolutionary biology, a given column of an alignment is called an alignment
site (or simply a site). An alignment site may reflect the same values as we find
in a correspondence pattern, and correspondence patterns are usually derived from
alignment sites, but in contrast to a correspondence pattern, an alignment site may
reflect a correspondence pattern only incompletely, due to missing data in one or more
of the languages under investigation. For example, when comparing German Dorf [dɔrf]
‘village’ with Dutch dorp [dɔrp], it is immediately clear that the initial sounds of both
words represent the same correspondence pattern as we find for the cognate sets for
‘thick’ and ‘thorn’ given in Figure 2, although no reflex of their Proto-Germanic ancestor
form *þurpa- (originally meaning ‘crowd’, see Kroonen 2013, 553) has survived in Modern
English.7 Thanks to the correspondence patterns in Table 1, however, we know that –
if we project the word back to Proto-Germanic – we must reconstruct the initial with
*þ- ‘[θ], since the match of German d- and Dutch d- only occurs – if we ignore recent
borrowings – only in correspondence patterns in which English has th-.

These “gaps” due to missing reflexes of a given cognate set are not the same as
the gaps inside an alignment, since the latter are due to the (regular) loss or gain of a
sound segment in a given alignment site, while gaps due to missing reflexes may either
reflect processes of lexical replacement (List 2014, 37f), or a preliminary stage of research
resulting from insufficient data collections or insufficient search for potential reflexes.

6 In some sense, we can find this thought already in the work of August Schleicher, who emphasized
the importance of deriving the ‘mutmaßliche grundform, d. i. die gestalt’ (‘presumable base form,
i.e. the Gestalt’) before turning to a comparison of cognate words across languages (Schleicher 1852,
iv).

7 Old English still knows thorp, but in Modern English, we only find it in names.

7



Computational Linguistics Volume xx, Number xx

While I follow the LingPy annotation for gaps in alignments by using the dash as a
symbol for gaps in alignment sites, I will use the character Ø (denoting the empty set)
to represent missing data in correspondence patterns and alignment sites. The relation
between correspondence patterns in the sense developed here and alignment sites is
illustrated in Figure 3, where the initial alignment sites of three alignments corresponding
to Proto-Germanic þ [θ] are assembled to form one correspondence pattern.

θ u r n ( u z )

d ɔ r n ( - - )

θ ɔː - n ( - - )

d oː r n ( - - )

'thorn'alignment 
site

sound
correspondence

pattern

θ e k ( u z )

d ɪ k ( - - )

θ ɪ k ( - - )

d ɪ k ( - - )

'thick'
Proto-Germanic

German

English

Dutch

θ

d

θ

d

θ u r p ( a )

Ø Ø Ø Ø Ø Ø Ø

d ɔ r f ( - )

d ɔ r p ( - )

'thorp'

Figure 3
Alignment sites and correspondence patterns: While alignment sites are concrete
representations of the presumed relations among cognate words, correspondence patterns are a
further stage of abstraction.

2.5 Summary on Sound Correspondence Patterns

In this section, I have tried to introduce some basic terms, techniques, and concepts that
help to set the scope for the new method for sound correspondence pattern recognition
that will be presented in this paper. I first distinguished correspondence patterns from
proto-forms, since one proto-form can represent multiple correspondence patterns in
a given language family. I then distinguished correspondence patterns from concrete
alignment sites in which the relations of concrete cognate words are displayed, by
emphasizing that correspondence patterns can be seen as a more abstract analysis, in
which similar alignment sites across different cognate sets, regardless of missing reflexes
in the descendant languages, are assigned to the same correspondence pattern. In the
next sections, I will try to show that this handling allows us to model the problem of
sound correspondence pattern recognition as a network partitioning task.

3. Preliminary Thoughts on Correspondence Patterns Recognition

Before presenting the new method for automatic correspondence pattern recognition, it
is important to introduce some basic thoughts about alignment sites and correspondence
patterns that hopefully help to elucidate the core idea behind the method. Having
established the notion of alignment site compatibility, I will show how alignment sites
can be modelled with help of an alignment site network, from which we can extract
regularly recurring sound correspondences.
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3.1 Compatibility of Alignment Sites

If we recall the problem we had in grouping the alignment sites E and F from Figure 1
with either A or C, we can see that the general problem of grouping alignment sites to
correspondence patterns is their compatibility. If we had reflexes for all languages under
investigation in all cognate sets, the compatibility would not be a problem, since we
could simply group all identical sites with each other, and the task could be considered
as solved. However, since it is rather an exception than the norm to have reflexes for all
languages under consideration in a number of cognate sets, we will always find alternative
possibilities to group our alignment sites in correspondence patterns. In the following, I
will assume that two alignment sites are compatible, if they (a) share at least one sound
which is not a gap symbol, and (b) do not have any conflicting sounds. We can further
weight the compatibility by counting how many sounds are shared among two alignment
sites. This is illustrated in Figure 4 for our four alignment sites A, C, E, and F from
Figure 1 above. As we can see from the figure, only two sites are incompatible, namely
A and C, as they show different sounds for the reflexes in Gothic. Given that the reflex
for Latin is missing in site C, we can further see that C shares only two sounds with E
and F.

A E A F E F A C C E C F

Sanskrit u <=> u ------ u <=> u ------ u <=> u ------ u <=> u ------ u <=> u ------ u <=> u

Greek u <=> u u <=> u u <=> u u <=> u u <=> u u <=> u

Latin u <=> u u <=> u u <=> u u ? Ø Ø ? u Ø ? u

Gothic u ? Ø u ? Ø Ø ? Ø u >=< au au ? Ø au ? Ø

Matches 3 3 3 2 2 2

Figure 4
Assessing the compatibility of the four alignment sites from Figure 1.

3.2 Modeling Sound Correspondence Patterns in Networks

Having established the concept of alignment site compatibility in the previous section, it
is straightforward to go a step further and model alignment sites in form of a network.
Here, all sites in the data represent nodes (or vertices), and edges are only drawn between
those nodes which are compatible, following the criterion of compatibility outlined in
the previous section. We can further weight the edges in the alignment site network, for
example, by using the number of matching sounds (where no missing data is encountered)
to represent the strength of the connection (but we will disregard weighting in our
method). Figure 5 illustrates how an alignment site network can be created from the
compatibility comparison shown in Figure 4.

3.3 Correspondence Pattern Recognition as a Clique Coverage Problem

As was mentioned already in the introduction, the main problem of assigning different
alignment sites to correspondence patterns is to decide about those cases where one site
could be assigned to more than one patterns. Having shown how the data can be modeled
in form of a network, we can rephrase the task of identifying correspondence patterns
as a network partitioning task with the goal to split the network into non-overlapping
sets of nodes. Given that our main criterion for a valid correspondence pattern is full
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Sanskrit

Greek

Latin

Gothic

E

u

u

u

Ø Sanskrit

Greek

Latin

Gothic

F

u

u

u

Ø

A

u

u

u

Sanskrit

Greek

Latin

Gothic u

Sanskrit

Greek

Latin

Gothic

C

u

u

Ø

au

Figure 5
Representing alignment sites with help of a network. Edges are only drawn between
compatible alignment sites. The width of the edges represents the number of matches per pair
of alignment sites.

compatibility among all alignment sites of a given partition, we can further specify the
task as a clique partitioning task. A clique in a network is ‘a maximal subset of the
vertices [nodes] in an undirected network such that every member of the set is connected
by an edge to every other’ (Newman 2010, 193). Demanding that sound correspondence
patterns should form a clique of compatible nodes in the network of alignment sites is
directly reflecting the basic practice of historical language comparison as outlined by
Anttila (1972), according to which a further grouping of incompatible alignment sites by
proposing a proto-form would require us to identify a phonetic environment that could
show incompatible sites to be complementary. Partitioning our alignment site network
into cliques does therefore not solve the problem of linguistic reconstruction, but it can
be seen as its fundamental prerequisite.

It is difficult to find a linguistically valid criterion for the way in which the alignment
site network should be partitioned into cliques of compatible nodes. Following a general
reasoning along the lines of Occam’s razor or general parsimony of explanation (Gauch
2003, 269-326), which is often frequented as a criterion for favoring one explanation over
the other in historical language comparison, it is straightforward to state the problem of
clique partitioning of alignment site networks as a minimum clique cover problem, i.e.,
the problem of identifying ‘the minimum number of cliques into which a graph can be
partitioned’ (Bhasker and Samad 1991, 2). This means, when partitioning our alignment
site graph, we should try to minimize the number of cliques to which the different nodes
are assigned.

The minimum clique cover problem is a well-known problem in graph theory and
computer science, although it is usually more prominently discussed in form of its inverse
problem8, the graph coloring problem, which tries to assign different colors to all nodes
in a graph which are directly connected (Hetland 2010, 276). While the problem is
generally known to be NP-hard (ibid.), fast approximate solutions like the Welsh-Powell
algorithm (Welsh and Powell 1967) are available. Using approximate solutions seems
to be appropriate for the task of correspondence pattern recognition, given that we do
not (yet) have formal linguistic criteria to favor one clique cover over another. We should

8 The inverse problem of a given problem in graph theory provides a solution to the original problem
for a graph in which the original edges are deleted and nodes formerly unconnected are connected.
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furthermore bear in mind that an optimal resolution of sound correspondence patterns for
linguistic purposes would additionally allow for uncertainty when it comes to assigning a
given alignment site to a given sound correspondence pattern. If we decided, for example,
that the pattern C in Figure 5 could by no means cluster with E and F, this may well be
premature before we have figured out whether the two patterns (u-u-u-u vs. u-u-u-au)
are complementary and what phonetic environments explain their complementarity. The
algorithm for correspondence pattern recognition, which will be presented in the next
section, accounts for this by allowing one to propose fuzzy partitions in which alignment
sites can be assigned to more than one correspondence pattern.

4. An Automatic Method for Correspondence Pattern Recognition

In the following, I will introduce a method for automatic correspondence pattern recog-
nition that takes cognate-coded and phonetically aligned multilingual wordlists as input
and delivers a list of correspondence patterns as output, with each alignment site in the
original data being assigned to at least one of the inferred correspondence patterns.

4.1 General Workflow

The general workflow underlying the method for automatic correspondence pattern
recognition can be divided into five different stages. Starting from a multilingual wordlist
in which translations for a concept list are provided in form of phonetic transcriptions
for the languages under investigation, the words in the same semantic slot are manually
or automatically searched for cognates (A) and (again manually or automatically)
phonetically aligned (B). The alignment sites are then used to construct an alignment site
network in which edges are drawn between compatible sites (C). The alignment sites are
then partitioned into distinct non-overlapping subsets using an approximate algorithm
for the minimum clique cover problem (D). In a final step, potential correspondence
patterns are extracted from the non-overlapping subsets, and all individual alignment
sites are assigned to those patterns with which they are compatible (E). While there are
both standard algorithms and annotation frameworks for stages (A) and (B),9, the major
contribution of this paper is to provide the algorithms for stages (C), (D), and (E). The
workflow is further illustrated in Figure 6. In the following sections, I will provide more
detailed explanations on the different stages.

4.2 Implementation, Input Format, and Output Format

The method has been implemented as a Python package that can be used as a plugin
for the LingPy library for quantitative tasks in historical linguistics (List, Greenhill, and
Forkel 2017). Users can either invoke the method from within Python scripts as part
of their customised workflows, or from the command line. The supplementary material
offers a short tutorial along with example data illustrating how the package can be used.

The input format for the method described here generally follows the input format
employed by LingPy. In general, this format is a tab-separated text file with the first
row being reserved for the header, and the first column being reserved for a unique

9 For automatic cognate detection, compare for example List (2014), List, Greenhill, and Gray
(2017), Arnaud, Beck, and Kondrak (2017), and Jäger, List, and Sofroniev (2017), and for
automatic phonetic alignment, compare Prokić, Wieling, and Nerbonne (2009) and List (2014). For
manual annotation of cognates and alignments, compare List (2017).
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Figure 6
General workflow of the method for automatic correspondence pattern recognition. Steps (A)
and (B) may additionally be provided in manually corrected form from the input data.

numerical identifier. The header specifies the entry types in the data. In LingPy, all
analyses require certain entry types to be provided from the file, but the entry types can
vary from method to method. Table 3 provides an example for the minimal data that
needs to be provided to our method for automatic correspondence pattern recognition.
In addition to the generally needed information on the identifier of each word (ID),
on the language (DOCULECT), the concept or elicitation gloss (CONCEPT), the
(not necessarily required) orthographic form (FORM), and the phonetic transcription
provided in space-segmented form (TOKENS), the method requires information on the
type of sound (consonant or vowel, STRUCTURE),10 the cognate set (COGID), and the
alignment (ALIGNMENT).

The format employed by LingPy and the method presented in this study is very sim-
ilar to the format specifications developed in the Cross-Linguistic Data Formats (CLDF)
initiative (Forkel et al. 2017), which seeks to render cross-linguistic data more comparable.
The CLDF homepage (http://cldf.clld.org) offers more detailed information on the
ideas behind the different columns mentioned above as part of the CLDF ontology.
LingPy offers routines to convert to and from the format specifications of the CLDF
initiative.

The method offers different output formats, ranging from the LingPy wordlist format
in which additional columns added to the original wordlist provide information on the
inferred patterns, or in the form of tab-separated text files, in which the patterns are
explicitly listed. The wordlist output can also be directly inspected in the EDICTOR
tool, allowing for a convenient manual inspection of the inferred patterns.

10 The values passed to the STRUCTURE column can be arbitrarily filled. When running the
analysis, they are used to identify those positions in the alignments which should be analysed in a
given run (e.g., only vowels, vs. only consonants, etc.).
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ID DOCULECT CONCEPT FORM TOKENS STRUCTURE COGID ALIGNMENT

1 German tongue Zunge ts ʊ ŋ ə c v c 1 ts ʊ ŋ ( ə )

2 English tongue tongue t ʌ ŋ c v c 1 t ʌ ŋ ( - )

3 Dutch tongue tong t ɔ ŋ c v c 1 t ɔ ŋ ( - )

4 German tooth Zahn ts aː n c v c 2 ts aː n -

5 English tooth tooth t uː θ c v c 2 t uː - θ

6 Dutch tooth tand t ɑ n t c v c 2 t ɑ n t

7 German thick dick d ɪ k c v c 3 d ɪ k

... ... ... ... ... ... ... ...

c v c v

c v c c

Table 3
Input format with the basic values needed to apply the method for automatic correspondence
pattern recognition. Both the information in the column COGID (providing information on
the cognacy) and the ALIGNMENT column (providing the segmented transcriptions in
aligned form) can be automatically computed.

4.3 Cognate Detection and Phonetic Alignment

Given that the method is implemented in form of a plugin for the LingPy library, all
cognate detection and phonetic alignment methods offered in LingPy are also available
for the approach and have been tested. Among automatic cognate detection methods,
the users can select among the consonant-class matching approach (Turchin, Peiros, and
Gell-Mann 2010), simple cognate partitioning with help of the normalized edit distance
(Levenshtein 1965) or the Sound-Class-Based Alignment (SCA) method (List 2012b),
and enhanced cognate detection with help of the original LexStat method (List 2012a)
and its enhanced version, based on the Infomap network partitioning algorithm (Rosvall
and Bergstrom 2008), as proposed in (List, Greenhill, and Gray 2017). In addition, when
dealing with data which has been previously segmented morphologically, users can also
employ LingPy’s partial cognate detection method (List, Lopez, and Bapteste 2016).
For phonetic alignments, LingPy offers two basic variants as part of the SCA method
for multiple sequence alignments (List 2012b), namely “classical” progressive alignment,
and library-based alignment, inspired by the T-COFFEE algorithm for multiple sequence
alignment in bioinformatics (Notredame, Higgins, and Heringa 2000).

The automatic methods for cognate detection and phonetic alignments, however, are
not necessarily needed in order to apply the automatic method for correspondence pattern
recognition. Alternatively, users can prepare their data with help of the EDICTOR tool
for creating, maintaining and publishing etymological data (List 2017), which allows
users both to annotate cognates and alignments from scratch or to refine cognate sets
and alignments that have been derived from automatic approaches.

Users proficient in computing do not need to rely on the algorithms offered by LingPy.
Given that the number of freely available algorithms for automatic cognate detection is
steadily increasing (Jäger, List, and Sofroniev 2017; Arnaud, Beck, and Kondrak 2017;
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Rama et al. 2017), users can design their personal workflows, as long as they manage to
export the analyses into the input formats required by the new method for correspondence
pattern recognition.

4.4 Correspondence Pattern Recognition

The method for correspondence pattern recognition consists of three stages (C-E in our
general workflow). It starts with the reconstruction of an alignment site network in which
each node represents a unique alignment site, and links between alignments sites are
drawn if the sites are compatible, following the criterion for site compatibility outlined
in Section 3.1 (C). It then uses a greedy algorithm to compute an approximate minimal
clique cover of the network (D). All partitions proposed in stage (D) qualify as potentially
valid correspondence patterns of our data. But the individual alignment sites in a given
dataset may as well be compatible with more than one correspondence pattern. For this
reason, the method iterates again over all alignment sites in the data and checks with
which of the correspondence patterns inferred in stage (D) they are compatible. This
procedure yields a (potentially) fuzzy assignment of each alignment site to at least one
but potentially more different sound correspondence patterns (E). By further weighting
and sorting the fuzzy patterns to which a given site has been assigned, the number of
fuzzy alignment sites can be further reduced.

As mentioned above in Section 3.3, by modeling the alignment sites in the data as
a network in which edges are drawn between compatible alignment sites, we can treat
the problem of correspondence pattern recognition as a network partitioning task, or,
more precisely, as a specific case of the clique cover problem. Given the experimental
status of this research, where it is still not fully understood what qualifies as an optimal
clique cover of an alignment site graph with respect to the problem of identifying
regular sound correspondence patterns in historical linguistics, I decided to use a simple
approximate solution for the clique cover problem. The advantage of this approach is
that it is reasonably fast and can be easily applied to larger datasets. Once more data
for training and testing becomes available, the basic framework introduced here can be
easily extended by adding more sophisticated methods.

The clique cover algorithm consists of two steps. In a first step, the data is sorted,
using a customized variant of the Quicksort algorithm (Hoare 1962), which seeks to
sort patterns according to compatibility and similarity. By iterating over the sorted
patterns, all compatible patterns are assigned to the same cluster in this first pass, which
provides a first very rough partition of the network. While this procedure is by no means
perfect, it has the advantage of detecting major signals in the data very quickly. For this
reason, it has also been introduced into the web-based EDICTOR tool, where a more
refined method addressing the clique cover problem could not be used, due to the typical
limitations of JavaScript running on client-side.

In a second step, an inverse version of the Welsh-Powell algorithm for graph
coloring (Welsh and Powell 1967) is employed. This algorithm starts from sorting all
existing partitions by size, beginning with the largest partitions. It then consecutively
compares the currently largest partition with all other partitions, merging those which
are compatible with each other, and keeping the incompatible partitions in the queue.
The algorithm stops, once all partitions have been visited and compared against the
remaining partitions.

In order to adjust the algorithm to the specific needs of correspondence pattern
recognition in historical linguistics, I use a slightly modified version. The method starts by
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sorting all partitions (which were retrieved from the application of the sorting algorithm)
in reverse order using the number of non-missing segments in the pattern and the
density of the alignment sites assigned to the pattern as our criterion. The density of
a given correspondence pattern and the alignment site matrix (showing all alignment
sites compatible with the pattern) is calculated by dividing the number of cells with
no missing data in the matrix by the total number of cells in the matrix (see Figure 7
for an example). The method then selects the first element of the sorted partitions and
compares it against all the remaining partitions for compatibility as defined above. If
the first partition is compatible with another partition, the two partitions are merged
into one and the new partition is further compared with the remaining partitions. If the
partition is not compatible, the incompatible partition is appended to a queue. Once all
partitions have been checked for compatibility, the pattern that was checked against the
remaining patterns is placed in the result list, and the queue is sorted again according to
the specific sort criteria. The procedure is repeated until all initial partitions have been
checked against all others.

L₁ L₂ L₃ L₄

S₁ k Ø Ø k

S₂ k g Ø k

S₃ Ø g g k

L₁ L₂ L₃ L₄

S₁ 1 0 0 1

S₂ 1 1 0 1

S₃ 0 1 1 1

2

8 / (4 · 3) = 0.66 3

3}
Figure 7
Calculating the alignment site density of a given correspondence pattern. The density is
calculated by dividing the number of cells in the alignment site matrix with no missing data
by the total number of cells in the matrix.

Figure 8 gives an artificial example that illustrates how the basic method infers the
clique cover. Starting from the data in (A), the method assembles patterns A and B in (B)
and computes their pattern, thereby retaining the non-missing data for each language in
the pattern as the representative value. Having added C and D in this fashion in steps (C)
and (D), the remaining three alignment sites, E-G are merged to form a new partition,
accordingly, in steps (E) and (F).

In this context, it is important to note that the originally selected pattern may change
during the merge procedure, since missing spots can be filled by merging the pattern with
a new alignment site. For this reason, it is possible that this procedure, when only carried
out one time, may not result in a true clique cover (in which all compatible alignment
sites are merged). For this reason, the procedure is repeated several times (3 times is
usually enough), until the resulting partitioning of the alignment site graph represents a
true clique cover. Obviously, this algorithm only approximates the clique cover problem.
However, as we will see in Section 5, it works reasonably well, at least for the smaller
datasets which were considered in the tests.

In the final stage of assigning alignment sites to correspondence patterns, our method
first assembles all correspondence patterns inferred from the greedy clique cover analysis
and then iterates over all alignment sites, checking again whether they are compatible
with a given pattern or not. Since alignment sites may suffer from missing data, their
assignment is not always unambiguous. The example alignment from Figure 1, for
example, would yield two general correspondence patterns, namely u-u-u-au vs. u-u-u-u.
While the assignment of the alignment sites A and C in the figure would be unambiguous,
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Figure 8
Example for the basic method to compute the clique cover of the data. (A) shows all
alignment sites in the data. (B-D) show how the algorithm selects potential edges step by step
in order to arrive at a first larger clique cover. (E-F) show how the second cover is inferred. In
each step during which one new alignment site is added to a given pattern, the pattern is
updated, filling empty spots. While there are two missing data points in (E), where only
alignment sites E and F are merged, these are filled after adding G.

the sites E and F would be assigned to both patterns, since, judging from the data, we
could not tell what correspondence pattern they represent in the end.

5. Testing the Method for Correspondence Pattern Recognition

Given that the perspective on sound correspondences and sound correspondence patterns
presented in this study does not have – at least to my best knowledge – predecessors in
form of quantitative studies, it is difficult to come up with a direct test of the suitability
of the approach. Since classical linguists have never discussed all correspondence patterns
in their data exhaustively, we have no direct means to carry out an evaluation study into
the performance of the new approach as compared to an expert-annotated gold standard.

What can be done, however, is to test specific characteristics of the method by
contrasting the findings when varying certain parameters, or by introducing certain
distortions and testing how the method reacts to them. Last not least, we can also
carry out a deep qualitative analysis of the results by manually inspecting proposed
correspondence patterns. Before looking into these aspects in more detail, however, it
is useful to look at some general statistics and results when applying the method to
different datasets.
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Dataset Source Languages Concepts Cognates Density
Bahnaric Sidwell (2015) 24 200 1055 0.76
Chinese Běijīng Dàxué (1964) 18 180 1231 0.68
Huon McElhanon (1967) 14 139 855 0.48
Romance Saenko (2015) 43 110 465 0.90
Tujia Starostin (2013) 5 109 179 0.63
Uralic Syrjänen et al. (2013) 7 173 870 0.39

Table 4
Basic statistics the test data to test the new method. The training data is listed in the
appendix and was only used for initial trials when developing the method.

5.1 Training and Test Data

For the tests, I use the benchmark database for automatic cognate detection compiled
for the study of List, Greenhill, and Gray (2017). This database offers a training and a
test set, consisting of six subsets each, with data from different subgroups of different
language families. In general, the datasets are rather small, ranging from 5 to 43 language
varieties and from 109 to 210 concepts with a moderate genetic diversity. For our purpose,
small datasets of rather closely related languages are very useful, not only because it is
easier to evaluate them manually, but also because we can rely on automated alignments
when searching for sound correspondence patterns. Table 4 provides an overview of the
datasets along with basic information regarding the original data sources, the number of
languages, concepts, and cognate sets.

I also introduce a new measure, which I call cognate density, which provides a
rough estimate on the genetic diversity of a given dataset.The cognate density D can
be calculated with help of the formula

D = 1− 1

m

m∑
i=1

1

ni

ni∑
j=1

1

cognates(wij)
(1)

where m is the number of concepts, ni is the number of words in concept slot mi, wij is
the j-th word in the i-th concept slot, and cognates(wij) is the size of the cognate set to
which wij belongs. If the cognate density is high, this means that the words in the data
tend to cluster in large cognate sets. If it is low, this means that many words are isolated.
If no words in the data are cognate, the density is zero. The cognate density measure is
potentially useful to inspect specific strengths and weaknesses of the method proposed
here, and one should generally expect that the method will work better on datasets with
a high cognate density, since datasets with low density will have many sparse cognate sets
which will be difficult to assign consistently to unambiguous correspondence patterns.

5.2 General Characteristics

As a first test, the method was applied to the test data and some basic statistics were
calculated. Since the datasets are cognate-coded, but not yet phonetically aligned, I
computed phonetic alignments for all datasets using the SCA algorithm in LingPy’s
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default settings,11 before applying the correspondence pattern recognition method in
three different versions, one inferring correspondence patterns from all alignment sites,
regardless of whether they reflect a vowel or a consonant, one where only consonants
are considered, and one where only sites containing vowels are compared. The results of
this analysis are summarized in Table 5, which lists the number of alignment sites (St.),
the number of inferred correspondence patterns (Pt.), the number of unique (singleton)
patterns which cover only one alignment site and cannot be assigned to any other pattern
(Sg.) and the fuzziness of the patterns (Fz.), which is the average number of different
patterns to which each individual site can be attached, for all three variants (all patterns,
only consonants, and only vowels) for each of the six datasets.

All Patterns Consonants Vowels
Dataset St. Pt. Sg. Fz. St. Pt. Sg. Fz. St. Pt. Sg. Fz.
Bahnaric 2659 865 385 4.59 1651 480 222 4.53 1008 382 167 4.52
Chinese 3205 584 191 5.78 1118 207 79 3.81 1308 298 108 7.28
Huon 1572 271 104 4.07 873 154 58 2.98 699 115 40 5.42
Romance 1656 874 587 3.67 940 496 345 3.51 716 379 250 3.85
Tujia 952 272 130 2.66 323 118 62 1.71 347 84 41 2.71
Uralic 1346 326 131 3.35 763 180 74 2.75 583 141 45 4.16

Table 5
General statistics on the patterns inferred from the test sets.

What we can see from these results is that the method seems to be successful
in drastically reducing the number of alignment sites by assigning them to the same
pattern. What is also evident, but not necessarily surprising, is the large proportion of
unique patterns across all datasets. A further aspect worth mentioning is that, apart from
the case of Bahnaric, the fuzziness of the assignment of alignment sites to the inferred
correspondence patterns seems to be generally higher for vowels than for consonants.
This is generally not surprising, as it is well known that sound correspondences among
vowels are much more difficult to establish than for consonants.

Correspondence patterns wich represent only one alignment site in the data can be
regarded as irregular with respect to the datasets, as they do not offer enough evidence
to conclude whether they are representative for the languages under investigation or not.
Obviously, irregular correspondence patterns may arise for different reasons. Among
these are (1) errors in the data (e.g., resulting from mistaken transcriptions), (2) errors
in the cognate judgments (simple lookalikes and undetected borrowings), (3) errors in
the alignments (assuming that correspondence patterns can only be inferred strictly
by aligning the words in question), (4) irregular sound change processes (especially
assimilation of frequently recurring words, often triggered by morphological processes,
but also cases like metathesis), (5) analogy (in a broader sense, referring not only to
inflectional paradigms, but also to more abstract interferences among word families in
a given language), and (6) missing data that renders regular sound change processes
irregular (e.g., if scholars have not searched thoroughly enough for more examples, or

11 The default settings use the progressive version of the SCA alignments (as opposed to library-based
alignments), and an extended sound-class model (called SCA model in LingPy) of currently 29
symbols.
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if there is truly only one example left or available in the data).12 Given the multiple
reasons by which singleton correspondence patterns can emerge, it is difficult to tell
without inspecting the data in detail, what exactly they result from.

A potentially general problem, which can be easily tested, is that the alignments were
carried out automatically, while the cognate sets were assigned manually. This may lead
to considerable distortions since manual cognate coders that disregard alignments usually
do not pay much attention to questions of partial cognacy or morphological differences
among cognate words due to derivation processes. As a result, any automatic alignment
method applied to historically diverse cognate words will necessarily align parts which
a human would simply exclude from the analysis. We can automatically approximate
this analysis by taking only those sites of the alignments in the data into consideration
in which the number of gaps does not exceed a certain threshold. A straightforward
threshold excludes all alignment sites where the number of gaps is in the majority,
compared to the frequency of any other character in the site. The advantage of this
criterion is that it is built-in in LingPy’s function for the computation of consensus
sequences from phonetic alignments. Consensus sequences represent for each site of an
alignment the most frequently recurring segment (Schneider 2002). To exclude all sites
in which gaps are most frequent, it is therefore enough to compute a consensus sequence
for all alignments and disregard those sites for which the consensus yields a gap when
carrying out the correspondence pattern recognition analysis. The results of this analysis
are shown in Table 6. As can be seen easily, the analysis in which alignment sites with
a considerable number of gaps are excluded produces considerably lower proportions
of singleton correspondence patterns for all six test sets. The fact that the number of
alignment sites is also drastically reduced in all datasets further illustrates how important
it may be to invest the time to manually align cognate sets and mark affixes as non-
alignable parts.

Dataset Sites Patterns Singletons Fuzziness Non-Gappy Gappy
Bahnaric 2006 516 201 4.85 0.39 0.47
Chinese 2906 475 139 5.88 0.29 0.34
Huon 1478 213 74 3.88 0.35 0.41
Romance 1174 476 270 4.70 0.57 0.68
Tujia 820 219 110 2.75 0.50 0.51
Uralic 1168 251 94 3.46 0.37 0.41

Table 6
Calculating correspondence patterns from alignment sites with a limited number of gaps. The
last two columns contrast the proportions of singleton correspondence patterns in the original
analysis reported in Table 5 above (Gappy) with the results obtained for the refined analysis
in which gappy alignment sites are excluded (Non-Gappy).

5.3 Specific Characteristics

In the previous section, I have mentioned different factors that may influence the
correspondence pattern analysis. Although we lack gold standards against which the

12 It is even possible that the proto-language had one specific sound only in a particular word, which
would render the detection of “regular” sound correspondences impossible, unless indirect evidence
from the phonological system is available.
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method could be compared, we can design experiments which mimic various challenges
for the correspondence pattern recognition analysis. In the following, I will discuss three
experiments in which the data is artificially modified in a controlled way in order to see
how the method reacts to specific challenges.

5.3.1 Dealing with Artificially Seeded Borrowings. As a first experiment, let us
consider cases of undetected borrowings in the data. While it is impossible to simulate
borrowings realistically for the time being, we can use a simple workaround inspired
by Dessimoz, Margadant, and Gonnet (2008) and tested on linguistic data in List
(2015). This approach consists in the “seeding” of false borrowings among a certain
number of language pairs in the data. Our version of this approach takes a pre-selected
number of donor-recipient pairs and a pre-selected number of events as input and then
randomly selects language pairs and word pairs from the data. For each event, one word
is transferred from the donor to the recipient, and both items are marked as cognate. If
an original counterpart is missing in the recipient language, the empty slot is filled by
adding the word from the donor language.

In order to test the impact that the introduction of borrowings has on the analysis,
I introduce a rough measure of cognate set regularity derived from the inferred corre-
spondence patterns. This measure, which I call pattern regularity (PR) for convenience,
uses the above-mentioned alignment site density scores for the correspondence patterns
to which each alignment site in a given cognate set is attached and scores their regularity
using a user-defined threshold. If less then half of all alignment sites are judged to be
regular according to this procedure, the whole cognate set is assumed to be regular. If
we encounter a cognate set in the data which is judged to be irregular according to this
criterion, it is split up by assigning all words in the cognate sets to independent cognate
sets. If a dataset is highly irregular, it will loose many cognate sets after applying this
procedure, and accordingly, its cognate density will drop. By comparing the cognate
density of the original dataset after applying the PR measure with a dataset that
was distorted by artificial borrowings, it is possible to test the impact of undetected
borrowings on the method directly.

Table 7 presents the results of this test. Based on tests with the training data, I
set the PR threshold to 0.25 and ran 100 trials for each dataset, each time comparing
the density in the original dataset and the dataset with the artificial borrowings for
a controlled number of language pairs and a controlled number of borrowing events.
The number of language pairs may seem rather high. This was intended, however, as I
wanted to simulate spurious borrowings rather than intensive borrowings between only
a few varieties (which would necessarily increase the pattern regularity). Based on the
positive experience with the exclusion of gapped alignment sites, the same variant was
used for these tests. As can be seen from the results in the table, the cognate density
drops for most datasets when applying the PR measure. The only exception is Uralic,
where density increases after adding the borrowings. The only explanation I have for this
behaviour at the moment is that it results from the generally low cognate density of the
dataset and the low phonetic diversity of the languages. If the languages are phonetically
similar, borrowings do not surface as irregular correspondence patterns or cognate sets,
and it is impossible to tell whether words have been regularly inherited or not. In the
other cases, however, I am confident that the approach reflects the expected behaviour:
if the data contains a considerable amount of undetected borrowings, this will disturb
the correspondence patterns and decrease the pattern regularity of a dataset.
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Unmodified Modified Diff. Lg. Ev.
Dataset Orig. Ds. PR Ds. Orig. Ds. PR Ds.
Bahnaric 0.76 0.51 0.77 0.47 0.04 288 331.78
Chinese 0.68 0.55 0.69 0.47 0.09 162 235.57
Huon 0.48 0.19 0.50 0.18 0.01 98 112.88
Romance 0.90 0.38 0.91 0.31 0.07 924 410.93
Tujia 0.63 0.59 0.64 0.56 0.03 12 48.95
Uralic 0.39 0.38 0.41 0.39 -0.01 24 72.09

Table 7
Comparing pattern regularity for artificially seeded borrowings in the data. The table
contrasts the original density (Orig. Ds.) with the density after applying the pattern regularity
measure (PR Ds.), both to the unmodified and the modified dataset. The last two columns
show the number of languages pairs (Lg.) in which borrowings were introduced and the
number of borrowing events (Ev.).

5.3.2 Dealing with Wrongly Assigned Cognates. In addition to undetected borrow-
ings, the data can also suffer from wrong cognate assignments independent of borrowing,
be it due to lookalikes which were erroneously judged to be cognate, or due to simple
errors resulting from the annotation process. We can simulate these cases in a similar
manner as was done with the seeding of artificial borrowings, by seeding erroneous
words into the cognate sets in the data. In order to distinguish this experiment from
the experiment on borrowings, but also to make it more challenging, I used LingPy’s
in-built method for word generation. This method takes a list of words as input and
returns a generator (a Markov Chain) that generates new words from the input data
with similar phonotactics. The method is by no means exact, employing a simple bigram
model consisting of the original sound segment and a symbol indicating its prosodic
position, following the prosodic model outlined in (List 2014, 119-134). For our purpose,
however, it is sufficient, as we do not need the best possible model for the creation of
pseudo-words, and the input data we can provide is in any case rather limited.

Unmodified Modified Diff. Lg. Ev.
Dataset Orig. D. PR D. Orig. D. PR D.
Bahnaric 0.76 0.51 0.76 0.47 0.04 4.0 400.0
Chinese 0.68 0.55 0.68 0.49 0.06 3.0 270.0
Huon 0.48 0.19 0.48 0.21 -0.02 2.0 134.75
Romance 0.90 0.38 0.90 0.24 0.15 8.0 440.0
Tujia 0.63 0.59 0.63 0.55 0.04 1.0 54.0
Uralic 0.39 0.38 0.39 0.37 0.01 1.0 78.99

Table 8
Comparing pattern regularity for artificially seeded neologisms in the data. The table contrasts
the original density (Orig. D.) with the density after applying the pattern regularity measure
(PR D.). The last two columns show the number of languages (L.) in which neologisms were
introduced and the number of replacement events (Ev.).

The results of this second experiment are reported in Table 8. As can be seen from
the table, the density drops at different degrees in all datasets except from Huon. We
have to admit that we could not find an explanation for this outlier. All we can suspect
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is that the very simple syllable structure of the languages may in fact yield words which
are very similar to the words they were supposed to replace. Why this would lead to a
slight increase of cognate density, however, is still not entirely clear for us. Nevertheless,
in the other cases we are confident that our method picks up correctly the signals of
disturbance in the data. The more erroneously assigned cognate sets we find in a given
dataset, the more difficult it will be to find regular correspondence patterns.

5.3.3 Testing the Predictive Force of Correspondence Patterns. As a final
experiment to be reported in this section, let us investigate the predictive force of cor-
respondence patterns. Since the method for correspondence pattern recognition imputes
missing data in its core, it can in theory also be used to predict how a given word should
look in a given language if the reflex of the corresponding cognate set is missing. An
example for the prediction of forms has been given above for the cognate set Dutch
dorp and German Dorf. Since we know from Table 1 that the correspondence pattern
of d in Dutch and German usually points to Proto-Germanic *þ, we can propose that
the English reflex (which is missing im Modern English) would start with th, if it was
still preserved.13 Since the method for correspondence pattern recognition assigns one or
more correspondence patterns to each alignment site, even if the site has missing data
for a certain number of languages, all that needs to be done in order to predict a missing
entry is to look up the alignment pattern and check the value that is proposed for the
given language variety.

How well the correspondence patterns in a given dataset predict missing reflexes
can again be tested in a straightforward way by artificially introducing missing reflexes
into the datasets. To make sure that the reflexes which should be predicted are in fact
predictable, it is important to restrict both the number of reflexes which are deleted from
a given dataset, as well as to delete only those reflexes from the data which appear in
cognate sets of a certain size. In this way, we can guarantee that the method has a fair
chance to identify missing data.

Following these considerations, the experiment was designed as follows: in 100
different trials, regular words from each dataset were excluded and the correspondence
patterns were inferred from the modified datasets. The number of words to be excluded
was automatically derived for each dataset by (a) selecting cognate sets whose size was
at least half of the number of languages in the datasets, and (b) selecting one reflex of
one third of the preselected cognate sets. As in some of the previous experiments, highly
gapped sites were excluded from the analysis. The prediction rate per reflex was then
computed by dividing the number of correctly predicted sites by the total number of sites
for a given reflex. Given that the methods may assign one alignment site to more than one
correspondence pattern, the number of correctly predicted sites was adjusted by taking
the average number of correctly predicted sites when a fuzzy site was encountered. In
order to learn more about the type of sounds which are best predicted by the method, the
predictive force was computed not only for all sites, but also for vowels and consonants
in separation.

The results of this experiment are provided in Table 9. As can be seen from the table,
the prediction based on inferred correspondence patterns does not work overwhelmingly
well, with only a small amount of the missing reflexes being correctly assigned. This
does, however, not invalidate the method itself, but rather reflects the general problems

13 We ignore deliberately in this context that the alternative of the correspondence in Dutch and
German would be a borrowing from Dutch, Frisian, or English to German.
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Predicted
Dataset MSS MR All Sts. Con. Sts. Vow. Sts. Ds. Fz.
Bahnaric 12 54 0.43 0.52 0.15 0.76 4.76
Chinese 9 52 0.51 0.58 0.31 0.68 5.79
Huon 7 13 0.48 0.54 0.32 0.48 3.93
Romance 21 51 0.45 0.48 0.27 0.90 4.73
Tujia 2 47 0.47 0.50 0.32 0.63 2.88
Uralic 3 31 0.45 0.50 0.29 0.39 3.44

Table 9
Predicting missing reflexes from the data. Column MSS shows the minimal size of cognate sets
that were considered for the experiment. Column MR points to the number of reflexes which
were excluded, Ds. provides the cognate density of the dataset, and Fz. the fuzziness of the
assignment of patterns to alignment sites. In addition to the predictive force for all sites,
consonants, and vowels, the density and the fuzziness of the alignment sites for each dataset
are also reported.

we encounter when working with datasets of limited size in historical linguistics. Since
the datasets in the test and training data are all of a smaller size, ranging between
110 and 210 concepts only, it is not generally surprising that the prediction of missing
reflexes based on previously inferred regular correspondence patterns cannot yield highest
accuracy scores. That we are dealing with general regularity issues (of small wordlists or
of sound change processes in general) is also reflected in the fact that the prediction rate
for consonants is much higher than the one for vowels. Given the limited design space of
vowels opposed to consonants, vowel change is much more prone to idiosyncratic behavior
than consonant change. This is also reflected in the experiment on the predictive force
of automatically inferred correspondence patterns.

5.4 Examples

Inspecting the results of the analyses in due detail would go largely beyond the scope of
this paper. To illustrate, however, how the analysis can aid in practical work on linguistic
reconstruction, I want to provide an example from the Chinese test set. The Chinese data
has the advantage of offering quick access to Middle-Chinese reconstructions for most of
the items. Since Middle Chinese is only partially reconstructed on the basis of historical
language comparison, and mostly based on written sources, such as ancient rhyme books
and rhyme tables (Baxter 1992), the reconstructions are not entirely dependent on the
modern dialect readings.

In Table 10, I have listed all patterns inferred by the method for correspondence
pattern recognition for a reduced number of dialects (one of each major subgroup), which
can all be reconstructed to a dental stop in Middle Chinese (*t, *tʰ or *d). If we only
inspect the first four patterns in the table, we can see that the MC *d corresponds to two
distinct patterns (# 85 and #135). Sūzhōu (SZ), one of the dialects of the Wú group,
which usually inherit the three-stop distinction of voiceless, aspirated, and voiced stops in
Middle Chinese, shows voiced [d] as expected in both patterns, but Běijīng, Guǎngzhōu
and Fúzhōu have contrastive outcomes in both patterns ([tʰ] vs. [t]). When inspecting
the tones which are reconstructed for the different words in Middle Chinese, we can
easily find a conditioning context why the reflexes differ. The píng (flat) tone category in
Middle Chinese correlates with aspiration, while the other tone categories correlate with
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# Cogn. MC MC Tones BJ SZ CS NC MX GZ FZ Dens.
177 14 *t PS t t t t t t t 6.43
76 13 *th PSR tʰ tʰ tʰ tʰ tʰ tʰ tʰ 6.86
85 11 *d P tʰ d t tʰ tʰ tʰ tʰ 6.86
135 5 *d QR t d t tʰ tʰ t t 3.00
197 4 *d P tʰ d t tʰ tʰ tʰ l 3.00
26 2 *d S t Ø Ø tʰ s t l 0.86
220 1 *d P tʰ d t tʰ Ø Ø n 0.00

Table 10
Contrasting inferred correspondence patterns with Middle Chinese reconstructions (MC) and
tone patterns (MC Tones: P: píng (flat), S: shǎng (rising), Q: qù (falling), R: rù (stop coda))
for representative dialects of the major groups (Běijīng, Sūzhōu, Chángshā, Nánchāng,
Měixiàn, Guǎngzhōu, Fúzhōu).

devoicing in the three dialects.14 If we had no knowledge of Middle Chinese, it would
be harder to understand that both patterns correspond to the same proto-sound, but
once assembled in such a way, it would still be much easier for scholars to search for a
conditioning context that allows them to assign the same proto-sound to the two patterns
in questions.

In pattern #197, we can easily see that Fúzhōu is showing an unexpected sound when
comparing it with the other patterns in the table. If Fúzhōu had a [tʰ] instead of the [l],
we could merge it with pattern #85. The conditioning context for the deviation, which
can again be quickly found when inspecting the data more closely, is due to a weakening of
syllable-initial sounds in non-initial syllables in Fúzhōu, which can easily be seen when
comparing the compound Fúzhōu [suɔʔ⁴ lau⁵²] ‘stone’ (lit. ‘stone-head’) vs. the word
[tʰau⁵²] ‘head’ in isolation. The same process can also be found in pattern #26, with the
difference that the pattern corresponds to pattern #135, as the Middle Chinese words
have one of the oblique tones. The reflex [s] in Méixiàn is irregular, though, resulting
from an erroneous cognate judgment that links Fúzhōu [liaʔ²³] with Méixiàn [sɛ⁴⁴] ‘to
lick’. Although the final pattern looks irregular, given that it occurs only once, it can also
be shown to be a variant of #85, since the reflex in Fúzhōu is again due to the weakening
process, but this time resulting in assimilation with the preceding nasal (compare Fúzhōu
[seiŋ⁵² nau³¹] ‘the front (front side)’ with additional tone sandhi).

The example shows that, as far as the Middle Chinese dental stops are concerned,
we do not find explicit exceptions in our data, but can rather see that multiple corre-
spondence patterns for the same proto-sound may easily evolve. We can also see that a
careful alignment and cognate annotation is crucial for the success of the method, but
even if the cognate judgments are fine, but the data are sparse, the method may propose
erroneous groupings. In contrast to manual work on linguistic reconstruction, where
correspondence patterns are never regarded in the detail in which they are presented
here, the method is a boost, especially in combination with tools for cognate annotation,
like EDICTOR, to which we added a convenient way to inspect inferred correspondence
patterns interactively. Since linguists can run the new method on their data and then
directly inspect the consequences by browsing all correspondence patterns conveniently

14 This phenomenon most likely goes back to an earlier phonation contrast between the first (píng)
tone in Middle Chinese and the other tones.
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in the EDICTOR, the method makes it a lot easier for linguists to come up with first
reconstructions or to identify problems in the data.

6. Conclusion and Outlook

In this study I have presented a new method for the inference of sound correspondence
patterns in multi-lingual wordlists. Thanks to its integration with the LingPy software
package, the methods can be applied both in the form of fully automated workflows
where both cognate sets, alignments, and correspondence patterns are computed, or in
computer-assisted workflows where linguists manually annotate parts of the data at any
step in the workflow. Having shown that the inference of correspondence patterns can
be seen as the crucial step underlying the reconstruction of proto-forms, the method
presented here provides a basis for many additional approaches in the fields of computa-
tional historical linguistics and computer-assisted language comparison. Among these are
(a) automatic approaches for linguistic reconstruction, (b) alignment-based approaches
to phylogenetic reconstruction, (c) the detection of borrowings and erroneous cognates,
and (d) the prediction of missing reflexes in the data. The approach is not perfect in its
current form, and many kinds of improvements are possible. Given its novelty, however,
I consider it important to share the approach its current form, hoping that it may inspire
colleagues in the field to expand and develop it further.

Supplementary Material

The supplementary material contains the Python package, a short tutorial (as inter-
active Jupyter notebook and HTML) along with data illustrating how to use it, all
the code that is needed to replicate the analyses discussed in this study along with
usage instructions, the test and training data, and the expanded EDICTOR version
in which correspondence patterns can be inspected in various interactive ways. The
supplementary material has been submitted to the Open Science Framework for anony-
mous review. It can be accessed from the link https://osf.io/mbzsj/?view_only=
b7cbceac46da4f0ab7f7a40c2f457ada.
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Appendix A: Training Data

The following table gives a summary on the training data used in the study.
Dataset Source Languages Concepts Cognates Density
Austronesian Greenhill et al. (2008) 20 210 2864 0.34
Bai Wang (2006) 9 110 285 0.73
Chinese Hóu (2004) 15 140 1189 0.60
IndoEuropean Dunn (2012) 20 207 1777 0.60
Japanese Hattori (1973) 10 200 460 0.70
ObUgrian Zhivlov (2011) 21 110 242 0.88
Bahnaric Sidwell (2015) 24 200 1055 0.76
Chinese Běijīng Dàxué (1964) 18 180 1231 0.68
Huon McElhanon (1967) 14 139 855 0.48
Romance Saenko (2015) 43 110 465 0.90
Tujia Starostin (2013) 5 109 179 0.63
Uralic Syrjänen et al. (2013) 7 173 870 0.39
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Appendix B: Inspecting Correspondence Patterns in EDICTOR

The following screenshots shows how the modified version of the EDICTOR allows for
an enhanced inspection of sound correspondence patterns inferred by the method.
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