Under review as a conference paper at ICLR 2020

GENERATIVE HIERARCHICAL MODELS FOR PARTS,
OBJECTS, AND SCENES

Anonymous authors
Paper under double-blind review

ABSTRACT

Compositional structures between parts and objects are inherent in natural scenes.
Modeling such compositional hierarchies via unsupervised learning can bring var-
ious benefits such as interpretability and transferability, which are important in
many downstream tasks. In this paper, we propose the first deep latent variable
model, called RICH, for learning Representation of Interpretable Compositional
Hierarchies. At the core of RICH is a latent scene graph representation that orga-
nizes the entities of a scene into a tree structure according to their compositional
relationships. During inference, taking top-down approach, RICH is able to use
higher-level representation to guide lower-level decomposition. This avoids the
difficult problem of routing between parts and objects that is faced by bottom-up
approaches. In experiments on images containing multiple objects with different
part compositions, we demonstrate that RICH is able to learn the latent composi-
tional hierarchy and generate imaginary scenes.

1 INTRODUCTION

Compositional hierarchies prevail in natural scenes where primitive entities are recursively com-
posed into more abstract entities. Modeling such compositional generative process allows discovery
of modular primitives that can be reused across a variety of scenes. Hence, it would bring inter-
pretability and transferability, in which current deep learning models are not quite successful. Due
to expensive labeling, such compositional relationships should ideally be learned in an unsupervised
manner. Unsupervised approaches can also provide more flexibility and generalization ability since
the model is allowed to choose the most appropriate compositional hierarchy for a given scenario.

Despite its importance, there has not been much work on unsupervised generative modeling of the
compositional hierarchy. Earlier work on hierarchical representation learning (Lee et al.,|2009) ob-
tains a feature hierarchy that captures concepts at different levels of abstraction, with no explicit
modeling of composition. Recent researches on deep latent variable models (Maalge et al., 2019
Zhao et al., 2017; Senderby et al., 2016; Bachman, 2016) mainly focus on architectural designs and
training methods that harness the full expressive power of hierarchical generative models. Although
they have shown impressive generation quality and disentanglement of learned representation, the
compositional hierarchy is still not captured in a modular and interpretable way. To obtain inter-
pretable scene representation, recent work (Tieleman,|[2014; [Eslami et al.,|2016;|Crawford & Pineaul
2019; Wu et al., 2017; Yao et al., 2018; |Romaszko et al., 2017; Deng et al., [2019) has introduced
domain-specific decoders that take object pose and appearance information as input and render the
object in a similar way to graphics engines. This forces the encoder to invert the rendering process,
producing interpretable object-wise pose and appearance representation.

In this paper, we extend the interpretable object-wise representation to the hierarchical setting. We
propose a deep generative model, called RICH (Representation of Interpretable Compositional Hier-
archies), that can use its hierarchy to represent the compositional relationships among interpretable
symbolic entities like parts, objects, and scenes. To this end, taking inspiration from capsule net-
works (Sabour et al.l 2017; Hinton et al., [2018) and the rendering process of computer graphics,
we propose a probabilistic scene graph representation that describes the compositional hierarchy
as a latent tree. The nodes in the tree correspond to entities in the scene, while the edges indicate
the compositional relationships among these entities. We associate an appearance latent with each
node to summarize all lower-level composition, and a pose latent with each edge to specify the
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transformation from the current level to the upper level. To enforce interpretability, the probabilistic
scene graph is then paired with a decoder that renders the scene graph by recursively applying the
specified transformations. We also introduce learnable templates for the primitive entities. Once
learned, RICH is able to generate all lower-level latents and render a partial scene given the latent at
a specific level.

To infer the scene graph is, however, challenging, since both the tree structure and the latent vari-
ables need to be simultaneously inferred. Capsule networks have provided a bottom-up solution
to learning the tree structure, but it faces the difficult routing problem caused by the exponentially
many possible compositions. Instead, RICH takes a top-down approach that avoids the routing prob-
lem. The intuition is that for a given scene, it is natural to first decompose it into high-level objects.
If we devote our attention to one of the objects, we can then figure out its constituent parts. In cases
where parts are close or have occlusion, we expect the appearance latent of the higher-level object
to guide lower-level decomposition, since it summarizes the typical composition for that object.

The contributions of this paper are as follows. We propose RICH, the first interpretable represen-
tation learning model for compositional hierarchies through probabilistic latent variable modeling.
We then implement a three-level prototype of RICH and demonstrate its effectiveness in extensive
experiments. RICH is able to learn the hierarchical scene graph representation from images contain-
ing multiple compositional objects. Further, it shows decent generation quality and generalization
ability to unseen number of objects.

2 RELATED WORK

Interpretable object-wise representation. AIR (Eslami et al., [2016) is the first generative model
that learns interpretable object-wise scene representation. It is able to assign a latent vector
(zPres, z¥here zwhat) 16 each object in the scene, describing the presence, size, center position, and
appearance of the object. SPAIR (Crawford & Pineaul 2019) improves the scalability of AIR to
images containing a large number of objects. It divides the image into spatially distributed cells, and
auto-regressively infers the latent vector for each cell. This crucially reduces the search space for
individual cells, since they are each responsible only for explaining objects near themselves. RICH
builds upon SPAIR to infer the structure of the probabilistic scene graph. To enable efficient hierar-
chical inference, we use mean-field approximation for the posterior, allowing inference of all cells
to be done in parallel.

Hierarchical scene representation. Modeling the part-whole relationship in scenes has attracted
growing interest, and it has been utilized for improving image classification, parsing, and segmenta-
tion. Two representative models that have inspired our work are hierarchical compositional models
(HCMs) and capsule networks. In HCMs (Zhu et al.,|2008)), the hierarchical structure is represented
as a graph, where leaf nodes interact with image segments, and upper-level nodes store the average
position and orientation of lower-level nodes (with respect to the image coordinates). In capsule
networks (Sabour et al.l 2017; Hinton et al., 2018]), the part-whole relationship is used for achiev-
ing viewpoint invariance. The key insight is that the relative pose of parts with respect to objects
is viewpoint invariant, and is thus suitable to be learned as network weights. However, neither of
these two approaches uses generative modeling, and they have been applied only to scenes with
one dominant object. More recently, the part-whole relationship has been explored in modeling 3D
shapes (Tulsiani et al.| 2017; |Li et al., 2017; Zhu et al.,|2018) and motion decomposition (Xu et al.,
2019). Although they have employed generative modeling, the latent space is not hierarchically
structured, and typically only contains the top-level representation. In contrast, RICH represents
the entire scene graph in latent space, modeling both the hierarchical structure and the object pose
and appearance at each level as latent variables. This representation is arguably richer, and enables
simultaneous learning of a collection of generative models for parts, objects, and scenes.

3 THE PROPOSED MODEL: RICH

RICH (Representation of Interpretable Compositional Hierarchies) is a generative model that cap-
tures the recursive compositional structure inherent in natural scenes. It builds a tree-structured
representation similar to scene graphs in computer graphics (Foley et al.| [1996). The nodes in the
tree describe entities at various levels of abstraction in the scene, and the edges indicate the compo-
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Figure 1: (A) Probabilistic scene graph representation. Each node represents an entity in the scene, and is
associated with an appearance latent. Each edge is associated with a relative pose latent that specifies the coor-
dinate transformation between the child node and the parent node. (B) Top-down inference process. Inference
combines information from glimpse regions and higher-level appearance latents (not shown here). Bounding
boxes indicate inferred pose latents. (C) Recursive decoding process (a single recursive step shown). The im-
age patch X,,, and mask m,,, of an internal node u; are decoded from the image patches and masks of all its
children nodes.

sitional relationships among these entities. Specifically, each leaf node represents a primitive entity
that is not further decomposed. Each internal node represents an abstract entity that is composed
from its children nodes. The composition is specified by the relative pose of each child node with
respect to the parent node, and this pose information is stored on the corresponding edges.

3.1 GENERATIVE PROCESS

To make a generative model, we associate an appearance vector z. © with each node v, and a pose

vector z§* with the edge between node v and its parent pa(v), as shown in Figure[I|A. The intuition
is that z;f(rv) represents the entity at pa(v) in its canonical pose, summarizing all lower-level com-
e
the relative pose of v with respect to pa(v). Thus, the latent vectors in any subtree can be recursively
generated. Let V' be the set of all nodes, € V be the root node, and L C V be the set of leaf nodes.
The generative model for the entire scene x can be written as follows:

p00 = [0l |85 2 p™) [T w200, @™ | 200,) do (1)
veV\{r}

pose

position in the subtree rooted at pa(v). Conditioning on z > We can then sample z,™" and zb™™,

where we assume conditional independence among all latents z5 > and zi'™ that have the same

pa(v). This gives disentangled and interpretable scene representation.

We design the decoder p(x|z}\{,,, 27" ) to closely follow the rendering process from a given scene

graph. First, for each leaf node v € L, we use a neural network to decode its appearance vector
into a small image patch X,, and a (close to) binary mask m,, the same size as X,,. Here we assume
that x,, has already been masked by m,,, meaning %X, (¢, j) = 0 for all pixel locations (7, j) where
m, (i, j) = 0. We then recursively compose these primitive patches into the entire scene by applying
affine transformations level by level. Specifically, let u be an internal node, and ch(u) be the set of
its children. We compose the higher-level image patch X,, and mask m,, as follows:

Xy = Z Qay, @STﬁl()A(v; zﬁose)a m, = Z Qay QSTil(ﬁ'lv’ Zl:;ose)v 2

vEch(u) vEch(u)

where a spatial transformer ST (Jaderberg et al., 2015 is used to properly place X, and m,, into the
coordinate frame of the parent node u, according to the scaling, rotation and translation parameters
given by z5*°. In addition, z5™ also provides relative depth information that helps deal with occlu-
sion. Entities with smaller depth will appear in front of entities with larger depth. This is enforced
by a transparency map o, that assigns pixel-wise weights to each transformed patch according to

its relative depth. See Figure for an illustration. To ensure that unoccluded part of entities will
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remain visible, we normalize v, after applying the transformed mask m, = ST !(rn,, z5°°),

namely for all pixel locations (i, j),

o (i,5) =0 if m,(i,5) =0, D onli,j)=1if Y  1,(i,j) > 0. 3)
vech(u) vech(u)

pose appr

The final decoder output p(x|zv\ 2L ) = N(%,,0°I), where o is a hyperparameter.

3.2 INFERENCE AND LEARNING

Since computing p(x) in Equation [1|is intractable, we train RICH with variational inference. The
approximate posterior is designed to factorize z in the top-down fashion similar to the generative
process, such that a higher-level appearance representation guides lower-level decomposition:

p(z|x) ~q(z]x)=q@™ |x) [ a@™ |20, Xpaw) d@ | Zpn,),x0). )
veV\{r}

Here x,, is the region of input image x that corresponds to the entity that node v represents. This
region is specified by all the predicted pose vectors along the path from root r to node v. More
precisely, we define x,, = x, and recursively extract X, = ST (Xpa(v), 2o ), as shown in Figure
\. Notice that the relative pose zh > of v with respect to pa(v) needs to be inferred from Xpa(v)-

After applying spatial transformer S7, we assume the captured x,, is in its canonical pose. This
top-down inference process avoids the challenging routing problem in capsule networks (Sabour
et al.| 2017} Hinton et al., [2018)), leading to more efficient inference. In cases where entities are
close or have occlusion, the higher-level appearance vector z" could provide some guidance on

separating these entities.

pa(v)

In general, all latents are assumed to be continuous, with both prior and posterior being Gaussian
distributions. However, it may bring additional flexibility and interpretability to introduce some
discrete latents, as we explain in Section [3.3] For continuous latents, we compute posterior via
precision-weighted combination similar to Ladder-VAE (Sgnderby et al.| [2016), and use reparam-
eterization trick (Kingma & Welling, 2013) to sample from the posterior. For discrete latents, we
use Gumbel-Softmax trick (Jang et al.| 20165 Maddison et al.l 2016)). Thus, the entire model can be
trained end-to-end via backpropagation to maximize the following evidence lower bound (ELBO):

L= Ey(z/x) [log p(x | Z[‘)})ie{TyZ“LPPr)} — Dxi[q(z% | x) || p(z2)] 5)
B ZUGV\{ } (=) [DKL[ (Zgose | Z;‘?I;p(rv% pa( U)) ” p(zpose | Z;[:F(rv))“

=2 ey Batao [ Dxcla(2 | 20, x0) | (@™ | 2, )]

3.3 IMPLEMENTATION DETAILS

Structural inference. In our description above, we have assumed that the tree structure is already
known. We now relax this assumption and introduce structural inference. First, we set a maximum
out-degree for each node so that the number of all possible structures is bounded. For simplicity,
in our implementation nodes within one level share the same maximum out-degree. To determine
the structure, it then suffices to specify the presence of each possible edge. Hence, for an arbitrary
edge between node v and its parent, we introduce a Bernoulli variable z},*° to indicate its presence.
If 25" = 0, meaning the edge is not present, then z}™ along with all latents in the subtree rooted
at v are excluded from the representation. To encourage sparse structures, we initialize the prior

p(z0™ | z,)) and the posterior q(z0" | Z,)7,,). Xpa(v)) to have small Bernoulli parameters.

Node grounding. Due to the symmetric tree structure, there are numerous equivalent entity-to-
node assignments for a given scene, each yielding a different permutation of the pose vectors. This
can cause difficulties in the learning process. In particular, the model has to learn a consistent
assignment strategy such that the pose vector at each edge can be well captured by a unimodal
Gaussian distribution. To alleviate this problem, we impose some inductive bias on the assignment
strategy. Inspired by SPAIR (Crawford & Pineau, 2019)), for each internal node u, we divide x,, into
a grid of N,, cells, where N, is the maximum out-degree of u. Each child of u is assigned to one
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of these cells, and is responsible for explaining only the entity whose center position is within that
cell. Assuming that x,, captures the entity « in its canonical pose, this assignment strategy ensures
that each child of node u is almost always associated with the same component of entity u. To deal
with occlusion, we let neighboring cells have slight overlap.

Primitive templates. It is often reasonable to assume that the vast number of complex entities can
be composed from only a modest number of primitive entities. Identifying such primitive entities
through discrete latent variables would bring additional interpretability. Hence, we introduce an
external memory M with variational addressing (Bornschein et al.,|2017) to learn a set of primitive
templates. For each leaf node v € L, we decompose its appearance vector into zy" = (zr, zVhat),
Here, z?)ddr is a one-hot vector that points one of the templates in M, and z:yhat is a continuous vector
that explains the remaining variability. We assume that z | captures the identity but not the exact

appearance of entity v, since z;‘;p(rv) is intended for summarization. Therefore, we factorize the prior
and the posterior as follows:

P | 27 ) = p( | 2 M) p(zi | M%), ©)
gz | 2 x,) = gz | 2P M. x,) gz | M2, x,), )

where M is considered as model parameter, and M[z3%] is the deterministically retrieved memory

content. We implement M to be a stack of low-dimensional embeddings of templates. To decode
from z™", we first retrieve the embedding indexed by z24%", and decode it into a single-channel
image patch. This serves as both the template and the mask, namely t, = g(M][z3%]). We then
apply multiplicative modification controlled by z*" and obtain %, = , ® h(z*). Here, %,
has the same number of channels as the input x, and both g(-) and h(-) are implemented as spatial

broadcast decoders (Watters et al., [ 2019)).

Canonical size. To avoid undesired effects in cascaded affine transformations, we constrain the
spatial transformer to always preserve aspect ratio. Thus, for a square input image, each entity
is assumed to occupy a square image region. Considering the various possible compositions, this
region may not capture the entity’s canonical size well. Hence, we introduce a latent variable z 1 to
represent the aspect ratio of entity u. This could give a tighter bounding box inside the square region.
We consider z™1° as part of the appearance vector, namely zif™ = (zV' zi°) and factorize the
prior and the posterior as follows:

p(Zprr | Z;I»;P(ru)) — p(z\ghat | z;ljlp(ru))p(zzatio | Z\Zhat)’ (8)

appr i h
pp La}no | Z: at7 Xu)~ (9)

Q| 27 x,) = (a2

o) a(e
For simplicity, we introduce z™ only for intermediate nodes v € V' \ (L U {r}). To properly learn
7' we feed it as an additional argument to the spatial transformer. This has two effects. First, the
region outside the bounding box given by z"1° is masked out during transformation in both inference
and reconstruction. This forces the bounding box to capture the entity in its entirety. Second, during
training, we inject zero-mean Gaussian noise to the reconstruction inside the bounding box region.
The noise level is annealed as training proceeds. This encourages tight bounding boxes without
affecting generation quality.

4 EXPERIMENTS

4.1 DATASETS AND A THREE-LEVEL PROTOTYPE

We have implemented a prototype of RICH with part-, object-, and scene-level representation. We
will refer to the latents as zp, zp, and zg respectively. The maximum out-degree is set to be 4 for
each internal node. For evaluation, we have made two datasets of 2D and 3D scenes. Both datasets
contain 128x 128 color images, split into 64000 for training, 12800 for validation, and 12800 for
testing. They present challenges of (i) multi-pose, variable number of objects and parts, (ii) multiple
occurrences of the same type of objects and parts within one scene, and (iii) severe occlusion in 3D
scenes. In making each dataset, we first choose a set of primitive shapes to be the parts, and then
construct the objects and scenes by recursively composing these parts. Specifically, we have chosen
three shapes as parts, and defined ten types of objects in terms of the identity of the constituent parts
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Figure 2: Qualitative results on 2D dataset. (A) (Top) Input image. (Middle) Input image superimposed with
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predicted bounding boxes, drawn according to z., , Z,, , 205 > Zp » and zp". (Bottom) Reconstruction.
(B) Learned part-level templates. Template colors indicate identity. Part boundlng box colors indicate the
chosen template.

and their relative position, scale, and orientation. Among these ten types, three contain a single part,
another three contain two parts, and the remaining four contain three parts. To construct a scene,
we first randomly sample the number of objects (between one and four) and their types, and then
instantiate these objects. This means for each object, we choose a random color for each of its parts,
apply random scaling (within 10% of object size), and draw it at a random position in the scene. In
2D case, the instantiation process also includes random perturbation of parts and random rotation of
the object as a whole. We ensure that different objects have minimal overlap. In 3D case, we use
MuJoCo (Todorov et al.l 2012)) to place the objects on a plane, and then take observations from ten
different viewpoints, some of which can lead to severe occlusion.

4.2 SCENE DECOMPOSITION

RICH is able to give interpretable, tree-structured decomposition of scenes into objects and parts.
We visualize such decomposition in Figure[2]and Figure[3|for 2D and 3D scenes respectively, where
we also show the learned memory templates for parts. Notice that the templates should be in gray
scale, but for visualization purposes we have assigned a color to each template. The bounding
boxes are drawn on top of the input images, according to the inferred pose of objects and parts with
zP'® = 1. Object bounding boxes are drawn in white, while part bounding boxes are drawn in color
to indicate the template chosen for each part.

We find that the templates have learned the appearance of parts at several canonical poses (rotation in
2D and viewpoint in 3D), and RICH predicts the pose of parts with respect to these canonical poses.
This makes the decomposition even more interpretable. Moreover, equipped with templates, RICH
is able to correctly identify the parts even when they have severe occlusion. See Figure[3A third row
where a ball occludes an equally sized cube. This example (and many others) also demonstrate that
RICH can successfully deal with objects composed of multiple parts that are of the same type.

In addition to part-level templates, we believe that the learned object-level z“lp P also helps scene de-

composition, especially when there is ambiguity in part assignment and occlusmn between objects.
For example, in Figure[2JA first column, the triangle and circle near the center are close to each other
and may well constitute an object. However, because this pose configuration is relatively rare in
the training set (compare second column), RICH has correctly rejected this composition and instead
assigned these two parts to separate objects, which better agrees with the training distribution. In
Figure[3A fourth row, object 1 is occluded by object 3. RICH has successfully detected object 1 and
added in the reconstruction a ball of the same color as the occluded part. This is quite reasonable
since the augmented object is one of our predefined types and appears frequently in the dataset.

To quantify RICH’s ability of scene decomposition and representation learning, we report absolute
counting error, precision, and recall for detection of objects and parts in Table [I] and compare the
negative log-likelihood of RICH with a VAE (Kingma & Welling, |2013) baseline in Table@ Here
the counting error measures the absolute difference between the predicted and true number of objects
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Figure 3: Qualitative results on 3D dataset. (A) Each row shows the overall reconstruction, and the predicted

bounding boxes and reconstruction from each object cell for a given input image. (B) Learned part-level
templates. Template colors indicate identity. Part bounding box colors indicate the chosen template.

Table 1: Quantitative results on object and part detection.

Dataset 2D dataset 3D dataset
Training set 1~4 objects 1&3 objects 1~4 objects 1&3 objects

Test set 1~4 objects 2 objects 4 objects 1~4 objects 2 objects 4 objects
Object count error 0.00083 0.0014  0.00036 0.094 0.26 0.47
Object precision 0.9985 0.9987 0.9996 0.9639 0.9157 0.9581
Object recall 0.9984 0.9982 0.9995 0.9597 0.9758 0.8462
Part count error 0.0086 0.011 0.014 0.80 1.1 1.3
Part precision 0.9991 0.9988 0.9991 0.8282 0.7579 0.8100
Part recall 0.9989 0.9985 0.9993 09116 0.9258 0.8347

and parts. To obtain precision and recall, we need to match the predictions with the groundtruth.
We set the matching priority as the distance between the predicted and true center positions, namely
closer pairs of prediction and groundtruth will be matched first. We only match the pair if their
distance is less than 10 pixels (less than half of the size of large parts). This ensures that the matched
predictions will have approximately correct center positions. The VAE baseline shares the same
scene-level encoder with RICH, and uses sub-pixel convolution (Shi et al., 2016)) for the decoder.
We approximate the negative log-likelihood using 50 importance-weighted samples. The counting
error, precision, and recall are also averaged over 50 samples from the posterior. As can be seen from
Table [T} RICH gives almost perfect detection of objects and parts on 2D dataset, and still performs
reasonably well on the challenging 3D dataset. We observe that RICH tends to split a long cylinder
into two parts, leading to the drop in precision for parts.
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Figure 4: (A) Generated objects on (7op) 2D dataset and (Bottom) 3D dataset. White boxes indicate aspect
ratio, and are drawn according to z“‘"o (B) Generated scenes on (7op) 2D dataset and (Bottom) 3D dataset.

Table 2: Comparison on negative log-likelihood.

Dataset 2D dataset 3D dataset
Training set  1~4 objects 1&3 objects 1~4 objects 1&3 objects
Test set 1~4 objects 2 objects 4 objects 1~4 objects 2 objects 4 objects
VAE -13761.9 -13801.4  -13590.5 -13712.0 -13788.3  -13433.2
RICH -13890.3 -13908.3 -13796.6 -13818.0 -13867.3 -13539.7

4.3 OBIJECT AND SCENE GENERATION

Apart from learning the part-level templates, RICH also has the ability to generate objects and
scenes by recursively composing the learned templates. We show generation results in Figure[d] To
generate the scenes, we first sample z sP P ~ N(0,1), and then sample other latents following the
learned conditional prior distributions, and finally use the decoder to render the image. The objects
are generated similarly, except that we decode up to the object level and ignore z0;™ and z))™. We
find that RICH has captured many predefined object types in the dataset, and also managed to come
up with novel compositions. The generated scenes are also reasonable, with moderate distance and

occlusion between objects.

4.4 GENERALIZATION PERFORMANCE

RICH represents the scene as composition of objects and parts. This naturally enables generalization
to novel scenes. Here we evaluate RICH’s capacity to generalize to scenes with novel number of
objects. The training and validation sets of this task contain scenes of one and three objects only.
We trained RICH and the VAE baseline again, and report the metrics in Table [I|and Table [2]on two
test sets, one having two-object scenes only, and the other having four-object scenes only. We also
show qualitative results in Figure[5]and Figure[6] As can be seen, RICH demonstrates quite decent
generalization performance in both 2D and 3D scenes. We notice that in 3D case, there is a drop
in recall when RICH is tested on four-object scenes. One reason is that four-object scenes exhibit
more severe occlusion than the training set, and we have observed that when two objects are close
and have occlusion, RICH would sometimes merge them into one object. Another reason is that in
four-object scenes, objects are more likely to be partially outside the scene. In this case, RICH has
difficulty predicting the precise object position, leading to unmatched predictions when we compute
the recall.

4.5 DATA EFFICIENCY IN DOWNSTREAM TASKS

The compositional hierarchy learned by RICH can be useful in downstream tasks that require rea-
soning of part-object relationships. Here we consider a classification task. The input images are
generated from the same distribution as described in Section [4.T] but with different random seeds.
The label for each image is obtained by first counting the number of distinct parts within each ob-
ject, and then summing the count over all objects. We expect the representation learned by RICH to
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Figure 5: Generalization results on 2D dataset. RICH has been trained on scenes with 1 and 3 objects only, and
tested on scenes with (A) 2 objects and (B) 4 objects. (Top) Input image. (Middle) Input image superimposed
with predicted bounding boxes. (Bottom) Reconstruction.
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Figure 6: Generalization results on 3D dataset. RICH has been trained on scenes with 1 and 3 objects only,
and tested on scenes with (A) 2 objects and (B) 4 objects. Each row shows the overall reconstruction, and the
predicted bounding boxes and reconstruction from each object cell for a given input image.

bring better data efficiency compared to non-hierarchical baselines like SPAIR (Crawford & Pineau,
2019). To verify this, we use pretrained RICH and SPAIR to obtain the latent representation for each
image, and then train a classifier on top of the representation to predict the label. Specifically, the
unnormalized class probabilities yRH for RICH are computed as follows:

u v

yRICH _ MLP ZWU é\/ILP Z W, - iVILP (Zpres . ZPres M[Z%ddr]) , (10)
vEch(u)

where u and v are indices of objects and parts respectively, w,, and w,, are attention weights also
computed by MLPs. Because RICH provides the compositional hierarchy, the classifier can explic-
itly merge information from parts that belong to the same object. For SPAIR that detects parts with
no notion of objects, we include pose vectors as additional input for fair comparison. This allows the
classifier to group parts into objects based on their positions. The unnormalized class probabilities
ySPAIR for SPAIR are computed as follows:

ySPAIR _ FhP (Z MLP (ZW MLP (zPres . concat [z2PP" zp‘”e])>> ) (1D

u
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Figure 7: Comparison of data efficiency in downstream tasks.

The difference here is that we have multiple sets of attention weights w(*), each should learn to
select the parts that belong to one specific object.

We train the two classifiers using varying number of training samples. We ensure that the classi-
fiers have comparable number of parameters. We use a parallel implementation of SPAIR that, as
suggested by |JAnonymous| (2020), has similar detection performance but faster training speed. We
choose the best learning rate for both classifiers using a fixed validation set of size 12800. We report
classification accuracy on a fixed test set also of size 12800. As shown in Figure [/, RICH repre-
sentation approximately doubles the data efficiency on this downstream task compared to SPAIR
representation.

5 CONCLUSION

We have proposed RICH, the first hierarchical generative model for learning interpretable composi-
tional structures. RICH takes a top-down approach to infer the probabilistic scene graph represen-
tation for a given scene. This utilizes the higher-level appearance information to guide lower-level
decomposition, thus avoiding the difficult routing problem faced by bottom-up approaches. Through
extensive experiments, we have demonstrated that RICH is able to learn the compositional hierarchy
from images containing multiple objects. An interesting future direction is to extend RICH to the
sequential setting.
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A DEALING WITH DEFORMABLE PRIMITIVES

In Sectiond] we have demonstrated the effectiveness of RICH on two datasets of 2D and 3D scenes.
However, these datasets only contain non-deformable primitives, meaning each primitive has only
one possible shape. Here, we introduce a compositional MNIST dataset where the primitives are
handwritten digits with considerable shape variation. Through the same set of experiments as in
Section[d] we show that with slight modification, RICH can successfully deal with such deformable
primitives.

A.1 CoOMPOSITIONAL MNIST DATASET

We define the primitive parts to be individual digits from the MNIST database (LeCun et al., [ 1998)).
We have excluded the digit 1, since it can be used as sub-parts in other digits like 4 and 7, and thus
may interfere with our definition of primitives. We then define nineteen types of objects, of which
nine contain a single digit, six contain two digits, and the remaining four contain three digits. Here,
the object definition specifies the class of each digit that an object should contain, and the relative
position and orientation of these digits. We allow overlap among digits that constitute one object.

The dataset contains 128 x 128 color images, split into 64000 for training, 12800 for validation, and
12800 for testing. Each image describes a scene that contains one to four objects. To instantiate
an object from its definition, we first sample the digits from the corresponding classes and resize
them to 36x36. Next, we assign a random color to each digit. The colors are guaranteed to be
distinct. Finally, we apply random scaling (within 10% of object size) and random rotation (within
430 degrees) to the object as a whole, and draw it at a random position in the scene. We ensure
that different objects have minimal overlap, and that disjoint sets of digit samples are used for the
training, validation, and test sets.

A.2 MODIFICATIONS TO RICH

RICH decomposes the appearance vector of primitive v into zy" = (224" z¥ha) "and decodes the
mask 1, and the image patch %, as th, = g(M[z%%]) and %, = m, ® h(z™). Although in
principle, such element-wise multiplication has the ability to model deformation, we empirically
find this to be hard. In fact, h(z"") tends to produce an image patch filled with a single color, and
is thus unable to distort the shape of template given by m,,.

what

To deal with deformable primitives, we add more inductive bias to the decoder. In particular, z}

S|

is further split into zy** and z¢°" during the decoding process. zy“* is designated to explain the
shape variation, and is concatenated with the template embedding M [z2*'] to modify the shape of

template as i1, = g(concat[M[z9%], Z'**]). As mentioned in Section[3.3] i, is in gray scale,

so we then use z°° to colorize the modified template th, and produce X, = m, © h(z).
One challenge here is to disentangle deformation from pose changes. Ideally, zi'** should capture

only the shape variation of primitive v in its canonical pose, so that z, "™ and zb™° do not interfere
with each other. This can be enforced by limiting the expressiveness of zy**°. In experiments, we
shape

find that restricting z,, ~ to a one-dimensional scalar works reasonably well.

Another challenge arises during training. We have observed that RICH tends to split the digits into
sub-parts at an early stage. Consequently, the strokes instead of the digits are learned as primitives,
and the objects become composition of strokes, leading to an incorrect compositional hierarchy. To
alleviate this problem, we take inspiration from SPACE (Anonymous} [2020) and introduce a color-
filtered boundary loss for each glimpse x,,, where v is a primitive. The key observation is that if x,,
captures only part of a digit, then there must be some pixels on the boundary of x, that have the
same color as the digit. Here, the thickness of boundary is a hyperparameter. We use h(z<") as a

v

color filter to find such pixels. The boundary loss then penalizes the total number of those pixels.
This drives z, " to produce a larger glimpse region that reduces splitting. We anneal the weight of

the boundary loss as training proceeds.
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Figure 8: Qualitative results on compositional MNIST dataset. (A) (Top) Input image. (Middle) Input im-
age superimposed with predicted bounding boxes. (Bottom) Reconstruction. (B) Learned part-level templates.
Each row is decoded from the same template embedding with distortion specified by z*"®. Here for visual-
ization purposes, we choose z* "% values that are equally spaced within one standard deviation from the mean.
Template colors indicate identity. Part bounding box colors indicate the chosen template.

Figure 9: (A) Generated objects on compositional MNIST dataset. (B) Generated scenes on compositional
MNIST dataset.

A.3 EXPERIMENTAL RESULTS

Similar to Section 4} here we show both qualitative and quantitative results on the compositional
MNIST dataset. Figure shows qualitative results of scene decomposition. Again, the bounding
boxes are fairly tight, demonstrating that the nodes in the probabilistic scene graph representation
have been correctly associated with objects and parts in the images. We also visualize the learned
part-level templates in Figure [S§B. Here each row shows the templates decoded from one slot of
the memory with varying degree of distortion. As can be seen, each slot captures visually similar
digits, and all nine digits are captured. It is worth noting that the main purpose of memory is not to
perfectly separate the different classes of digits, but to obtain the canonical pose for the digits. This
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Figure 10: Generalization results on compositional MNIST dataset. RICH has been trained on scenes with 1
and 3 objects only, and tested on scenes with (A) 2 objects and (B) 4 objects. (Top) Input image. (Middle) Input
image superimposed with predicted bounding boxes. (Bottom) Reconstruction.

Table 3: Quantitative results on object and part detection.

Dataset Compositional MNIST dataset
Training set 1~4 objects 1&3 objects

Test set 1~4 objects 2 objects 4 objects
Object count error 0.0015 0.00064  0.00027
Object precision 0.9963 0.9899 0.9365
Object recall 0.9962 0.9898 0.9364
Part count error 0.016 0.0086 0.023
Part precision 0.9981 0.9989 0.9982
Part recall 0.9983 0.9990 0.9989

is essential for the scene graph representation to infer consistent orientation for the digits. Figure[SB
shows that this purpose is indeed achieved, since the digits have almost the same pose within each
memory slot.

Figure [9] shows the generated objects and scenes, which resemble the training images. Figure
shows qualitative generalization results. The learned compositional hierarchy generalizes well to
unseen number of objects. We report quantitative results in Table (3| and Table The counting
error, precision, and recall are mainly to show that the representation is learned properly. We com-
pare negative log-likelihood with a VAE baseline to demonstrate that the probabilistic scene graph
representation can be obtained without impairing generation quality.

Finally, we consider a downstream task that requires reasoning of part-object relationships, and
demonstrate the transferability of RICH representation. The task setup, model architecture, and
training procedure are similar to those described in Section[d.5] The difference here is that we seek
to predict the sum of max digit within each object, and we treat it as a 37-way classification task
(possible output can be integers in [0, 36]). Experimental results in Figure [TT] show that compared
to SPAIR, the representation learned by RICH leads to approximately doubled data efficiency.

Table 4: Comparison on negative log-likelihood.

Dataset Compositional MNIST dataset
Training set  1~4 objects 1&3 objects
Test set 1~4 objects 2 objects 4 objects
VAE -13096.4 -12915.7  -10832.9
RICH -13377.1 -13436.9 -12801.6
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Figure 11: Comparison of data efficiency in downstream task.

16



	Introduction
	Related work
	The proposed model: RICH
	Generative process
	Inference and learning
	Implementation details

	Experiments
	Datasets and a three-level prototype
	Scene decomposition
	Object and scene generation
	Generalization performance
	Data efficiency in downstream tasks

	Conclusion
	Dealing with deformable primitives
	Compositional MNIST dataset
	Modifications to RICH
	Experimental results


