
The GAN Landscape:
Losses, Architectures, Regularization,

and Normalization

Karol Kurach? Mario Lucic? Xiaohua Zhai Marcin Michalski Sylvain Gelly
Google Brain

Abstract

Generative Adversarial Networks (GANs) are a class of deep generative models
which aim to learn a target distribution in an unsupervised fashion. While they were
successfully applied to many problems, training a GAN is a notoriously challenging
task and requires a significant amount of hyperparameter tuning, neural architecture
engineering, and a non-trivial amount of "tricks". The success in many practical
applications coupled with the lack of a measure to quantify the failure modes of
GANs resulted in a plethora of proposed losses, regularization and normalization
schemes, and neural architectures. In this work we take a sober view of the current
state of GANs from a practical perspective. We reproduce the current state of
the art and go beyond fairly exploring the GAN landscape. We discuss common
pitfalls and reproducibility issues, open-source our code on Github, and provide
pre-trained models on TensorFlow Hub.

1 Introduction

Deep generative models can be applied to the task of learning a target distribution. They were
recently exploited in a variety of applications unleashing their full potential in the context of natural
images [14, 23, 1, 28]. Generative adversarial networks (GANs) [9] are one of the main approaches
to learning such models in a fully unsupervised fashion. The GAN framework can be viewed as a
two-player game where the first player, the generator, is learning to transform some simple input
distribution (usually a standard multivariate Normal or uniform) to a distribution on the space of
images, such that the second player, the discriminator, cannot tell whether the samples belong to
the true distribution or were synthesized [9]. Both players aim to minimize their own loss and the
solution to the game is the Nash equilibrium where neither player can improve their loss unilaterally.
The GAN framework can also be derived by minimizing a statistical divergence between the model
distribution and the true distribution [9, 21, 19, 2].

Training GANs requires solving a minimax problem over the parameters of the generator and the
discriminator. Since both generator and discriminator are usually parametrized as deep convolutional
neural networks, this minimax problem is notoriously hard in practice [10, 2, 18]. As a result, a
plethora of loss functions, regularization and normalization schemes, coupled with neural architecture
choices, have been proposed [9, 25, 20, 10, 2, 19]. Some of these are derived based on theoretical
insights, while others were inspired by practical considerations.

Our contributions. In this work we provide a thorough empirical analysis of these competing
approaches, and help the researchers and practitioners navigate this space. We first define the
GAN landscape – the set of loss functions, normalization and regularization schemes, and the most
commonly used architectures. We explore this search space on several modern large-scale data sets

?Indicates equal authorship. Correspondence to Karol Kurach (kkurach@google.com) and Mario Lucic
(lucic@google.com).

2nd Reproducibility in Machine Learning Workshop at ICML 2018, Stockholm, Sweden.

by means of hyperparameter optimization, considering both “good” sets of hyperparameters reported
in the literature, as well as ones obtained by Gaussian Process regression. By analyzing the impact of
the loss function, we conclude that the non-saturating loss [9] is sufficiently stable across data sets,
architectures and hyperparameters. We then proceed to decompose the effect of various normalization
and regularization schemes, as well as varying architectures. We show that both gradient penalty [10]
as well as spectral normalization [20] are useful in the context of high-capacity architectures. We
then show that one can further benefit from simultaneous regularization and normalization. Finally,
we propose a discussion of common pitfalls, reproducibility issues, and practical considerations. We
provide all the reference implementations, including training and evaluation code on Github2, and
provide pre-trained models on TensorFlow Hub3.

2 The GAN Landscape

2.1 Loss Functions

Let P denote the target (true) distribution and Q the model distribution. The original GAN formula-
tion [9] suggests two loss functions: the minimax GAN and the non-saturating (NS) GAN. In the
former the discriminator minimizes the negative log-likelihood for the binary classification task (i.e. is
the sample true or fake) and is equivalent to minimizing the Jensen-Shannon (JS) divergence between
P and Q. In the latter the generator maximizes the probability of generated samples being real. In
this work we consider the non-saturating loss as it is known to outperform the minimax variant [9].
The corresponding loss functions are defined as LD = −Ex∼P [log(D(x))]− Ex̂∼Q[log(1−D(x̂))]
and LG = −Ex̂∼Q[log(D(x̂))].

In Wasserstein GAN (WGAN) [2] it is proposed to minimize the Wasserstein distance between P
and Q. Exploiting the connection to optimal transport they prove that under an optimal discriminator,
minimizing the value function with respect to the generator minimizes the Wasserstein distance
between P andQ. The drawback is that one has to ensure a 1-Lipschitz discriminator due to exploited
Kantorovich-Rubenstein duality. To achieve this, the discriminator weights are clipped to a small
absolute value. The corresponding loss functions are defined as LD = −Ex∼P [D(x)] +Ex̂∼Q[D(x̂)]
and LG = −Ex̂∼Q[D(x̂)]. As the final considered loss function, we consider the least-squares loss
(LS) which corresponds to minimizing the Pearson χ2 divergence between P and Q [19]. The
intuition is that this loss function is smooth and saturates slower than the sigmoid cross-entropy loss
of the JS formulation [9]. The corresponding loss functions are defined as LD = −Ex∼P [(D(x)−
1)2] + Ex̂∼Q[D(x̂)2] and LG = −Ex̂∼Q[(D(x̂)− 1)2].

2.2 Regularization and Normalization of the Discriminator

Gradient norm penalty. In the context of Wasserstein GANs this penalty can be interpreted as a soft
penalty for the violation of 1-Lipschitzness (WGAN GP) [10]. Hereby, the gradient is evaluated on a
linear interpolation between training points and generated samples as a proxy to the optimal coupling
[10]. The gradient penalty can also be evaluated around the data manifold which encourages the
discriminator to be piece-wise linear in that region (DRAGAN) [17]. However, the gradient norm
penalty can be considered purely as a regularizer for the discriminator and it was shown that it can
improve the performance for other losses, not only the WGAN [8]. Furthermore, the penalty can
be scaled by the "confidence" of the discriminator in the context of f-divergences [24]. A drawback
of gradient penalty (GP) regularization scheme [10] is that it can depend on the model distribution
Q which changes during training. The drawback of DRAGAN is that it is unclear how to exactly
define the manifold. Finally, computing the gradient norms implies a non-trivial running time penalty
– essentially doubling the running time. Finally, we also investigate the impact of a regularizer
ubiquitous in supervised learning – the L2 penalty on all the weights of the network.

Discriminator normalization. Normalizing the discriminator can be useful from both the opti-
mization perspective (more efficient gradient flow, a more stable optimization), as well as from the
representation perspective – the representation richness of the layers in a neural network depends on
the spectral structure of the corresponding weight matrices.

2Available at http://www.github.com/google/compare_gan.
3Available at http://www.tensorflow.org/hub.

2

http://www.github.com/google/compare_gan
http://www.tensorflow.org/hub
http://www.github.com/google/compare_gan
http://www.tensorflow.org/hub

From the optimization point of view, several techniques have found their way into the GAN literature,
namely Batch normalization [13] and Layer normalization (LN) [3]. Batch normalization (BN)
in the context of GANs was suggested by [7] and further popularized by [23]. It normalizes the
pre-activations of nodes in a layer to mean β and standard deviation γ, where both β and γ are
parameters learned for each node in the layer. The normalization is done on the batch level and for
each node separately. In contrast, with Layer normalization, all the hidden units in a layer share
the same normalization terms β and γ, but different samples are normalized differently [3]. Layer
normalization was first applied in the context of GANs in [10].

From the representation point of view, one has to consider the neural network as a composition of
(possibly non-linear) mappings and analyze their spectral properties. In particular, for the discrimina-
tor to be a bounded linear operator it suffices to control the maximum singular value. This approach
is followed in [20] where the authors suggest dividing each weight matrix, including the matrices rep-
resenting convolutional kernels, by their spectral norm. We note that, while this approach guarantees
1-Lipschitzness for linear layers and ReLu activation units, bounding the spectral norm of the kernel
of the convolutional map to 1 does not bound the spectral norm of the convolutional mapping to 1.
In fact, depending on stride and padding used, the norm might be off by a factor proportional to the
number of filters. We discuss the practical implications of this issue in Section 5. Furthermore, the
authors argue that a key advantage of spectral normalization over competing approaches is that it
results in discriminators of higher rank [20].

2.3 Generator and Discriminator Architecture

We explore two classes of architectures in this study: deep convolutional generative adversarial
networks (DCGAN) [23] and residual networks (ResNet) [11]. These architectures are ubiquitous
in GAN research [9, 2, 25, 10, 20]. DCGAN [23] extended the GAN idea to deep convolutional
networks for image generation. Both the discriminator and generator networks contain 5 layers.
Recently, [20] defined a variation of DCGAN with spectral normalization, so called SNDCGAN.
Apart from minor updates (cf. Section 4) the main difference to DCGAN is the use of an eight-layer
discriminator network. The detailes of both networks are summarized in Table 2. ResNet19 is an
architecture with five ResNet blocks in the generator and six ResNet blocks in the discriminator, that
can operate on 128× 128 images. We follow the ResNet setup from [20], with the small difference
that we simplified the design of the discriminator. In particular, we downsample in every discriminator
block and the first block does not contain any custom changes. Each ResNet block consists of three
convolutional layers, which results in 19 layers in total for the discriminator. The detailed parameters
of discriminator and generator are summarized in Table 3a and Table 3b. With this setup we were
able to reproduce and improve on the current state of the art results.

2.4 Evaluation Metrics

An in-depth overview of available metrics is outside of the scope of this work and we refer the reader
to [5]. We instead focus on several recently proposed metrics well suited to the image domain.

Inception Score (IS). Proposed by [25], IS offers a way to quantitatively evaluate the quality of
generated samples. Intuitively, the conditional label distribution of samples containing meaningful
objects should have low entropy, and the variability of the samples should be high. which can be
expressed as IS = exp(Ex∼Q[dKL(p(y | x), p(y))]). The authors found that this score is well-
correlated with scores from human annotators [25]. Drawbacks include insensitivity to the prior
distribution over labels and not being a proper distance.

As an alternative [12] propose the Frechet Inception Distance (FID). Samples from P and Q are
first embedded into a feature space (a specific layer of InceptionNet). Then, assuming that the
embedded data follows a multivariate Gaussian distribution, the mean and covariance are estimated.
Finally, the Fréchet distance between these two Gaussians is computed, i.e.

FID = ||µx − µy||22 + Tr(Σx + Σy − 2(ΣxΣy)
1
2),

where (µx,Σx), and (µy,Σy) are the mean and covariance of the embedded samples from P and Q,
respectively. The authors argue that FID is consistent with human judgment and more robust to noise
than IS. Furthermore, the score is sensitive to the visual quality of generated samples – introducing
noise or artifacts in the generated samples will reduce the FID. In contrast to IS, FID can detect

3

intra-class mode dropping, i.e. a model that generates only one image per class can score a perfect
IS, but will have a bad FID [18]. As an unbiased alternative, [4] introduced the Kernel Inception
distance (KID). A thorough empirical investigation is outside of the scope of this work due to a
significantly higher computational cost.

Multi-scale Structural Similarity for Image Quality (MS-SSIM) and Diversity. A critical issue
in GANs are mode collapse and mode-dropping – failing to capture a mode, or low-diversity of
generated samples from a given mode. The MS-SSIM score [30] is used for measuring the similarity
of two images where higher MS-SSIM score indicates more similar images. Several recent works
suggest using the average pairwise MS-SSIM score within a given class as a proxy for the diversity
of generated samples [22, 8]. The drawback of this approach is that we do not know the class
corresponding to the generated sample, so it is usually applied on one-class data sets, such as
CELEBA-HQ-128. In this work we use the same setup as in [8]. In particular, given a batch size b, we
compute the average pairwise MS-SSIM score on 5 batches, of 5× b× (b− 1)/2 image pairs in total.
We stress that the diversity should only be taken into account together with the FID and IS metrics.

2.5 Data Sets

We consider three data sets, namely CIFAR10, CELEBA-HQ-128, and LSUN-BEDROOM. The
LSUN-BEDROOM data set [31] contains slightly more than 3 million images and was already explored
in several papers [23, 10]4. We randomly partition the images into a train and test set whereby we
use 30588 images as the test set. Secondly, we use the CELEBA-HQ data set of 30k images [15].
We use the 128 × 128 × 3 version obtained by running the code provided by the authors.5 We
use 3000 examples as the test set and the remaining examples as the training set. Finally, in order
to reproduce existing results, we also include the CIFAR10 data set which contains 70K images
(32x32x3), partitioned into 60000 training instances and 10000 testing instances. The baseline FID
scores are 12.6 for CELEBA-HQ-128, 3.8 for LSUN-BEDROOM, and 5.19 for CIFAR10. Details on
FID computation can be found in Section 4.

2.6 Exploring the GAN Landscape

The search space for GANs is prohibitively expensive: exploring all combinations of all losses,
normalization and regularization schemes, and architectures is outside of the practical realm. Instead,
in this study we analyse several slices of this tensor for each data set. In particular, to ensure that we
can reproduce existing results, we perform a study over the subset of this tensor on CIFAR10. We then
proceed to analyze the performance of these models across CELEBA-HQ-128 and LSUN-BEDROOM.
In Section 3.1 we fix everything but the loss. In Section 3.2 we fix everything but the regularization
and normalization scheme. Finally, in Section 3.3 we fix everything but the architecture. This allows
us to decouple some of these design choices and provide some insight on what matters most.

As noted in [18], one major issue preventing further progress is the hyperparameter tuning – currently,
the community has converged to a small set of parameter values which work on some data sets, and
may completely fail on others. In this study we combine the best hyperparameter settings found in
the literature [20], and perform Gaussian Process regression in the bandit setting [27] to possibly
uncover better hyperparameter settings. Then, we consider the union of these results and select the
top performing models and discuss the impact of the computational budget [18].

We summarize the fixed hyperparameter settings in Table 1a which contains the „good” parameters
reported in recent publications [8, 20, 10]. In particular, we consider the cross product of these
parameters to obtain 24 hyperparameter settings to reduce the bias. Finally, to provide a fair
comparison, we perform Gaussian Process optimization in the bandit setting [27] on the parameter
ranges provided in Table 1b. We run 12 rounds (i.e. we communicate with the oracle 12 times)
of the optimization, each with a batch of 10 hyperparameter sets selected based on the FID scores
from the results of the previous iterations. As we explore the number of discriminator updates per
generator update (1 or 5), this leads to an additional 240 hyperparameter settings which in some
cases outperform the previously known hyperparameter settings. Batch size is set to 64 for all the
experiments. We use a fixed the number of discriminator update steps of 100K for LSUN-BEDROOM
data set and CELEBA-HQ-128 data set, and 200K for CIFAR10 data set. For stochastic optimization
we apply the Adam optimizer [16].

4The images are preprocessed to 128× 128× 3 using TensorFlow resize_image_with_crop_or_pad.
5Available online at https://github.com/tkarras/progressive_growing_of_gans.

4

https://github.com/tkarras/progressive_growing_of_gans

Table 1: Hyperparameter ranges used in this study. The Cartesian product of the fixed values suffices
to uncover the existing results. Gaussian Process optimization in the bandit setting [27] is used to
select good hyperparameter settings from the specified ranges.

(a) Fixed values

PARAMETER DISCRETE VALUE

Learning rate α {0.0002, 0.0001, 0.001}
Reg. strength λ {1, 10}
(β1, β2, ndis) {(0.5, 0.900, 5), (0.5, 0.999, 1),

(0.5, 0.999, 5), (0.9, 0.999, 5)}

(b) Gaussian Process regression ranges

PARAMETER RANGE LOG

Learning rate α [10−5, 10−2] Yes

λ for L2 [10−4, 101] Yes
λ for non-L2 [10−1, 102] Yes

β1 × β2 [0, 1]× [0, 1] No

3 Results and Discussion

Given that there are 4 major components (loss, architecture, regularization, normalization) to analyze
for each data set, it is infeasible to explore the whole landscape. Hence, we opt for a more pragmatic
solution – we keep some dimensions fixed, and vary the others. For each experiment we highlight
three aspects: (1) FID distribution of the top 5% of the trained models, (2) the corresponding sample
diversity score, and (3) the tradeoff between the computational budget (i.e. number of models to
train) and model quality in terms of FID. Each model from the fixed seed set was trained 5 times
with a different random seed and we report the median score. The variance for the seeds obtained by
Gaussian Process regression is handled implicitly so we train each model once.

3.1 Impact of the Loss Function

Here the loss is either the non-saturating loss (NS) [9], the least-squares loss (LS) [19], or the Wasser-
stein loss (WGAN) [2]. We use the ResNet19 with generator and discriminator architectures detailed
in Table 3a. We consider the most prominent normalization and regularization approaches: gradient
penalty [10], and spectral normalization [20]. Both studies were performed on CELEBA-HQ-128 and
LSUN-BEDROOM with hyperparameter settings shown in Table 1a.

The results are presented in Figure 2. We observe that the non-saturating loss is stable over both
data sets. Spectral normalization improves the quality of the model on both data sets. Similarly, the

NS

NS
SN

NS
GP

5

W
GAN S

N

W
GAN G

P
5 LS

LS
 S

N

LS
 G

P
5

25

30

35

40

45

50

55

FI
D

Dataset = celebahq128

NS

NS
SN

NS
GP

5

W
GAN S

N

W
GAN G

P
5 LS

LS
 S

N

LS
 G

P
5

20

40

60

80

100

120

140

160

180

200
Dataset = lsun-bedroom

NS

NS
SN

NS
GP

5

W
GAN S

N

W
GAN G

P
5 LS

LS
 S

N

LS
 G

P
5

0.64

0.66

0.68

0.70

0.72

0.74

0.76

D
iv

e
rs

it
y

Dataset = celebahq128

Test set

Noisy test set

100 101 102

Budget

102

FI
D

Dataset = celebahq128

100 101 102

Budget

102

Dataset = lsun-bedroom

Model

NS

NS SN

NS GP 5

WGAN SN

WGAN GP 5

LS

LS SN

LS GP 5

Figure 1: The non-saturating (NS) loss is stable over both data sets. Gradient penalty and spectral
normalization improve the model quality. From the computational budget perspective (i.e. how many
models one needs to train to reach a certain FID), both spectral normalization and gradient penalty
perform better than the baseline, but the former is more efficient.

5

W
/O GP

GP
5

DR SN LN BN L2
25

30

35

40

45

50

55

FI
D

Dataset = celebahq128

W
/O GP

GP
5

DR SN LN BN L2

40

60

80

100

120

140

160

180
Dataset = lsun-bedroom

W
/O GP

GP
5

DR SN LN BN L2
0.62

0.64

0.66

0.68

0.70

0.72

0.74

0.76

D
iv

e
rs

it
y

Dataset = celebahq128

Test set

Noisy test set

100 101 102

Budget

102

FI
D

Dataset = celebahq128

100 101 102

Budget

102

Dataset = lsun-bedroom

Model

W/O

GP

GP 5

DR

SN

LN

BN

L2

Figure 2: Both the gradient penalty (GP) and spectral normalization (SN) perform well and should be
considered as viable approaches, and the latter is is computationally cheaper. Unfortunately none
fully address the stability issues.

gradient penalty can help improve the quality of the model, but finding a good regularization tradeoff
is non-trivial and requires a high computational budget. Models using the GP penalty benefit from
5:1 ratio of discriminator to generator updates as suggested by [10].

3.2 Impact of Regularization and Normalization

The goal of this study is to compare the relative performance of various regularization and normal-
ization methods presented in the literature. To this end, and based on the loss study, we fix the
loss to non-saturating loss [9]. We use the ResNet19 with generator and discriminator architectures
described in Table 3a. Finally, we consider Batch normalization (BN) [13], Layer normalization
(LN) [3], Spectral normalization (SN), Gradient penalty (GP) [10], Dragan penalty (DR) [17], or L2

regularization. We consider both CELEBA-HQ-128 and LSUN-BEDROOM with the hyperparameter
settings shown in Table 1a and Table 1b.

The results are presented in Figure 2. We observe that adding batch norm to the discriminator hurts
the performance. Secondly, gradient penalty can help, but it doesn’t stabilize the training. In fact,
it is non-trivial to strike a balance of the loss and regularization strength. Spectral normalization
helps improve the model quality and is more computationally efficient than gradient penalty. This is
consistent with recent results in [32]. Similarly to the loss study, models using GP penalty benefit
from 5:1 ratio of discriminator to generator updates. Furthermore, in a separate ablation study we
observed that running the optimization procedure for an additional 100K steps is likely to increase
the performance of the models with GP penalty, as suggested by [10].

Impact of Simultaneous Regularization and Normalization. Given the folklore that the Lipschitz
constant of the discriminator is critical for the performance, one may expect simultaneous regu-
larization and normalization could improve model quality. To quantify this effect, we fix the loss

GP
SN

GP
SN

 5

GP
BN

GP
BN 5

GP
LN

GP
LN

 5

DR B
N

DR S
N

DR L
N

50

100

150

200

250

FI
D

Dataset = celebahq128

GP
SN

GP
SN

 5

GP
BN

GP
BN 5

GP
LN

GP
LN

 5

DR B
N

DR S
N

DR L
N

50

100

150

200

250

Dataset = lsun-bedroom

GP
SN

GP
SN

 5

GP
BN

GP
BN 5

GP
LN

GP
LN

 5

DR B
N

DR S
N

DR L
N

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

D
iv

e
rs

it
y

Dataset = celebahq128

Test set

Noisy test set

Figure 3: Gradient penalty coupled with spectral normalization (SN) or layer normalization (LN)
strongly improves the performance over the baseline.

6

RES
5

W
/O

RES
5

GP

RES
5

GP
5

RES
5

SN

SN
DC W

/O

SN
DC G

P

SN
DC G

P
5

SN
DC S

N
25

30

35

40

45

50

55

60

65

70

FI
D

Dataset = celebahq128

RES
5

W
/O

RES
5

GP

RES
5

GP
5

RES
5

SN

SN
DC W

/O

SN
DC G

P

SN
DC G

P
5

SN
DC S

N
20

40

60

80

100

120

140

160

180

200
Dataset = lsun-bedroom

RES
5

W
/O

RES
5

GP

RES
5

GP
5

RES
5

SN

SN
DC W

/O

SN
DC G

P

SN
DC G

P
5

SN
DC S

N
0.55

0.60

0.65

0.70

0.75

0.80

D
iv

e
rs

it
y

Dataset = celebahq128

Test set

Noisy test set

100 101 102

Budget

102FI
D

Dataset = celebahq128

100 101 102

Budget

102

Dataset = lsun-bedroom

Model

RES5 W/O

RES5 GP

RES5 GP 5

RES5 SN

SNDC W/O

SNDC GP

SNDC GP 5

SNDC SN

Figure 4: Impact of the discriminator and generator architecture for the non-saturating GAN loss.
Both Spectral normalization and Gradient penalty can help improve upon the non-regularized baseline.

to non-saturating loss [9], use the Resnet19 architecture (as above), and combine several normal-
ization and regularization schemes, with hyperparameter settings shown in Table 1a coupled with
24 randomly selected parameters. The results are presented in Figure 3. We observe that one may
benefit from additional regularization and normalization. However, a lot of computational effort
has to be invested for somewhat marginal gains in FID. Nevertheless, given enough computational
budget we advocate simultaneous regularization and normalization – spectral normalization and layer
normalization seem to perform well in practice.

3.3 Impact of Generator and Discriminator Architectures

An interesting practical question is whether our findings also hold for a different model capacity.
To this end, we opt for the DCGAN [23] style architecture from [20]. We again perform the study
with the non-saturating GAN loss, the Gradient penalty and Spectral normalization. We contrast the
results obtained without regularization. For smaller architectures it was already noted in [18] that the
gradient penalty is not essential. Here however, the regularization and normalization effects become
more relevant, due to deeper architectures and optimization stability.

The results are presented in Figure 4. We observe that both architectures achieve comparable results
and benefit from regularization and normalization. Spectral normalization strongly outperforms the
baseline for both architectures.

4 Common Pitfalls

In this section we focus on several pitfalls we encountered while trying to reproduce existing results
and provide a fairly and accurate comparison.

Metrics. There already seems to be a divergence in how the FID score is computed: (1) Some authors
report the score on training data, yielding a FID between 50k training and 50k generated samples [29].
Some opt to report the FID based on 10k test samples and 5k generated samples [20]. Finally, [18]
report the score with respect to the test data, in particular FID between 10k test samples, and 10k
generated samples. The subtle differences will result in an mismatch between the reported FIDs, in
some cases of more than 10%. We argue that FID should be computed with respect to the test data
set [18] and use 10000 test samples and 10000 generated samples on CIFAR10 and LSUN-BEDROOM,
and 3000 vs 3000 on CELEBA-HQ-128. Similarly, there are several ways to compute a diversity score
using MS-SSIM and we follow the approach from [8]. We provide the implementation details in
Section E of the Appendix.

Details of neural architectures. Even in popular architectures, like ResNet, there is still a number
of design decision one needs to make, that are often omitted from the reported results. Those include
the exact design of the ResNet cell (order of layers, when is ReLu applied, when to upsample and

7

downsample, how many filters to use). On top of these choices authors often include essentially
arbitrary “customizations”, which may result in wildly differing model capacity and hence potentially
unfair comparison. Based on several ablation studies we can confidently say that these modifications
often result in marginal improvements or deterioration, and hence serve no purpose other than
introducing friction in the research process. As a result, we suggest to use the architectures presented
within this work as a solid baseline.

Data sets. A common issue is related to data set processing – does LSUN-BEDROOM always
correspond to the same data set? The authors usually don’t bother to mention how precisely was the
data set scaled down or up, which introduces inconsistencies between results on the “same” data set.

Implementation details and non-determinism. One major issue is the mismatch between the algo-
rithm presented in a paper and the code provided online. We are aware that there is an embarrassingly
large gap between a good implementation and a bad implementation of a given model. Hence, when
no code is available, one is forced to guess which modifications were done. Another particularly
tricky issue is removing randomness from the training process. After one fixes the data ordering
and the initial weights, obtaining the same score by training the same model twice is non-trivial
due to randomness present in certain GPU operations [6]. Disabling the optimizations causing the
non-determinism often results in an order of magnitude running time penalty.

While each of these issues taken in isolation seems minor, they compound to produce a mist around
existing results which introduces friction in practical applications and the research process [26].

5 Related Work

A recent large-scale study on GANs and VAEs was presented in [18]. The authors consider several
loss functions and regularizers, and study the effect of the loss function on the FID score, with
low-to-medium complexity data sets (MNIST, CIFAR10, CELEBA), and a single (InfoGAN style)
architecture. In this limited setting, the authors found that there is no statistically significant difference
between the recently introduced models, versus the non-saturating GAN originally proposed in [9].
A study of the effects of gradient-norm regularization in GANs was recently presented in [8].
The authors posit that the gradient penalty can also be applied to the non-saturating GAN, and
that, to a limited extent, it reduces the sensitivity to hyperparameter selection. In a recent work
which introduced Spectral normalization [20] the authors perform a small study of the competing
regularization and normalization approaches. We are happy to report that we could reproduce all but
one result. Namely, to get the FID score of 21 on CIFAR10 it was necessary to use both spectral
normalization and gradient penalty. Plots with reproduced results can be found in the Appendix.

Inspired by these works and building on the available open-source code from [18], we take one
additional step in all dimensions considered therein: more complex neural architectures, more
complex data sets, and more involved regularization and normalization schemes.

6 Conclusion

In this work we study the GAN landscape: losses, regularization and normalization schemes, and
neural architectures, and their impact on the on the quality of generated samples which we assess by
recently introduced quantitative metrics. Our fair and thorough empirical evaluation suggests that
one should consider non-saturating GAN loss and spectral normalization as default choices when
applying GANs to a new data set. Given additional computational budget, we suggest adding the
gradient penalty from [10] and train the model until convergence. Furthermore, additional marginal
gains can be obtained by combining normalization and regularization empirically confirming the
importance of the Lipschitz constant of the discriminator [2, 10, 20]. Furthermore, both types of
architectures proposed up-to this point perform reasonably well. A separate ablation study uncovered
that most of the tricks applied in the ResNet style architectures lead to marginal changes in the
quality and should be avoided due to the high computational cost. As a result of this large-scale
study we identify the commong pitfalls standing in the way of accurate and fair comparison and
propose concrete actions to demistify the future results – issues with metrics, data set preprocessing,
non-determinisim, and missing implementation details are particularly striking. We hope that this
work, together with the open-sourced reference implementaions and trained models, will serve as a
solid baseline for future GAN research.

8

References
[1] Eirikur Agustsson, Michael Tschannen, Fabian Mentzer, Radu Timofte, and Luc Van Gool. Generative

adversarial networks for extreme learned image compression. CoRR, abs/1804.02958, 2018.

[2] Martín Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks. In
International Conference on Machine Learning (ICML), 2017.

[3] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

[4] Mikołaj Bińkowski, Dougal J. Sutherland, Michael Arbel, and Arthur Gretton. Demystifying MMD GANs.
In International Conference on Learning Representations (ICLR), 2018.

[5] Ali Borji. Pros and cons of GAN evaluation measures. arXiv preprint arXiv:1802.03446, 2018.

[6] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John Tran, Bryan Catanzaro, and
Evan Shelhamer. cudnn: Efficient primitives for deep learning. arXiv preprint arXiv:1410.0759, 2014.

[7] Emily L Denton, Soumith Chintala, Rob Fergus, et al. Deep generative image models using a laplacian
pyramid of adversarial networks. In Advances in Neural Information Processing Systems (NIPS), 2015.

[8] William Fedus, Mihaela Rosca, Balaji Lakshminarayanan, Andrew M Dai, Shakir Mohamed, and Ian
Goodfellow. Many paths to equilibrium: Gans do not need to decrease adivergence at every step. In
International Conference on Learning Representations (ICLR), 2018.

[9] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in Neural Information Processing
Systems (NIPS), 2014.

[10] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron Courville. Improved
training of Wasserstein GANs. Advances in Neural Information Processing Systems (NIPS), 2017.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[12] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, Günter Klambauer, and Sepp
Hochreiter. GANs trained by a two time-scale update rule converge to a Nash equilibrium. Advances in
Neural Information Processing Systems (NIPS), 2017.

[13] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

[14] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with conditional
adversarial networks. Computer Vision and Pattern Recognition (CVPR), 2017.

[15] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for improved
quality, stability, and variation. International Conference on Learning Representations (ICLR), 2018.

[16] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. International Conference
on Learning Representations (ICLR), 2015.

[17] Naveen Kodali, Jacob Abernethy, James Hays, and Zsolt Kira. On convergence and stability of GANs.
arXiv preprint arXiv:1705.07215, 2017.

[18] Mario Lucic, Karol Kurach, Marcin Michalski, Sylvain Gelly, and Olivier Bousquet. Are GANs created
equal? A large-scale study. arXiv preprint arXiv:1711.10337, 2017.

[19] Xudong Mao, Qing Li, Haoran Xie, Raymond YK Lau, Zhen Wang, and Stephen Paul Smolley. Least
squares generative adversarial networks. arXiv preprint ArXiv:1611.04076, 2016.

[20] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization for
generative adversarial networks. International Conference on Learning Representations (ICLR), 2018.

[21] Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-gan: Training generative neural samplers using
variational divergence minimization. In Advances in Neural Information Processing Systems (NIPS), 2016.

[22] Augustus Odena, Christopher Olah, and Jonathon Shlens. Conditional image synthesis with auxiliary
classifier GANs. In International Conference on Machine Learning (ICML), 2017.

9

[23] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. International Conference on Learning Representations
(ICLR), 2016.

[24] Kevin Roth, Aurelien Lucchi, Sebastian Nowozin, and Thomas Hofmann. Stabilizing training of generative
adversarial networks through regularization. In Advances in Neural Information Processing Systems, 2017.

[25] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen. Improved
techniques for training gans. In Advances in Neural Information Processing Systems (NIPS), 2016.

[26] D. Sculley, Jasper Snoek, Alex Wiltschko, and Ali Rahimi. Winner’s curse? On pace, progress, and
empirical rigor, 2018.

[27] Niranjan Srinivas, Andreas Krause, Sham Kakade, and Matthias W. Seeger. Gaussian process optimization
in the bandit setting: No regret and experimental design. In International Conference on Machine Learning
(ICML), 2010.

[28] Michael Tschannen, Eirikur Agustsson, and Mario Lucic. Deep generative models for distribution-
preserving lossy compression. arXiv preprint arXiv:1805.11057, 2018.

[29] Thomas Unterthiner, Bernhard Nessler, Calvin Seward, Günter Klambauer, Martin Heusel, Hubert Ram-
sauer, and Sepp Hochreiter. Coulomb GANs: Provably optimal nash equilibria via potential fields. In
International Conference on Learning Representations (ICLR), 2018.

[30] Zhou Wang, Eero P Simoncelli, and Alan C Bovik. Multiscale structural similarity for image quality
assessment. In Asilomar Conference on Signals, Systems and Computers, 2003.

[31] Fisher Yu, Yinda Zhang, Shuran Song, Ari Seff, and Jianxiong Xiao. Lsun: Construction of a large-scale
image dataset using deep learning with humans in the loop. arXiv preprint arXiv:1506.03365, 2015.

[32] Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augustus Odena. Self-attention generative adversarial
networks. arXiv preprint arXiv:1805.08318, 2018.

10

A FID and Inception scores on CIFAR10

NS

NS
GP

NS
SN

NS
GP

SN

W
GAN G

P

W
GAN G

P
SN

20

30

40

50

60

70

FI
D

Metric = FID | Architecture = RESNET_CIFAR

NS

NS
GP

NS
SN

NS
GP

SN

W
GAN G

P

W
GAN G

P
SN

25

30

35

40

45
Metric = FID | Architecture = SNDCGAN

Figure 5: An empirical study with SNDCGAN and RESNET_CIFAR architectures on CIFAR10. We
recover the state of the art results recently presented in [20]. We note that we could obtain FID of 22
only by combining the gradient penalty and spectral normalization.

NS

NS
GP

NS
SN

NS
GP

SN

W
GAN G

P

W
GAN G

P
SN

2

3

4

5

6

7

8

IS

Metric = IS | Architecture = RESNET_CIFAR

NS

NS
GP

NS
SN

NS
GP

SN

W
GAN G

P

W
GAN G

P
SN

2

3

4

5

6

7

8
Metric = IS | Architecture = SNDCGAN

Figure 6: We show the Inception Score for each model within our study which corresponds to recently
reported results [20].

B Architectures

B.1 SNDCGAN

We used the same architecture as [20], with the parameters copied from the GitHub page6. In Table 2a
and Table 2b, we describe the operations in layer column with order. Kernel size is described in format
[filter_h, filter_w, stride], input shape is h× w and output shape is h× w × channels. The slopes of all
lReLU functions are set to 0.1. The input shape h×w is 128× 128 for CELEBA-HQ-128 and LSUN-BEDROOM,
32× 32 for CIFAR10.

B.2 ResNet Architecture

We described ResNet19 in Table 3. RS column stands for the resample of the residual block, with
downscale(D)/upscale(U)/none(-) setting. MP stands for mean pooling and BN for batch normalization.
ResBlock is defined in Table 4. The addition layer merges two paths by adding them. The first path
is a shortcut layer with exactly one convolution operation, while the second path consists of two con-
volution operations. The downscale layer and upscale layer are marked in Table 4. We used average
pool with kernel [2, 2, 2] for downscale, after the convolution operation. We used unpool from https:
//github.com/tensorflow/tensorflow/issues/2169 for upscale, before conv operation. h and w are
the input shape to the ResNet block, output shape depends on the RS parameter. cin and cout are the input
channels and output channels for a ResNet block. Table 5 described the ResNet cifar architecture we used in
Figure 6 for reproducing the existing results. Note that RS is set to none for third ResBlock and fourth ResBlock
in discriminator. In this case, we used the same ResNet block defined in Table 4 without resampling.

6https://github.com/pfnet-research/chainer-gan-lib

11

https://github.com/tensorflow/tensorflow/issues/2169
https://github.com/tensorflow/tensorflow/issues/2169

Table 2: SNDCGAN architecture.

(a) SNDCGAN discriminator

LAYER KERNEL OUTPUT SHAPE

Conv, lReLU [3, 3, 1] h× w × 64

Conv, lReLU [4, 4, 2] h/2× w/2× 128

Conv, lReLU [3, 3, 1] h/2× w/2× 128

Conv, lReLU [4, 4, 2] h/4× w/4× 256

Conv, lReLU [3, 3, 1] h/4× w/4× 256

Conv, lReLU [4, 4, 2] h/8× w/8× 512

Conv, lReLU [3, 3, 1] h/8× w/8× 512

Linear - 1

(b) SNDCGAN generator

LAYER KERNEL OUTPUT SHAPE

z - 128

Linear, BN, ReLU - h/8× w/8× 512

Deconv, BN, ReLU [4, 4, 2] h/4× w/4× 256

Deconv, BN, ReLU [4, 4, 2] h/2× w/2× 128

Deconv, BN, ReLU [4, 4, 2] h× w × 64

Deconv, Tanh [3, 3, 1] h× w × 3

Table 3: ResNet 19 architecture corresponding to "resnet_small" in https://github.com/
pfnet-research/sngan_projection

(a) ResNet19 discriminator

LAYER KERNEL RS OUTPUT SHAPE

ResBlock [3, 3, 1] D 64× 64× 64

ResBlock [3, 3, 1] D 32× 32× 128

ResBlock [3, 3, 1] D 16× 16× 256

ResBlock [3, 3, 1] D 8× 8× 256

ResBlock [3, 3, 1] D 4× 4× 512

ResBlock [3, 3, 1] D 2× 2× 512

ReLU, MP - - 512

Linear - - 1

(b) ResNet19 generator

LAYER KERNEL RS OUTPUT SHAPE

z - - 128

Linear - - 4× 4× 512

ResBlock [3, 3, 1] U 8× 8× 512

ResBlock [3, 3, 1] U 16× 16× 256

ResBlock [3, 3, 1] U 32× 32× 256

ResBlock [3, 3, 1] U 64× 64× 128

ResBlock [3, 3, 1] U 128× 128× 64

BN, ReLU - - 128× 128× 64

Conv [3, 3, 1] - 128× 128× 3

Sigmoid - - 128× 128× 3

Table 4: ResNet block definition.

(a) ResBlock discriminator

LAYER KERNEL RS OUTPUT SHAPE

Shortcut [3, 3, 1] D h/2× w/2× cout
BN, ReLU - - h× w × cin
Conv [3, 3, 1] - h× w × cout
BN, ReLU - - h× w × cout
Conv [3, 3, 1] D h/2× w/2× cout
Addition - - h/2× w/2× cout

(b) ResBlock generator

LAYER KERNEL RS OUTPUT SHAPE

Shortcut [3, 3, 1] U 2h× 2w × cout
BN, ReLU - - h× w × cin
Conv [3, 3, 1] U 2h× 2w × cout
BN, ReLU - - 2h× 2w × cout
Conv [3, 3, 1] - 2h× 2w × cout
Addition - - 2h× 2w × cout

C Recommended hyperparameter settings

To make the future GAN training simpler, we propose a set of best parameters for three setups: (1) Best
parameters without any regularizer. (2) Best parameters with only one regularizer. (3) Best parameters with at
most two regularizers. Table 6, Table 7 and Table 8 summarize the top 2 parameters for SNDCGAN architecture,
ResNet19 architecture and ResNet cifar architecture, respectively. Models are ranked according to the median
FID score of five different random seeds. Note that ranking models according to the best FID score of different

12

https://github.com/pfnet-research/sngan_projection
https://github.com/pfnet-research/sngan_projection

Table 5: ResNet cifar architecture.

(a) ResNet cifar discriminator

LAYER KERNEL RS OUTPUT SHAPE

ResBlock [3, 3, 1] D 16× 16× 128

ResBlock [3, 3, 1] D 8× 8× 128

ResBlock [3, 3, 1] - 8× 8× 128

ResBlock [3, 3, 1] - 8× 8× 128

ReLU, MP - - 128

Linear - - 1

(b) ResNet cifar generator

LAYER KERNEL RS OUTPUT SHAPE

z - - 128

Linear - - 4× 4× 256

ResBlock [3, 3, 1] U 8× 8× 256

ResBlock [3, 3, 1] U 16× 16× 256

ResBlock [3, 3, 1] U 32× 32× 256

BN, ReLU - - 32× 32× 256

Conv [3, 3, 1] - 32× 32× 3

Sigmoid - - 32× 32× 3

seeds will achieve better but unstable result. For ResNet19 architecture with at most two regularizers, we have
run it only once due to computational overhead. To show the model stability, we listed the best FID score out of
five seeds from the same parameters in column best. Spectral normalization is clearly outperforms the other
normalizers on SNDCGAN and ResNet cifar architectures, while on ResNet19 both layer normalization and
spectral normalization work well.

To visualize the FID score on each data set, Figure 7, Figure 8 and Figure 9 show the generated examples by
GANs. We select the examples from the best FID run, and then increase the FID score for two more plots.

Table 6: SNDCGAN parameters
DATA SET MEDIAN BEST LR(×10−3) β1 β2 ndisc λ NORM

CIFAR10 29.75 28.66 0.100 0.500 0.999 1 - -
CIFAR10 36.12 33.23 0.200 0.500 0.999 1 - -
CELEBA-HQ-128 66.42 63.13 0.100 0.500 0.999 1 - -
CELEBA-HQ-128 67.39 64.59 0.200 0.500 0.999 1 - -
LSUN-BEDROOM 180.36 160.12 0.200 0.500 0.999 1 - -
LSUN-BEDROOM 188.99 162.00 0.100 0.500 0.999 1 - -

CIFAR10 26.66 25.27 0.200 0.500 0.999 1 - SN
CIFAR10 27.32 26.97 0.100 0.500 0.999 1 - SN
CELEBA-HQ-128 31.14 29.05 0.200 0.500 0.999 1 - SN
CELEBA-HQ-128 33.52 31.92 0.100 0.500 0.999 1 - SN
LSUN-BEDROOM 63.46 58.13 0.200 0.500 0.999 1 - SN
LSUN-BEDROOM 74.66 59.94 1.000 0.500 0.999 1 - SN

CIFAR10 26.23 26.01 0.200 0.500 0.999 1 1 SN+GP
CIFAR10 26.66 25.27 0.200 0.500 0.999 1 - SN
CELEBA-HQ-128 31.13 30.80 0.100 0.500 0.999 1 10 GP
CELEBA-HQ-128 31.14 29.05 0.200 0.500 0.999 1 - SN
LSUN-BEDROOM 63.46 58.13 0.200 0.500 0.999 1 - SN
LSUN-BEDROOM 66.58 65.75 0.200 0.500 0.999 1 10 GP

D Which parameters really matter?

For each architecture and hyper-parameter we estimate its impact on the final FID. Figure 10 presents heatmaps
for hyperparameters, namely the learning rate, β1, β2, ndisc, and λ for each combination of neural architecture
and data set.

13

Table 7: ResNet19 parameters
DATA SET MEDIAN BEST LR(×10−3) β1 β2 ndisc λ NORM

CELEBA-HQ-128 43.73 39.10 0.100 0.500 0.999 5 - -
CELEBA-HQ-128 43.77 39.60 0.100 0.500 0.999 1 - -
LSUN-BEDROOM 160.97 119.58 0.100 0.500 0.900 5 - -
LSUN-BEDROOM 161.70 125.55 0.100 0.500 0.900 5 - -

CELEBA-HQ-128 32.46 28.52 0.100 0.500 0.999 1 - LN
CELEBA-HQ-128 40.58 36.37 0.200 0.500 0.900 1 - LN
LSUN-BEDROOM 70.30 48.88 1.000 0.500 0.999 1 - SN
LSUN-BEDROOM 73.84 60.54 0.100 0.500 0.900 5 - SN

CELEBA-HQ-128 29.13 - 0.100 0.500 0.900 5 1 LN+DR
CELEBA-HQ-128 29.65 - 0.200 0.500 0.900 5 1 GP
LSUN-BEDROOM 55.72 - 0.200 0.500 0.900 5 1 LN+GP
LSUN-BEDROOM 57.81 - 0.100 0.500 0.999 1 10 SN+GP

Table 8: ResNet cifar parameters
DATA SET MEDIAN BEST LR(×10−3) β1 β2 ndisc λ NORM

CIFAR10 31.40 28.12 0.200 0.500 0.999 5 - -
CIFAR10 33.79 30.08 0.100 0.500 0.999 5 - -

CIFAR10 23.57 22.91 0.200 0.500 0.999 5 - SN
CIFAR10 25.50 24.21 0.100 0.500 0.999 5 - SN

CIFAR10 22.98 22.73 0.200 0.500 0.999 1 1 SN+GP
CIFAR10 23.57 22.91 0.200 0.500 0.999 5 - SN

E Variations of MS-SSIM

We used the MS-SSIM scorer from TensorFlow with default power_factors [30]. Note that the default filter size
for each scale layer is 11, the minimum image edge is 11 × 24 = 176. To adapt it to CELEBA-HQ-128 data
set with size 128× 128, we used the minimum of filter size 11 and image size in last scale layer to allow the
computation followed the previous work [8].

14

(a) FID = 24.7 (b) FID = 34.6 (c) FID = 45.2

Figure 7: Examples generated by GANs on CELEBA-HQ-128 data set.

(a) FID = 40.4 (b) FID = 60.7 (c) FID = 80.2

Figure 8: Examples generated by GANs on LSUN-BEDROOM data set.

(a) FID = 22.7 (b) FID = 33.0 (c) FID = 42.6

Figure 9: Examples generated by GANs on CIFAR10 data set.

15

(0.05, 0.1] (0.1, 0.5] (1.0, 10.0]

Learning Rate (x10e-3)

(25.0, 31.0]

(31.0, 37.0]

(37.0, 42.0]

(42.0, 47.0]

(47.0, 52.0]

(52.0, 57.0]

(57.0, 63.0]

(63.0, 68.0]

(68.0, 73.0]

(73.0, 78.0]

(0.25, 0.5] (0.75, 0.9]

beta1

(25.0, 31.0]

(31.0, 37.0]

(37.0, 42.0]

(42.0, 47.0]

(47.0, 52.0]

(52.0, 57.0]

(57.0, 63.0]

(63.0, 68.0]

(68.0, 73.0]

(73.0, 78.0]

(0.75, 0.9] (0.9, 1.0]

beta2

(25.0, 31.0]

(31.0, 37.0]

(37.0, 42.0]

(42.0, 47.0]

(47.0, 52.0]

(52.0, 57.0]

(57.0, 63.0]

(63.0, 68.0]

(68.0, 73.0]

(73.0, 78.0]

1 5

n_disc

(26.0, 31.0]

(31.0, 37.0]

(37.0, 42.0]

(42.0, 47.0]

(47.0, 52.0]

(52.0, 57.0]

(57.0, 63.0]

(63.0, 68.0]

(68.0, 73.0]

(73.0, 78.0]

(0, 5] (5, 10]

lambda

(25.0, 31.0]

(31.0, 37.0]

(37.0, 42.0]

(42.0, 47.0]

(47.0, 52.0]

(52.0, 57.0]

(57.0, 63.0]

(63.0, 68.0]

(68.0, 73.0]

(73.0, 78.0]

0

3

6

9

12

15

0

4

8

12

16

20

0

4

8

12

16

20

0

5

10

15

20

25

0

3

6

9

12

15

(a) SNDCGAN on CIFAR10

(0.01, 0.05] (0.05, 0.1] (0.1, 0.5] (0.5, 1.0] (1.0, 10.0]

Learning Rate (x10e-3)

(25.0, 43.0]

(43.0, 60.0]

(60.0, 78.0]

(78.0, 95.0]

(95.0, 112.0]

(112.0, 129.0]

(129.0, 147.0]

(147.0, 164.0]

(164.0, 181.0]

(181.0, 198.0]

(0.0, 0.25] (0.25, 0.5] (0.5, 0.75] (0.75, 0.9] (0.9, 1.0]

beta1

(25.0, 43.0]

(43.0, 60.0]

(60.0, 78.0]

(78.0, 95.0]

(95.0, 112.0]

(112.0, 129.0]

(129.0, 147.0]

(147.0, 164.0]

(164.0, 181.0]

(181.0, 198.0]

(0.0, 0.25] (0.25, 0.5] (0.5, 0.75] (0.75, 0.9] (0.9, 1.0]

beta2

(25.0, 43.0]

(43.0, 60.0]

(60.0, 78.0]

(78.0, 95.0]

(95.0, 112.0]

(112.0, 129.0]

(129.0, 147.0]

(147.0, 164.0]

(164.0, 181.0]

(181.0, 198.0]

1 5

n_disc

(26.0, 43.0]

(43.0, 60.0]

(60.0, 78.0]

(78.0, 95.0]

(95.0, 112.0]

(112.0, 129.0]

(129.0, 147.0]

(147.0, 164.0]

(164.0, 181.0]

(181.0, 198.0]

(0, 5] (5, 10] (10, 15] (15, 20]

lambda

(25.0, 43.0]

(43.0, 60.0]

(60.0, 78.0]

(78.0, 95.0]

(95.0, 112.0]

(112.0, 129.0]

(129.0, 147.0]

(147.0, 164.0]

(164.0, 181.0]

(181.0, 198.0]

0

15

30

45

60

0

15

30

45

60

75

0

10

20

30

40

50

60

20

40

60

80

100

0

15

30

45

60

75

(b) SNDCGAN on CELEBA-HQ-128

(0.01, 0.05] (0.05, 0.1] (0.1, 0.5] (0.5, 1.0] (1.0, 10.0]

Learning Rate (x10e-3)

(52.0, 68.0]

(68.0, 82.0]

(82.0, 97.0]

(97.0, 112.0]

(112.0, 126.0]

(126.0, 141.0]

(141.0, 156.0]

(156.0, 171.0]

(171.0, 185.0]

(185.0, 200.0]

(0.0, 0.25] (0.25, 0.5] (0.5, 0.75] (0.75, 0.9] (0.9, 1.0]

beta1

(52.0, 68.0]

(68.0, 82.0]

(82.0, 97.0]

(97.0, 112.0]

(112.0, 126.0]

(126.0, 141.0]

(141.0, 156.0]

(156.0, 171.0]

(171.0, 185.0]

(185.0, 200.0]

(0.0, 0.25] (0.25, 0.5] (0.5, 0.75] (0.75, 0.9] (0.9, 1.0]

beta2

(52.0, 68.0]

(68.0, 82.0]

(82.0, 97.0]

(97.0, 112.0]

(112.0, 126.0]

(126.0, 141.0]

(141.0, 156.0]

(156.0, 171.0]

(171.0, 185.0]

(185.0, 200.0]

1 5

n_disc

(53.0, 68.0]

(68.0, 82.0]

(82.0, 97.0]

(97.0, 112.0]

(112.0, 126.0]

(126.0, 141.0]

(141.0, 156.0]

(156.0, 171.0]

(171.0, 185.0]

(185.0, 200.0]

(0, 5] (5, 10] (10, 15] (15, 20]

lambda

(52.0, 68.0]

(68.0, 82.0]

(82.0, 97.0]

(97.0, 112.0]

(112.0, 126.0]

(126.0, 141.0]

(141.0, 156.0]

(156.0, 171.0]

(171.0, 185.0]

(185.0, 200.0]

0

5

10

15

20

25

0

6

12

18

24

30

0

8

16

24

32

8

16

24

32

40

0

5

10

15

20

25

(c) SNDCGAN on LSUN-BEDROOM

(0.05, 0.1] (0.1, 0.5] (1.0, 10.0]

Learning Rate (x10e-3)

(22.0, 28.0]

(28.0, 33.0]

(33.0, 39.0]

(39.0, 44.0]

(44.0, 49.0]

(54.0, 59.0]

(59.0, 64.0]

(64.0, 70.0]

(70.0, 75.0]

(0.25, 0.5] (0.75, 0.9]

beta1

(22.0, 28.0]

(28.0, 33.0]

(33.0, 39.0]

(39.0, 44.0]

(44.0, 49.0]

(54.0, 59.0]

(59.0, 64.0]

(64.0, 70.0]

(70.0, 75.0]

(0.75, 0.9] (0.9, 1.0]

beta2

(22.0, 28.0]

(28.0, 33.0]

(33.0, 39.0]

(39.0, 44.0]

(44.0, 49.0]

(54.0, 59.0]

(59.0, 64.0]

(64.0, 70.0]

(70.0, 75.0]

1 5

n_disc

(23.0, 28.0]

(28.0, 33.0]

(33.0, 39.0]

(39.0, 44.0]

(44.0, 49.0]

(54.0, 59.0]

(59.0, 64.0]

(64.0, 70.0]

(70.0, 75.0]

(0, 5] (5, 10]

lambda

(22.0, 28.0]

(28.0, 33.0]

(33.0, 39.0]

(39.0, 44.0]

(44.0, 49.0]

(54.0, 59.0]

(59.0, 64.0]

(64.0, 70.0]

(70.0, 75.0]

0.0

1.5

3.0

4.5

6.0

7.5

0.0

2.5

5.0

7.5

10.0

12.5

0.0

2.5

5.0

7.5

10.0

12.5

0

3

6

9

12

15

18

0

2

4

6

8

10

(d) Resnet cifar on CIFAR10

(0.0, 0.01] (0.01, 0.05] (0.05, 0.1] (0.1, 0.5] (0.5, 1.0] (1.0, 10.0]

Learning Rate (x10e-3)

(28.0, 46.0]

(46.0, 63.0]

(63.0, 80.0]

(80.0, 97.0]

(97.0, 114.0]

(114.0, 131.0]

(131.0, 149.0]

(149.0, 166.0]

(166.0, 183.0]

(183.0, 200.0]

(0.0, 0.25] (0.25, 0.5] (0.5, 0.75] (0.75, 0.9] (0.9, 1.0]

beta1

(28.0, 46.0]

(46.0, 63.0]

(63.0, 80.0]

(80.0, 97.0]

(97.0, 114.0]

(114.0, 131.0]

(131.0, 149.0]

(149.0, 166.0]

(166.0, 183.0]

(183.0, 200.0]

(0.0, 0.25] (0.25, 0.5] (0.5, 0.75] (0.75, 0.9] (0.9, 1.0]

beta2

(28.0, 46.0]

(46.0, 63.0]

(63.0, 80.0]

(80.0, 97.0]

(97.0, 114.0]

(114.0, 131.0]

(131.0, 149.0]

(149.0, 166.0]

(166.0, 183.0]

(183.0, 200.0]

1 5

n_disc

(29.0, 46.0]

(46.0, 63.0]

(63.0, 80.0]

(80.0, 97.0]

(97.0, 114.0]

(114.0, 131.0]

(131.0, 149.0]

(149.0, 166.0]

(166.0, 183.0]

(183.0, 200.0]

(0, 5] (5, 10] (10, 15] (15, 20]

lambda

(28.0, 46.0]

(46.0, 63.0]

(63.0, 80.0]

(80.0, 97.0]

(97.0, 114.0]

(114.0, 131.0]

(131.0, 149.0]

(149.0, 166.0]

(166.0, 183.0]

(183.0, 200.0]

0

60

120

180

240

300

60

120

180

240

300

80

160

240

320

80

160

240

320

400

0

80

160

240

320

(e) ResNet19 on CELEBA-HQ-128

(0.01, 0.05] (0.05, 0.1] (0.1, 0.5] (0.5, 1.0] (1.0, 10.0]

Learning Rate (x10e-3)

(27.0, 46.0]

(46.0, 63.0]

(63.0, 80.0]

(80.0, 97.0]

(97.0, 114.0]

(114.0, 131.0]

(131.0, 148.0]

(148.0, 166.0]

(166.0, 183.0]

(183.0, 200.0]

(0.0, 0.25] (0.25, 0.5] (0.5, 0.75] (0.75, 0.9] (0.9, 1.0]

beta1

(27.0, 46.0]

(46.0, 63.0]

(63.0, 80.0]

(80.0, 97.0]

(97.0, 114.0]

(114.0, 131.0]

(131.0, 148.0]

(148.0, 166.0]

(166.0, 183.0]

(183.0, 200.0]

(0.0, 0.25] (0.25, 0.5] (0.5, 0.75] (0.75, 0.9] (0.9, 1.0]

beta2

(27.0, 46.0]

(46.0, 63.0]

(63.0, 80.0]

(80.0, 97.0]

(97.0, 114.0]

(114.0, 131.0]

(131.0, 148.0]

(148.0, 166.0]

(166.0, 183.0]

(183.0, 200.0]

1 5

n_disc

(28.0, 46.0]

(46.0, 63.0]

(63.0, 80.0]

(80.0, 97.0]

(97.0, 114.0]

(114.0, 131.0]

(131.0, 148.0]

(148.0, 166.0]

(166.0, 183.0]

(183.0, 200.0]

(0, 5] (5, 10] (10, 15] (15, 20]

lambda

(27.0, 46.0]

(46.0, 63.0]

(63.0, 80.0]

(80.0, 97.0]

(97.0, 114.0]

(114.0, 131.0]

(131.0, 148.0]

(148.0, 166.0]

(166.0, 183.0]

(183.0, 200.0]

0

40

80

120

160

0

25

50

75

100

125

0

25

50

75

100

125

0

40

80

120

160

200

25

50

75

100

125

(f) ResNet19 on LSUN-BEDROOM

Figure 10: Heat plots for hyper-parameters on each architecture and dataset combination.

16

	Introduction
	The GAN Landscape
	Loss Functions
	Regularization and Normalization of the Discriminator
	Generator and Discriminator Architecture
	Evaluation Metrics
	Data Sets
	Exploring the GAN Landscape

	Results and Discussion
	Impact of the Loss Function
	Impact of Regularization and Normalization
	Impact of Generator and Discriminator Architectures

	Common Pitfalls
	Related Work
	Conclusion
	FID and Inception scores on CIFAR10
	Architectures
	SNDCGAN
	ResNet Architecture

	Recommended hyperparameter settings
	Which parameters really matter?
	Variations of MS-SSIM

