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Abstract
Methods for deep learning based medical image registration have only recently approached the
quality of classical model-based image alignment. The dual challenge of both a very large trainable
parameter space and often insufficient availability of expert supervised correspondence annotations
has led to slower progress compared to other domains such as image segmentation. Yet, image reg-
istration could also more directly benefit from an iterative solution than segmentation. We therefore
believe that significant improvements, in particular for multi-modal registration, can be achieved by
disentangling appearance-based feature learning and deformation estimation. In contrast to most
previous approaches, our model does not require full deformation fields as supervision but rather
only small incremental descent targets generated from organ labels during training. By mapping
the complex appearance to a common feature space in which update steps of a first-order Taylor
approximation (akin to a regularised Demons iteration) match the supervised descent direction, we
can train a CNN-model that learns interpretable modality invariant features. Our experimental re-
sults demonstrate that these features can be plugged into conventional iterative optimisers and are
more robust than state-of-the-art hand-crafted features for aligning MRI and CT images.
Keywords: Multi-Modal Features, Image Registration, Machine Learning.

1. Introduction

Much recent research has aimed at improving the alignment of images by means of learning opti-
cal flow (deformable registration) (Dosovitskiy et al., 2015; Hu et al., 2018). Deep convolutional
networks for displacement field prediction share some similarities to conventional alignment strate-
gies, but in general require a large amount of trainable parameters in a succession of convolution
layers, which make the interpretation of learned features difficult. In addition, most previous work
has focused on image sequences of the same modality with only subtle changes in appearance and
lighting. However, medical image analysis in particular requires the comparison of related structures
in different modalities. Here, the importance lies in obtaining interpretable cross-modal features that
enable meaningful correspondences for evaluating changes across patients, to aid diagnosis and for
biomarker discovery.
Related Work: In general, most classical multi-modal image registration approaches make use of
two core ideas: either they rely on a similarity measure that is able to handle multi-modal input
or they try to find a mapping for both modalities to a shared space and use a monomodal metric.
Based on information theoretic insights and as a representative of the first group, (Maes et al.,
1997) introduced Mutual Information as a similarity measure that does not require cross-modal
features. Exemplary for the second group, inspired by the concept of Self Similarity proposed in
(Shechtman and Irani, 2007), (Heinrich et al., 2012) introduced the expressive, cross-modal MIND
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descriptor that allows the usage of standard similarity metrics, e.g. the sum of squared differences.
(Kim et al., 2017) present end-to-end trainable CNN-based self similarity features, however only
trained on mono-modal input. Modality conversion has been employed for learning transferable
representations with unpaired multi-modal CycleGANs (Tanner et al., 2018) and (Mahapatra et al.,
2018) use GANs for multimodal image registration.

A variety of recent learning based registration methods has emerged that, in contrast to classi-
cal modular techniques, comprise the whole process to generate a displacement field from a given
image pair in a fully integrated feed-forward step. Therefore, it is difficult to determine which parts
are responsible for alignment or feature extraction in methods that resemble fully-convolutional
encoder-decoder architectures, e.g the SVF-Net (Rohé et al., 2017) or (Balakrishnan et al., 2018).
Furthermore, due to their high number of parameters, e.g. the FlowNet proposed by (Dosovit-
skiy et al., 2015) or the label-driven, weakly supervised method of (Hu et al., 2018) require large
datasets with (pseudo-)ground truth labels during training. We take inspiration from recent work in
computer vision, where (Brachmann et al., 2017) developed DSAC (differentiable RANSAC) as a
modular end-to-end trainable fitting approach, which effectively disentangles feature learning from
regressing a transformation - but so far only for low-parametric homographies.

Overview and contributions: Our strategy is to integrate deep learning methods into the clas-
sical registration pipeline by learning expressive cross-modal features. Similar to (Xiong and De la
Torre, 2013) with their supervised descent approach, we also learn features for a descent direc-
tion. However, their method is restricted to mono-modal data and population-based, thus inapt for
one-to-one alignment problems. Based on regression forests, (Gutierrez-Becker et al., 2017) learn
guided update steps by recombining an ensemble of input features. Instead, we aim to learn these
features from scratch and give a detailed explanation of our approach in the following. In contrast
to current work on weakly-supervised optical flow learning, we focus on the disentanglement of
appearance and deformation (which has also seen interest in face analysis (Shu et al., 2018)). We
thus propose a new SUpervised ITerative deScent algorithm (SUITS) that unrolls a conventional
iterative optimisation of regularised B-spline transformations into a differentiable (recurrent) net-
work. By employing the generally applicable constraints of regularised iterative alignment, our
model requires only very few trainable weights for learning expressive multi-modal features and
can be trained with small datasets under only weak-supervision of segmentation labels. Our experi-
mental validation on multi-modal CT to MRI registration achieves encouraging improvements over
hand-crafted features and serves as proof of concept.

2. Methods

In this section, we introduce our proposed supervised iterative descent algorithm (SUITS) for multi-
modal image registration. Figure 1 shows the general structure of the method for both the training
and inference phases. In addition, the modular interrelationships are indicated, which allow the
learning of meaningful feature extracting networks and an iterative estimation of the displacement
fields. First, the differentiable B-Spline Descent module essential for this approach is presented,
before the entire process is explained in more detail.

2.1. B-Spline Descent module

The main source of inspiration for our work is the classical pipeline of feature-based iterative image
registration. If the images f (fixed) and m (moving) are displayed in a common characteristic space
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Figure 1: Method overview: During training our approach employs two Adam optimizers; Grid
Optimizer (green) updates the displacement field parameters based on incremental steps
∆(u,v)Feat per B-Spline Descent module iteration (C). Feature Optimizer (orange) adapts
the feature CNNs’ weights (one complete run B-D) guided by the supervision signal
stemming from differences to the SDM (A - precomputed once) based incremental steps.
During inference, only Grid Optimizer adjusts the displacement grid, operating on fixed
features (MIND/CNNFeat).

by the selection of suitable features, it allows the use of optical flow methods, because the brightness
consistency constraint, which results in a sum of squared differences metric, is approximately valid.
Based on this assumption, we introduce a B-Spline descent module (grey B-Spline Descent Block in
Figure 1). Multi-channel feature representations M and F (per pixel 8 channels for the CNN-based
approach and 6 for MIND descriptors) of m and f as well as their current displacement parameters
(u,v) serve as input to compute incremental updates ∆(u,v) for the displacements as output. (u,v)
holds a two-dimensional displacement vector at every pixel and ∆(u,v) contains the gradients to
update the displacements. We adopt a widely used energy term to compute ∆(u,v). To simplify
their calculation, a linearization using a first order Taylor approximation is performed - only valid
under the assumption of small displacement updates per step used to iteratively refine the warping
result based on the initial moving image (Papenberg et al., 2006). Per image channel c and pixel
position this leads to

Ec(uc(x),vc(x)) =
1
2
(
Mc(x)+Mc,∂x ·uc(x)+Mc,∂y ·vc(x)−Fc(x)

)2
+

λ

2
(uc(x)+vc(x))2 (1)

Here, Mc,∂x/y denote the partial moving image derivatives of channel c and λ

2 (uc(x)+vc(x))2 penal-

izes big displacement updates. Taking the partial derivatives ∂Ec(uc,vc)
∂uc(x)/vc(x) to minimize this expression
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and sorting the terms into a linear system of equations yields:[
M2

c,∂x +λ Mc,∂xMc,∂y

Mc,∂xMc,∂y M2
c,∂y +λ

][
uc(x)
vc(x)

]
=

[
(Fc −Mc)Mc,∂x
(Fc −Mc)Mc,∂y

]
(2)

Finally, using the Sherman-Morrison-Woodbury formula a matrix inversion-free expression is used
to efficiently compute displacement grid updates:[

uc(x)
vc(x)

]
=

1
λ +M2

c,∂x +M2
c,∂y

·
[
(Fc −Mc)Mc,∂x
(Fc −Mc)Mc,∂y

]
(3)

Following the heuristic presented in (Guimond et al., 2002), we solve (2) using (3) independently
per channel and average the individual, channel-wise solutions to obtain the displacement updates
∆(u,v). This update step is basically the core of our approach. It is composed only of differentiable
operations and therefore easily to integrate into backpropagation engines used for machine learning
such as PyTorch.

In accordance with most image registration approaches, our module also allows the use of dis-
placement fields with a more coarse grid spacing with respect to the actual image. In order to gener-
ate dense fields to warp the moving image, we employ third order cardinal B-Spline interpolations
(Tustison and Avants, 2013). Due to their definition on a uniform spaced grid and their recursive for-
mulation, interpolation between the knots equals a convolution operation with a smoothing kernel.
Using differentiable upsampling followed by two average pooling layers, we can efficiently imple-
ment this interpolation scheme to generate dense displacement fields. While choosing λ = (M−F)2

locally adapting following (Vercauteren et al., 2009), the incremental displacement updates often
exhibit implausible strong local changes. On that account, an additional smoothness penalty that
considers the deviation of ∆(u,v) from a smoothed version of itself is introduced.

Overall, it is worth noting, that our B-Spline Descent module already outputs an update direction
with ∆(u,v) that can be backpropagated by off-the-shelf optimizers. Details on how to use the
module in the larger context of our method follow below.

2.2. Supervised Iterative Descent (SUITS)

With the B-Spline Descent module at hand, image pairs fulfilling the brightness consistency con-
straint, should be able to be aligned with each other by iteratively updating the displacement grid
parameters. However, our goal is to align multi-modal images that violate this constraint. To this
end, we want to learn CNN-based feature mappings for both modalities from scratch - each repre-
senting a mapping to a shared representation. This raises the question of how to learn these feature
mappings.

Learning Feature CNNs: Here, our idea is to use a form of weak supervision in order to achieve
a meaningful gradient guidance for error backpropagation to train the feature CNNs. As depicted
in Figure 1, during training we make use of an auxiliary image representation that is computed and
processed in the right-hand stream: while using unpaired multi-modal inputs, for each individual
image there are organ segmentations available, which we transform to their signed distance maps
(SDM) to represent a simple form of a shared feature space (A). We assume that inserting SDMs into
the B-Spline Descent module will yield ∆(u,v)SDM as a sufficient guidance for a single descent step
of ∆(u,v)Feat - even if the SDM representation is incomparable (directly) to the original image input.
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In our case of unpaired image data, we depend only on this supervisory gradient signal that can be
used to propagate update information to the feature CNN weights. An Adam optimizer (named
Feature Optimizer), that keeps track of which operations the image pairs undergo until ∆(u,v)Feat

is generated, performs updates only on the weights of the feature CNNs (D). The loss signal for this
backpropagation is simply the mean squared error MSE(∆(u,v)Feat ,∆(u,v)SDM).

Iterative Image Alignment: In order to iteratively align the input images, we employ a second
Adam optimizer (named Grid Optimizer). The green dotted box in Figure 1 encloses the region
where it is active. Based on their alignment due to the displacements (u,v) derived from the current
(learned) feature representations of two images (B), the B-Spline Descent module outputs an descent
step ∆(u,v)Feat (C). This is fed into the Grid Optimizer as gradient value for the parameters (u,v)
when it performs its update step. Note that these parameters (u,v) are shared for both the CNN-
and the SDM-stream of our method. Also, they are only indirectly influenced by the SDM stream
through the supervision signal during training when updating the feature CNNs’ weights (D) (this
means we never directly use an SDM gradient for spatial alignment). Since the displacement grid
parameters (u,v) and their momentum act as memory encoding the current alignment state when
adjusting the feature weights, our approach can be interpreted as a recurrent method. Nevertheless,
to generate robust features that have to remain fixed during inference, it is important to consider
image pairs of different alignment stages throughout training. We achieve this by dividing a given
number of total iterations per image pair into p subintervals and randomly choosing the pair to
be presented at each step. Thereby within one mini-batch image pairs with different degrees of
alignment (number of current update steps) will be used at the same time. Here, we differ from
multi-stage regression approaches as proposed e.g. in (Xiong and De la Torre, 2013), since we
want our learned features (that are fixed during inference) to be expressive and applicable during
the complete iterative alignment process for a given image pair.

Our method allows to use multiscale strategies by a stepwise refinement of the grid spacing:
starting from a coarse control point grid and performing a fixed number of incremental displace-
ment updates, the displacement field parameters (u,v) of the next stage with a smaller spacing are
initialized by upscaled versions of their predecessors.

During inference, the CNN feature representations of an unseen image pair - now without the
need of additional annotations - will be iteratively aligned for a fixed number of iterations at different
gridscales (indicated by the blue box). Finally, their resulting displacement parameters (u,v) (green
block) can be used to warp the moving towards the fixed image. For further algorithmic details refer
to Algorithm 1 in Appendix A. 1

3. Experiments & Results

To verify the applicability of our approach, we perform multi-modal image registrations on 2D
coronal slices of unpaired abdominal CT and MRI scans from the VISCERAL dataset (Jimenez-del
Toro et al., 2016) with a similar slice thickness. As additional information to train our method, we
use the provided label maps for the following structures: liver, spleen, kidneys and psoas major
muscles. Dice scores that our approach achieves with fixed learned features during testing serve
as our quality measure. We resample these images to an isotropic pixelsize of 1.5mm2 and com-
pensate only for through-plane transformations of the 3D volumes using the deeds-SSC approach
of (Heinrich et al., 2013) and leaving all non-rigid in-plane deformations, which results in a large

1. We plan to make our code publicly under https://github.com/multimodallearning/midl19_suits.
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initial misalignment with Dice overlap of 0.44.Subsequently, we crop them without any guidance to
dimensions of 320x312. Figure 2 shows example slices from this dataset along with signed distance
maps for different organ structures. First, we conducted an unsupervised experiment for monomodal

Figure 2: Exemplary Abdominal Scans: (left to right) CT image with provided expert segmenta-
tions; scaled signed distance map (SDM) of the liver (CT); MR image with provided
expert segmentations; SDM of the background (MR)

CT registration on image intensities to demonstrate the suitability of our B-Spline Descent module
for general purposes. Here, initial mean Dice scores increased from 0.44 to 0.69.

In order to assess the results of our proposed multi-modal approach, we use the non-trainable
MIND descriptor (Heinrich et al., 2012) within our B-Spline Descent scheme as comparison that
has been shown to provide robust and expressive modality-independent features for image registra-
tion. We also conduct experiments with a state-of-the-art algorithm (SimpleElastix) for multi-modal
images (metric: mutual information, 4 level multi-resolution alignment with affine pre-registration)
as additional baseline.

In total, we use 10 slices per modality, which corresponds to 100 possible registration pairs.
To train and evaluate our approach, we split our patient set in 7 randomly drawn training slices
per modality (49 pairs) and evaluate the registration accuracy on the remaining 9 pairs. We repeat
this procedure 10 times and provide the mean Dice scores per organ structure for both the MIND
baseline as well as for our learned features.

As feature extractors, we use two identical architectures for both modalities: a simple feed-
forward design consisting of 7 convolutional blocks each. Using appropriate padding to maintain
the input size, we encode the characteristics of the convolutional layers as tuples containing (ker-
nel size, #output channels). The number of input channels of the first layer equals 1, since it pro-
cesses the original images. The following layers choose their number of input channels according
to the output channels of their predecessor. Thus, the sequence (7,4)-(7,6)-(5,6)-(5,8)-(5-8)-(3,8)-
(3-8) unambiguously defines our feature learning networks. Except from the last convolution that
also learns its bias values, they are followed by Group normalization blocks (2 groups) and tanh-
activation functions. During training, the SDMs are used to supervise the gradient signal. They
are computed for the background as well as for every organ based on the expert segmentations and
stored channelwise. Since the raw values of the SDMs exhibit large variations depending on differ-
ent sizes or positions for each organ, we normalize their range to [−1,1] by applying a tanh(α · x)
function, where the scaling factor α is set to 0.01 (see Figure 2 for examples). Due to this, we
ensure similar value ranges for the SDM feature maps and the CNN feature outputs.
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Taking the training schedule for robust feature learning into account as described above (pre-
venting the network from seeing only already similarly aligned images), we update the feature
CNNs’ weights with Feature Optimizer after every 5th iteration of Grid Optimizer. Feature Opti-
mizer uses an initial learning rate of 0.001 for its parameter updates, while using 0.005 for Grid
Optimizer. In total, we use 3 grid spacing scales, refining the control point spacing from 20, over 10
to every 7th pixel position. At each stage we compute 300 updates ∆(u,v) for the displacement grid
parameters. The additional penalty, that considers deviations of ∆(u,v) from its smoothed version,
is given more weighting in the finest stage with 0.025 compared to 0.0125 at the first ones. We use
two image pairs as one batch. Finally, we only backpropagate updates from regions around organ
borders with Feature Optimizer to learn CNN weights, i.e. where abs(SDM f/m(x))< 0.1, because
only in this regions the supervision can be expected to be informative.

At test time, we maintain all parameters as described above, except that our Feature CNNs are
fixed now, i.e. only Grid Optimizer performs its iterations. Also, when extracting features with the
MIND descriptor instead of our trained CNN features, we keep these parameters. There is no longer
a need for the SDM stream as depicted in Figure 1, since it is only used for the supervisory signal
during training.

Results: Qualitative results are illustrated in Figure 3 for CT to MR registrations. Here, for both
descriptor extraction methods results are depicted. The top row shows the initial images overlayed
with their respective segmentations, followed by the fixed image overlayed with segmentations of
the moving image that have been warped according to the displacement fields generated based on
MIND- and CNN-based features (MIND-Dice: 0.63, CNN-Dice: 0.74), respectively. The bottom
row first illustrates the CNN-based displacements by its effects on a grid image after all stages and
iterations with the B-Spline Descent module. The following checkerboard visualization gives an
intuition of the initial organ alignment (Mean Dice Score 0.40). Also, for both feature types, the
checkerboard images depict the organ aligment after registration, where the approach achieves Dice
scores of 0.65 based on MIND-features and 0.75 with the learned features for this exemplary image
pair.

More quantitative results can be found in Table 1. Here, the mean after 10 test iterations (a total
of 90 registration pairs) using the CNN based features slightly outperforms the MIND features.
While the MIND experiments achieves better results for the psoas muscles, the trained features
(Mean Dice Score 0.72) yield better results aligning larger organ structures, such as the liver or the
spleen. Moreover, it compares favourably well against SimpleElastix (Mean Dice Score 0.70) as
representative of elaborate, classical algorithms.

4. Discussion & Conclusion

In our work, we developed a new approach to integrate CNN-based multi-modal features into the
classical image registration pipeline. We showed that even with unpaired images and only a weak
supervision by few organ labels during training, expressive image representations in a shared space
are generated - readily employable in iterative multi-stage alignment frameworks. While especially
for smaller structures handcrafted MIND features perform competitively, due to the increased re-
ceptive field of a multi-layer CNN, larger structures can more easily be aligned. Overall, our method
enables to replace the need for dense correspondences by costly to generate displacement fields with
organ label maps as the only required additional information during training.
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Figure 3: Exemplary Results: (Top row) CT & MRI scans overlayed with respective segmenta-
tions and illustration of the MRI scan overlayed with the warped segmentations based on
MIND (Dice 0.63) and learned CNN features (Dice 0.71). (Bottom row) An accordingly
to the CNN feature based displacement field warped grid; checkerboard illustrations of
the initial organ misalignments (Dice: 0.40) and after warping with the respective dis-
placement fields.

Table 1: Organ Dice Scores Listings: Compared to the initial overlaps, both feature extraction ap-
proaches achieve better alignments. While the MIND-based registrations perform compet-
itively especially on fine structures (Psoas muscles), the CNN-Feature-based alignments
yield favourable results in particular for large structrues (liver, spleen).

Organs
Experiment Liver Spleen LKidney RKidney LPsoas RPsoas ∅

Initial Overlap 0.56 0.37 0.52 0.55 0.53 0.65 0.53
SimpleElastix 0.75 0.68 0.58 0.72 0.68 0.76 0.70

MIND Descriptor 0.67 0.45 0.70 0.69 0.72 0.75 0.66
Feature CNNs 0.83 0.64 0.74 0.68 0.72 0.73 0.72

For future work, this proof of concept encourages to investigate our method in several ways.
First, with an extension to 3D, our approach can be examined on challenging 3D datasets with higher
demands on memory and computational restrictions. Also, an evaluation of effects depending on
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architectural design choices regarding the feature generating networks clearly is of interest. Finally,
studying the effects of other possible supervision signals, e.g. combining SDM and MIND features
as auxiliary guidance, will provide further insights.

To conclude with, our experiments support the assumption, that disentangling appearance-based
feature learning and deformation estimation - as practised in traditional, well-studied iterative ap-
proaches - can provide an alternative to parameter-intense end-to-end CNN registration methods.
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Appendix A. Algorithmic Details

Algorithm 1: Schematic overview of the Training procedure
Input: CT & MR images + organ labels
Output: CNNs trained for Feature Extraction
Initialize FEATURE CNNS;
Initialize FEATURE OPTIMIZER & register the CNNS WEIGHTS;
Initialize GRID OPTIMIZER & register the displacement parameters (u,v);
Generate PAIRPRESENTATIONSCHEME; // different alignment stages
Compute Fixed Signed Distance Maps MSDM & FSDM ; // cf. As in Figure 1
for #grid scales do

while batch pairs in PAIRPRESENTATIONSCHEME do
// Tracked by FEATURE OPTIMIZER
Compute M f eat = CNNCT (m) & Ff eat = CNNMRI( f ); // cf. Bs
// NOT Tracked by FEATURE OPTIMIZER
for #grid iters do

// Perform several displacement grid update steps
Compute GridUpdate ∆(u,v)Feat = BSTModule(MFeat ,FFeat ,(u,v)); // cf. Cs
Use GRID OPTIMIZER to update (u,v) by ∆(u,v)Feat ;

end
// Tracked by FEATURE OPTIMIZER
Compute ∆(u,v)Feat = BSTModule(MFeat ,FFeat ,(u,v));
Compute ∆(u,v)SDM = BSTModule(MSDM,FSDM,(u,v));
Compute MSE(∆(u,v)Feat ,∆(u,v)SDM) as loss; // cf. Ds
Use FEATURE OPTIMIZER to update the CNN WEIGHTS

end
end

Algorithm 2: Schematic overview of the Pairwise Registration during Inference
Input: CT & MR image pairs; CNNs trained by Alg. 1
Output: Warped Moving Image, Displacement Parameters (u,v)
Initialize GRID OPTIMIZER & register the displacement parameters (u,v);
for #grid scales do

Compute M f eat = CNNCT (m) & Ff eat = CNNMRI( f ); // cf. Bs
for #iters per scale do

Compute GridUpdate ∆(u,v)Feat = BSTModule(MFeat ,FFeat ,(u,v)); // cf. Cs
Use GRID OPTIMIZER to update (u,v) by ∆(u,v)Feat ;

end
end
Warp m according to (u,v);
return warpedMovingImage, (u,v)
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