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ABSTRACT

Supervised learning with irregularly sampled time series have been a challenge to
Machine Learning methods due to the obstacle of dealing with irregular time inter-
vals. Some papers introduced recently recurrent neural network models that deals
with irregularity, but most of them rely on complex mechanisms to achieve a better
performance. This work propose a novel method to represent timestamps (hours
or dates) as dense vectors using sinusoidal functions, called Time Embeddings.
As a data input method it and can be applied to most machine learning models.
The method was evaluated with two predictive tasks from MIMIC III, a dataset
of irregularly sampled time series of electronic health records. Our tests showed
an improvement to LSTM-based and classical machine learning models, specially
with very irregular data.

1 INTRODUCTION

An irregularly (or unevenly) sampled time series is a sequence of samples with irregular time intervals
between observations. This class of data add a time sparsity factor when the intervals between
observations are large. Most machine learning methods do not have time comprehension, this means
they only consider observation order. This makes it harder to learn time dependencies found in time
series problems. To solve this problem recent work propose models that are able to deal with such
irregularity (Lipton et al., 2016; Bahadori & Lipton, 2019; Che et al., 2018; Shukla & Marlin, 2018),
but they often rely on complex mechanisms to represent irregularity or to impute missing data.

In this paper, we introduce a novel way to represent time as a dense vector representation, which is
able to improve the expressiveness of irregularly sampled data, we call it Time Embeddings (TEs).
The proposed method is based on sinusoidal functions discretized to create a continuous representation
of time. TEs can make a model capable of estimating time intervals between observations, and they
do so without the addition of any trainable parameters.

We evaluate the method with a publicly available real-world dataset of irregularly sampled electronic
health records called MIMIC-III (Johnson et al., 2016). The tests were made with two tasks: a
classification task (in-hospital mortality prediction) and a regression (length of stay).

To evaluate the impact of time representation in the data expressiveness we used LSTM and Self-
Attentive LSTM models. Both are common RNN models that have been reported to achieve great
performance in several time series classification problems, and specifically with the MIMIC-III
dataset (Lipton et al., 2016; Shukla & Marlin, 2018; Bahadori & Lipton, 2019; Zhang et al., 2018).
We also evaluated simpler models such as linear and logistic regression and a shallow Multi Layer
Perceptron. All models were evaluated with and without TEs to asses possible improvements.

2 RELATED WORK

The problem in focus of this work is how can a machine learning method learn representations from
irregularly sampled data. Irregularity is found in many different areas, as electronic health records
(Yadav et al., 2018), climate science (Schulz & Stattegger, 1997), ecology (Clark & Bjørnstad, 2004),
and astronomy (Scargle, 1982).

Some works deal with irregularity as a missing data problem. With time axis discretization into fixed
non-overlapping intervals, those with no observations are then said to contain missing values. This
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approach was taken by Marlin et al. (2012), and Lipton et al. (2016). Lipton showed how binary
indicators of missingness and observation time delta can improve Recurrent Neural Network based
models better than imputation, even with the sparsity of binary masks.

Despite the improvement an issue about these methods is missing the potential of how the observation
time can be informative Little & Rubin (2019). More recently Shukla & Marlin (2018) introduced a
neural network model capable to learning how to interpolate missing data and avoid time discretization,
by turning a irregularly sampled time series into a regular one. Bahadori & Lipton (2019) also
proposed a method to improve discretization by doing a data augmentation based on temporal-
clustering.

Another approach is to make complex models capable of dealing with irregularities. The work of Che
et al. (2018) describes a GRU (Gated Recurrent Unit) model called GRU-D. It makes use of binary
missing indicators and observation time delta as an input data and incorporates them into GRU gates
to control a decay rate of missing data. Bang et al. proposed a similar method using LSTM cell states
to improve the decay concept.

The concept proposed in this work is similar to Lipton et al. (2016) and Che et al. (2018), as they
propose the use of an additional input to describe observation time deltas. But instead of using
time intervals we are proposing a way to describe the exact time moment using continuous cyclic
functions. This way it is possible to calculate with a linear operation the time between any two
irregular observations without the need of a cumulative sum over all intermediate data, also avoiding
fixed-length time discretization and interpolation noise. Another difference is that Time Embeddings
are dense representations that avoid unnecessary sparsity from missingness masking.

3 METHODOLOGY

3.1 POSITIONAL EMBEDDINGS

The concept of Positional Embeddings (PE) was first introduced at Gehring et al. (2017) where the
author used vectors to represent word positions in a sentence. It was initially proposed to improve
Convolutional Neural Network ability to handle temporal data. As a CNN do not consider order the
PE was introducing numerical representation of order into embedding latent space.

The Transformer (Vaswani et al., 2017) network brought back the PE to improve a neural network
based only on attention modules. The model had the same issue with order modeling as it contains
no recurrence, they propose a set of sinusoidal functions discretized by each relative input position.

PE(pos,2i) = sin(pos/100002i/dmodel) (1)

PE(pos,2i+1) = cos(pos/100002i/dmodel) (2)

The equations described above have a pos variable to indicate position, i the dimension and dmodel is
the dimension of original embedding space. This way each dimension corresponds to a sinusoidal
and the model is able to learn relative positions, as argued by the authors "since for any fixed offset
k, PEpos+k) can be represented as a linear function of PEpos)" (Vaswani et al., 2017). The total
dimensions of the positional embedding is defined by dmodel. Each wavelength form a geometric
progression from 2π to 10000 · π. The biggest wavelength defines the maximum number of inputs, if
a position is higher than 10000, it will start to be redundant.

3.2 TIME EMBEDDINGS

Inspired by Transformer position representation we propose a positional embedding for irregular
positions. As Vaswani et al. (2017) discretize sinusoidal functions based on positions, it is possible to
discretize it based on irregular hour times or dates. Applying these time descriptors to a irregularly
sample series can make the own data be time representative.
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Figure 1: Sinusoidal functions discretization by time positions

TE(time,2i) = sin(time/maxtime2i/dTE ) (3)

TE(time,2i+1) = cos(time/maxtime2i/dTE ) (4)

To do it we redefine the equations based on irregular timestamps. Instead of a position indicator
there is a time variable, which is continuous. The dimension of TEs (dTE) can parameterized and a
maxtime defines a maximum time that can be represented.

The relation between maximum time and TE dimension can be a limiting factor, as the maximum
time increase the distance between TEs becomes smaller. To avoid this problem it is possible to
increase TE dimensionality or set a reasonable maximum time.

The main pros of using TEs can be summarized as:

• Do not need any optimizable parameter, making it a model-free choice to deal with irregu-
larity.

• Time delta can be linearly computed between two TEs, possibly improving long term
dependencies recognition.

• All TEs have the same norm, avoiding big values as it is possible to happen with time delta
descriptors when interval between observations are big.

4 EXPERIMENTS

We evaluate the proposed algorithms on two benchmark tasks: in-hospital mortality and length of
stay prediction. Booth tasks with the publicly available MIMIC-III dataset (Johnson et al., 2016).
The following section we will briefly describe the data acquisition and prepossessing used, followed
by the test results and discussion.

4.1 DATASET AND TRAINING DETAILS

To assess the method performance we used the MIMIC-III benchmark dataset following the bench-
mark defined by Harutyunyan et al. (2017; 2019). With the available code we extracted sequences
from in-hospital stays with first 48 hours and split into training and testing set. This results in a
dataset with 17, 903 training samples and 3, 236 test samples for in-hospital mortality after 48 hours
task and 35, 344/6, 225 for length of stay after 24 hours.

The dataset contains 18 variables with real values and five categorical. We did our own normalization
of real variables to zero mean and unit variance, categorical variables are represented with one-hot
encoding. At the length of stay task we also change labels from hours to days to avoid large outputs,
to report results we change it back to hours.
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Table 1: Recurrent models compared and parameter count

Model Alias h No of params
Vanilla LSTM LSTM 34 15.5k
LSTM with Binary Masking BM + LSTM 22 15.5k
LSTM with TE concatenated catTE + LSTM 26 15.5k
Self-Attentive LSTM SA-LSTM 32 15.5k
Self-Attentive LSTM with Binary Masking BM SA-LSTM 22 15.5k
Self-Attentive LSTM with TE added addTE + SA-LSTM 32 15.5k

To make the dataset even more irregular we removed randomly part of observed test data. By doing
this we artificially create bigger time gaps to re-evaluate the models with an increased irregularity.

All models was trained with PyTorch (Paszke et al., 2017) on a P100, with batch size of 100 and
AdamW (Loshchilov & Hutter, 2019) optimizer with amsgrad (Reddi et al., 2019). We performed a
five fold cross-validation with 10 runs on each fold. The model with best validation performance
(AUC for in-hospital mortality and Mean Absolute Error for length of stay) was selected to compose
the average performance for test set. We report the mean and standard error of evaluation measures in
test set.

4.2 BASELINES AND TESTS

To have a baseline we compared TEs primarily with binary masking with time interval indicators,
as reported to have a good performance with RNNs in (Lipton et al., 2016). It was compared with
the proposed method with a regular LSTM (Gers et al., 1999) and a Self-Attentive LSTM (Lin et al.,
2017), as RNNs are reported to achieve best results with the evaluated tasks (Lipton et al., 2016;
Shukla & Marlin, 2018; Bahadori & Lipton, 2019).

TEs was tested with dimension (dTE) of 32 and maximum time of 48 hours. As binary masking
dimension and concatenated TE increase input dimension we adjusted the LSTM hidden size to keep
close the number of parameters of as describe at Table 1.

All neural models are connected to a 3 layers Multi-Layer Perceptron (MLP) with 32, 32, and 16
neurons. The last layers is a two neurons softmax for in-hospital mortality and one linear, with ReLU,
for length of stay.

The Self Attention was implemented as introduced in (Lin et al., 2017) with the only difference of
using uni-directional LSTMs. The attention size (da) was 32 and the number of attentions (r) was 8.
We also used the penalization term of C = 1−4

As the MIMIC III data are composed by multivariated series and we assume that Time Embeddings
(TEs) should not be combined directly. So, we propose to use TEs in two different ways, as additional
inputs, replacing missing mask, and as a latent space transformation, by adding TEs to the RNN
output hidden state.

Figure 2: a) Additive model b) Concatenated model

To have also a baseline of non-recurrent models and assess the TE effect on them, we tested a
four layer MLP and Linear/Logistic regression (linear for length of stay and logistic for in-hospital
mortality task).
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Table 2: Results of Mean Absolute Error (MAE), Root Mean Squared Error (RMSE) and Explained
Variance (EV) for length of stay task and Area Under ROC-Curve (AUC-ROC) and Average Precision
(AP) for in-hospital mortality task. All results are in mean(standard deviation) format

Model 24h Length-of-Stay 48h In-hospital Mortality
MAE RMSE EV AUC-ROC AP

Lin.R/Log.R 65.829(2.001) 133.178(2.777) 0.040(0.034) 0.783(0.003) 0.357(0.357)
BM + Lin.R/Log.R 68.343(2.453) 127.579(2.044) 0.104(0.029) 0.804(0.003) 0.369(0.369))

catTE + Lin.R/Log.R 69.585(0.870) 129.484(1.220) 0.077(0.017) 0.794(0.005) 0.359(0.359)
MLP 64.983(1.695) 137.949(14.440) -0.053(0.236) 0.807(0.002) 0.374(0.374))

BM + MLP 63.181(3.120) 125.888(0.781) 0.133(0.007) 0.804(0.004) 0.365(0.365))
catTE + MLP 64.154(1.734) 129.259(2.115) 0.090(0.019) 0.805(0.003) 0.355(0.355))

LSTM 62.597(0.957) 122.284(0.266) 0.174(0.004) 0.855(0.002) 0.481(0.481)
BM + LSTM 61.666(0.702) 121.899(0.442) 0.180(0.006) 0.854(0.004) 0.485(0.485)

catTE + LSTM 62.354(0.686) 123.253(0.155) 0.164(0.002)) 0.846(0.004) 0.476(0.476)
SA-LSTM 63.353(0.715) 122.976(0.215) 0.167(0.003) 0.851(0.005) 0.448(0.448)

BM + SA-LSTM 61.955(0.460) 121.667(0.089) 0.185(0.001) 0.854(0.006) 0.454(0.454))
addTE + SA-LSTM 62.591(0.321) 122.325(0.475) 0.173(0.006) 0.856(0.003) 0.482(0.482)

(a) AUC-ROC (b) Average Precision

Figure 3: Evaluation of models at in-hospital mortality with observed data from 10% to 100%

4.3 RESULTS

Results for in-hospital mortality shows that self-attention seems to deteriorate the vanilla LSTM
performance, but when added the TEs it got improved sufficiently to surpass it and achieve our better
average result.

In the length of stay task TEs achieved better results, especially with bigger gaps at the reduced data
test. TEs improved LSTM average error, but a slight worse explained variance, were binary masking
had a better performance.

At Figure 3 and 4 we can see the performance of models when we randomly remove observed data
from 100% to 10%. With length of stay task the LSTM with TE concatenated have a overall smaller
absolute error than vanilla LSTM, being surpassed only by the binary mask. At in-hospital mortality
we see a similar performance with TE SA-LSTM and LSTM with binary masking.

With non-recurrent models it is possible to observe how TEs does not rely on recurrence. It improved
both linear/logistic regression and MLP.

5 CONCLUSIONS

This paper propose a novel method to represent hour time or dates as dense vectors to improve
irregularly sampled time series. It was evaluated with two different approaches and evaluated in two
tasks from the MIMIC III dataset. Our method showed some improvement with most models tested,
including recurrent neural networks and classic machine learning methods.

Despite being outperformed by binary masking in some tests we believe TEs can still be an viable
option. Specially to very irregular time series and high dimensional data, were TEs can be applied by
addition without increasing the input dimensionality.
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(a) Mean Absolute Error (b) Explained Variance

Figure 4: Evaluation of models at length of stay with observed data from 10% to 100%

6 FUTURE WORK

We see a promising future for the method proposed. We expect to extend it to improve other types of
irregular time-continuous data and also evaluate how can TE improve recent models proposed for
irregularly time series, like the GRU-D (Che et al., 2018), interpolation networks (Shukla & Marlin,
2018) and Temporal-Clustering Regularization (Bahadori & Lipton, 2019). The code for TEs results
reported will be publicly available in the future.
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