REPRESENTATION COMPRESSION AND GENERALIZATION IN DEEP NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Understanding the groundbreaking performance of Deep Neural Networks is one of the greatest challenges to the scientific community today. In this work, we introduce an information-theoretic viewpoint on the behavior of deep networks optimization processes and their generalization abilities. By studying the Information Plane, the plane of the mutual information between the input variable and the desired label, for each hidden layer. Specifically, we show that the training of the network is characterized by a rapid increase in the mutual information (MI) between the layers and the target label, followed by a longer decrease in the MI between the layers and the input variable. Further, we explicitly show that these two fundamental information-theoretic quantities correspond to the generalization error of the network, as a result of introducing a new generalization bound that is exponential in the representation compression. The analysis focuses on typical patterns of large-scale problems. For this purpose, we introduce a novel analytic bound on the mutual information between consecutive layers in the network. An important consequence of our analysis is a super-linear boost in training time with the number of non-degenerate hidden layers, demonstrating the computational benefit of the hidden layers.

1 **INTRODUCTION**

Deep Neural Networks (DNNs) heralded a new era in predictive modeling and machine learning. Their ability to learn and generalize has set a new bar on performance, compared to state-of-the-art methods. This improvement is evident across almost every application domain, and especially in areas that involve complicated dependencies between the input variable and the target label (LeCun et al., 2015). However, despite their great empirical success, there is still no comprehensive understanding of their optimization process and its relationship to their (remarkable) generalization abilities.

This work examines DNNs from an information-theoretic viewpoint. For this purpose we utilize the Information Bottleneck principle (Tishby et al., 1999). The Information Bottleneck (IB) is a computational framework for extracting the most compact, yet informative, representation of the input variable \(X\), with respect to a target label variable \(Y\). The IB bound defines the optimal tradeoff between representation complexity and its predictive power. Specifically, it is achieved by minimizing the mutual information (MI) between the representation and the input, subject to the level of MI between the representation and the target label.

Recent results (Shwartz-Ziv & Tishby, 2017), demonstrated that the layers of DNNs tend to converge to the IB optimal bound. The results pointed to a distinction between two phases of the training process. The first phase is characterized by an increase in the MI with the label (i.e. fitting the training data), whereas in the second and most important phase, the training error was slowly reduced with a decrease in mutual information between the layers and the input (i.e. representation compression). These two phases appear to correspond to fast convergence to a flat minimum (drift) following a random walk, or diffusion, in the vicinity of the training error’s flat minimum, as reported in other studies (e.g. Zhang et al., 2018).

These observations raised several interesting questions: (a) what in the SGD optimization causes these two training phases? (b) how can the diffusion phase improve generalization performance? (c)
can the representation compression explain the convergence of the layers to the optimal IB bound? (d) can this diffusion phase explain the benefit of many hidden layers?

In this work we attempt to answer these questions. Specifically, we draw important connections between recent results inspired by statistical mechanics, and information-theoretic principles. We show that the layers of a DNN indeed follow the behavior described in Shwartz-Ziv & Tishby [2017]. We claim that the reason can be found in the Stochastic Gradient Descent (SGD) optimization mechanism. We show that the first phase of the SGD is characterized by a rapid decrease in the training error, which corresponds to an increase in the MI with the labels. Then, the SGD behaves like non-homogeneous Brownian motion in the weights space, in the proximity of a flat error minimum. This non-homogeneous diffusion corresponds to a decrease in MI between the layers and the input variable, in “directions” that are irrelevant to the target label.

One of the main challenges in applying information theoretic measures to real-world data is a good enough estimation of high dimensional joint distributions. This problem has been extensively studied over the years (e.g. Paninski [2003]), and has led the conclusion that there is no “efficient” solution when the dimension of the problem is large. Recently, a number of studies have focused on calculating the MI in DNNs using Statistical Mechanics. These methods have generated promising results in a variety of special cases (Gabri ´e et al. [2018], which support many of the observations made by Shwartz-Ziv & Tishby [2017]).

In this work we provide an analytic bound on the MI between consecutive layers, which is valid for any non-linearity of the units, and directly demonstrates the compression of the representation during the diffusion phase. Specifically, we derive a Gaussian bound that only depends on the linear part of the layers. This bound gives a super linear dependence of the convergence time of the layers, which it turns enables us to prove the super-linear computational benefit of the hidden layers. The bound can also allow us to study mutual information values in DNNs in real-world data without estimating them directly.

1.1 Preliminaries and Notations

Let $X \in \mathcal{X}$ and $Y \in \mathcal{Y}$ be a pair of random variables of the input patterns and their target label (respectively). Throughout this work, we consider the practical setting where X and Y are continuous random variables that are represented in a finite precision machine. This means that both X and Y are practically binned (quantized) into a finite number of discrete values. Alternatively, X, Y may be considered as continuous random variables that are measured in the presence of an independent additive small (Gaussian) noise, corresponding to their numerical precision. We use these two interpretations interchangeably, at the limit of infinite precision but these should be only considered the final stage of our analysis.

We denote the joint probability of X and Y as $p(x,y)$, eras their corresponding MI is defined as $I(X;Y) = D[p(y|x)||p(y)] = D[p(x|y)||p(x)]$, where $D[p||q]$ denotes the Kullback-Liebler (KL) divergence between the probability distributions p and q. Let $f_W(x)$ denote a DNN, with K hidden layers, where each layer consists of d_k neurons, each with some activation function $\sigma_k(x)$, for $k = 1, \ldots, K$. We denote the values of the k^{th} layer by the random vector T_k. The DNN mapping between two consecutive layers is defined as $T_k = \sigma_k(W_k T_{k-1})$, where W_k is a $d_k \times d_{k-1}$ real weight matrix. Note that we consider both the weights, W_k and the layer representations, T_k, as stochastic entities, because they depend on the stochastic training rule of the network and the random input pattern (as described in Section 2.1). However, when the network weights are given, the weights are fixed realizations of the random training process (i.e. they are “quenched”). Note that given the weights, the layers form a Markov chain of successive internal representations of the input variable X: $Y \rightarrow X \rightarrow T_1 \rightarrow ... \rightarrow T_K$, and their MI values obey a chain of Data Processing Inequalities (DPI), as discussed in Shwartz-Ziv & Tishby (2017).

We denote the set of all K layers weight matrices as $W^K = \{W_1, \ldots, W_K\}$. Let the training sample, $S^n = \{(x_1, y_1), \ldots, (x_n, y_n)\}$ be a collection of n independent samples from $p(x,y)$. Let $\ell_{W,k}(x_i, y_i)$ be a (differentiable) loss function that measures the discrepancy between a prediction of the network $f_{W,k}(x_i)$ and the corresponding true target value y_i, for a given set of weights W^K. Then, the empirical error is defined as $\mathcal{L}_{W,k}(S^n) = \frac{1}{n} \sum_{i=1}^{n} \ell_{W,k}(x_i, y_i)$. The corresponding error gradients (with respect to the weights) are denoted as $\nabla_{W,k} \mathcal{L}_{W,k}(S^n)$.

\[\text{(KL) divergence between the probability distributions ... K}}\],
\[f_{W,k}(x) \text{ denote a DNN, with } K \text{ hidden layers, where each layer consists of } d_k \text{ neurons, each with some activation function } \sigma_k(x), \text{ for } k = 1, \ldots, K. \]
\[T_k = \sigma_k(W_k T_{k-1}) \]
\[I(X;Y) = D[p(y|x)||p(y)] = D[p(x|y)||p(x)] \]
\[D[p||q] \]
\[\mathcal{L}_{W,k}(S^n) = \frac{1}{n} \sum_{i=1}^{n} \ell_{W,k}(x_i, y_i) \]
\[\nabla_{W,k} \mathcal{L}_{W,k}(S^n) \]
2 Deep Neural Networks

2.1 Training the Network – the SGD Algorithm

Training a DNN corresponds to the process of setting the values of weights W^K from a given set of samples S^n. This is typically done by minimizing the empirical error, which approximates the expected loss. The SGD algorithm is a common optimization method for this purpose (Robbins & Monro [1951]).

Let $S^{(m)}$ be a random set of m samples drawn (uniformly, with replacement) from S^n, where $m < n$. We refer to $S^{(m)}$ as a mini-batch of S^n. Define the corresponding empirical error and gradient of the mini-batch as $L_{W^K}(S^{(m)}) = \frac{1}{m} \sum_{(x_i, y_i) \in S^{(m)}} \ell_{W^K}(x_i, y_i)$ and $\nabla_{W^K} L_{W^K}(S^{(m)}) = \frac{1}{m} \sum_{(x_i, y_i) \in S^{(m)}} \nabla_{W^K} \ell_{W^K}(x_i, y_i)$ respectively. Then, the SGD algorithm is defined by the update rule: $W^K(l) = W^K(l - 1) - \eta \nabla_{W^K(l-1)} L_{W^K(l-1)}(S^{(m)})$, where $W^K(l)$ are the weights after l iterations of the SGD algorithm and $\eta \in \mathbb{R}_+$ is the learning rate.

2.2 The Different Phases of SGD Optimization

The SGD algorithm plays a key role in the astonishing performance of DNNs. As a result, it has been extensively studied in recent years, especially in the context of flexibility and generalization (Chee & Toulis [2017]). Here, we examine the SGD as a stochastic process, that can be decomposed into two separate phases. This idea has been studied in several works (Murata, 1998; Jin et al., 2017). Here, we examine the SGD as a stochastic process, that can be decomposed into two separate phases. This idea has been studied in several works (Murata, 1998; Jin et al., 2017). Murata argued that stochastic iterative procedures are initiated at some starting state and then move through a fast transient phase towards a stationary phase, where the distribution of the weights becomes time-independent. This may not be the case, however, when the SGD induces non-isotropic state dependent noise, as argued e.g. by Chaudhari & Soatto (2017).

In contrast, Shwartz-Ziv & Tishby (2017) described the transient phase of the SGD as having two very distinct dynamic phases. The first is a drift phase, where the means of the error gradients in every layer are large compared to their batch-to-batch fluctuations. This behaviour is indicative of small variations in the gradient directions, or high-SNR gradients. In the second part of the transient phase, which they refer to as diffusion, the gradient means become significantly smaller than their batch-to-batch fluctuations, or low-SNR gradients. The transition between the two phases occurs when the training error saturates and weights growth is dominated by the gradient batch-to-batch fluctuations. Typically, most SGD updates are expended in the diffusion phase before reaching Murata’s stationary phase. In this work we rigorously argue that this diffusion phase causes the representation compression; i.e., the observed reduction in $I(T_k; X)$, for most hidden layers.

2.3 Drift and Diffusion with SGD

It is well known that the discrete time SGD, $X[t+1]$, can be considered as an approximation of a continuous time stochastic gradient flow if the discrete-time iteration parameter l is replaced by a continuous parameter τ. Li et al. (2015) recently showed that when the mini-batch gradients are unbiased with bounded variance, the discrete-time SGD is an approximation of a continuous-time Langevin dynamics,

$$dW^K(\tau) = -\nabla_{W^K(\tau)} L_{W^K(\tau)}(S_n) d\tau + \sqrt{2\beta^{-1}C(W^K(\tau))} dB(\tau)$$ \hspace{1cm} (1)

where $C(W^K(\tau))$ is the sample covariance matrix of the weights, $B(\tau)$ is a standard Brownian motion (Wiener process) and β is the Langevin temperature constant. The first term in (1) is called the gradient flow or drift component, and the second term correspond to random diffusion. Although, this stochastic dynamics holds for the entire SGD training process, the first term dominates the dynamics during the high SNR gradient phase, whereas the second term becomes dominant when the gradients are small due to saturation of the training error in the low SNR gradient phase. Hence, these two SGD phases are referred drift and diffusion.

The mean L_2 displacement (MSD) measures the Euclidean distance from a reference position over time, which is used to characterize a diffusion process. Normal diffusion processes are known to exhibit a power-law MSD in time, $E[\|W^K(\tau) - W^K(0)\|_2^2] \sim \tau^\gamma$, where t is the diffusion time,
\(\gamma\) is related to the diffusion coefficient, and \(0.5 \geq \alpha > 0\) is the diffusion exponent. For a standard flat space diffusion the MSD increases as the square root of time \((\alpha = \frac{1}{2})\). [Hu et al. (2017)] showed (empirically) that the weights MSD in DNNs trained with SGD indeed behaves asymptotically like a normal diffusion, where the diffusion coefficient, \(\gamma\), depends on the batch size and learning rate. In contrast, Hoffer et al. ([Hoffer et al., 2017]) showed that the weights MSD in DNNs demonstrate an asymptotically much slower, logarithmic increase, in the weight distance from their initial point. This type of dynamics is also called “ultra-slow” diffusion.

3 \(\text{INFORMATION PLANE ANALYSIS}\)

Following [Tishby & Zalessky (2015), Shwartz-Ziv & Tishby (2017)], we study the layer representation dynamics in the 2-dimensional \((I(X; T_k), I(T_k; Y))\) plane For any input and target variables, \(X, Y\), let \(T \triangleq T(X)\) denote a representation, or an encoding (not necessarily deterministic), of \(X\). Clearly, \(T\) is fully characterized by its encoder, the conditional distribution \(p(t|x)\). Similarly, let \(p(y|t)\) denote any - possibly stochastic - decoder of \(Y\) from \(T\). Given a joint probability function \(p(x, y)\), the Information Plane is defined the set of all possible pairs \(I(X; T)\) and \(I(T; Y)\) for any possible representation, \(p(T|X)\).

It is evident that not all points on the plane are feasible (achievable), as there is clearly a tradeoff between these quantities; the more we compress \(X\) (reduce \(I(X; T)\)), the less information can be maintained about the target, \(I(T; Y)\).

Our analysis is based on the fundamental role of these two MI quantities. We argue (the Information Plane Theorem) that for large scale (high dimensional \(X\) learning, for almost all (typical) input patterns, with mild assumptions (ergodic Markovian input patterns): (i) the MI values concentrate with the input dimension; (ii) the minimal sample complexity for a given generalization gap is controlled by \(I(X; T)\); and (iii) the accuracy - the generalization error - is governed by \(I(T; Y)\), with the Bayes optimal decoder representation.

The theorem states that the sample-size - accuracy trade-off of all large scale representation learning is characterized by these two MI quantities. For DNNs, this amounts to a dramatic reduction in the complexity of the analysis of the problem. We discuss these ideas in the following sections and prove, the connection between the input representation compression, \(I(T; X)\), the generalization gap (the difference between training and generalization errors), and the minimal sample complexity (Theorem [1] below).

3.1 \(\text{LABEL INFORMATION AND GENERALIZATION ERROR}\)

Optimizing the mutual information is by no means new in either supervised and unsupervised learning ([Deco & Obradovic, 2012] [Linsker, 1988] [Painsky et al., 2016]). This is not surprising, as it can be shown that \(I(T; Y)\) corresponds to the irreducible error when minimizing the logarithmic loss ([Painsky & Wornell, 2018] [Harremoes & Tishby, 2007]). Here, we emphasize that \(I(T; Y)\), for the optimal decoder of the representation \(T\), governs all reasonable generalization errors (under the mild assumption that label \(y\) is not completely deterministic: \(p(y|x)\) is in the interior of the simplex, \(\Delta(Y)\), for all typical \(x \in X\)). First, note that with the Markov chain \(Y - X - T\), \(I(T; Y) = I(X; Y) - E_{X,T}D[p(y|x)||p(y|t)]\). By using the Pinsker inequality ([Cover & Thomas, 2012]) the variation distance between the optimal and the representation decoders can be bound by their KL divergence,

\[
D(p(y|x)||p(y|t)) \geq \frac{1}{2\ln 2}||p(y|x) - p(y|t)||_1^2. \tag{2}
\]

Hence, by maximizing \(I(T; Y)\) we minimize the expected variation risk between the representation decoder \(p(y|t)\) and \(p(y|x)\). For more similar bounds on the error measures see [Painsky & Wornell, 2018].

3.2 \(\text{REPRESENTATION COMPRESSION AND SAMPLE COMPLEXITY}\)

The Minimum Description Length (MDL) principle ([Rissanen, 1978]) suggests that the best representation for a given set of data is the one that leads to the minimal code-length needed to represent
of the data. This idea has inspired the use of \(I(X;T) \) as a regularization term in many learning problems (e.g. [Chigirev & Bialek, 2004]). Here, we argue that \(I(X;T) \) plays a much more fundamental role; we show that for large scale (high dimensional \(X \)) learning and for typical input patterns, \(I(X;T) \) controls the sample complexity of the problem, given a generalization error gap.

Theorem 1 (Input Compression bound). Let \(X \) be a \(d \)-dimensional random variable that obeys an ergodic Markov random field probability distribution, asymptotically in \(d \). Let \(T \triangleq T(X) \) be a representation of \(X \) and denote by \(T_m \triangleq \{(t_1, y_1), \ldots, (t_m, y_m)\} \) an \(m \)-sample vector of \(T \) and \(Y \), generated with \(m \) independent samples of \(x_i \), with \(p(y|x_i) \) and \(p(t|x_i) \). Assume that \(p(x,y) \) is bounded away from 0 and 1 (strictly inside the simplex interior). Then, for large enough \(d \), with probability \(1 - \delta \), the typical expected squared generalization gap satisfies

\[
|\mathcal{L}(T_m) - \mathbb{E}_{T_m} [\mathcal{L}(T_m)]|^2 \leq \frac{2I(X:T) + \log \frac{2}{\delta}}{2m},
\]

where the typicality follows the standard Asymptotic Equipartition Property (AEP) ([Cover & Thomas, 2012]).

A proof of this Theorem appears given in Appendix A. It is also related to the bound proved in [Shamir et al., 2010], with the typical representation cardinality, \(|T(X)| \approx 2^{I(T;X)} \). The ergodic Markovian assumption is common in many large scale learning problems. It means that \(p(x) \approx \prod_{i=1}^d p(x_i | Pa(x_i)) \), where \(Pa(x_i) \) is a finite set of adjacent "parents" of \(x_i \) in the \(d \) dimensional pattern \(x \).

The consequences of this input-compression bound are quite striking: the generalization error decreases exponentially with \(I(X;T) \), once \(I(T;X) \) becomes smaller than \(\log 2n \) - the query sample-complexity. Moreover, it means that \(M \) bits of representation compression, beyond \(\log 2m \), are equivalent to a factor of \(2^{H(X)} \) training examples. The tightest bound on the generalization bound is obtained for the most compressed representation, or the last hidden layer of the DNN. The input-compression bound can yield a tighter and more realistic sample complexity than any of the worst-case PAC bounds with any reasonable estimate of the DNN class dimensionality, as typically the final hidden layers are compressed to a few bits.

Two important caveats are in order, nevertheless. First, the layer representation in Deep Learning are learned from the training data; hence, the encoder; the partition of the typical patterns \(X \), and the effective "hypothesis class", depend on the training data. This can lead to considerable over-fitting. Training with SGD avoids this potential over-fitting because of the way the diffusion phase works. Second, for low \(I(T;Y) \) there are exponentially many (in \(d \)) random encoders (or soft partitions of \(X \)) with the same value of \(I(T;X) \). This seems to suggest that there is a missing exponential factor in our estimate of the hypothesis class cardinality. Note, however, that the vast majority (almost all) of these possible encoders are never encountered during typical SGD optimizations. They act like a "dark hypothesis space" which is never observed and does not affect the generalization bound. Moreover, as \(I(T;Y) \) increases, the number of such random encoders rapidly collapses all the way to \(O(1) \) when \(I(T;Y) \) approaches the optimal IB limit, as we show next.

3.3 The Information Bottleneck Limit

As presented above, we are interested in the boundary of the achievable region in the information plane, or in encoder-decoder pairs that minimize the sample complexity (minimize \(I(X;T) \)) and generalize well (maximize \(I(T;Y) \)).

These optimal encoder-decoder pairs are given precisely by the Information Bottleneck framework ([Tishby et al., 1999], which is formulated by the following optimization problem: \(\min_{p(t|x)} I(X;T) - \beta I(T;Y) \), over all possible encoders-decoders pairs that satisfy the Markov condition \(Y - X - T \). Here \(\beta \) is a positive Lagrange multiplier associated with the decoder information on \(T \), \(Y \), which also determines the complexity of the representation.

The Information Bottleneck limit defines the set of optimal encoder-decoder pairs, for the joint distribution \(p(x,y) \). Furthermore, it characterizes the achievable region in the Information Plane, similar to Shannon’s Rate Distortion Theory (RDT) ([Cover & Thomas, 2012]). By our previous analysis it also determines the optimal tradeoff between sample complexity and generalization error.

The IB can only be solved analytically in very special cases (e.g., jointly Gaussian \(X, Y \) ([Chechik...])...
By applying the DPI to the Markov chain of the DNN layers we obtain the following chains:

\[I(X; T_1) \geq I(X; T_2) \geq \cdots \geq I(X; T_k) \geq I(X; Y) \] and \(I(X; Y) \geq I(T_1; Y) \geq \cdots \geq I(T_k; Y) \geq I(Y; Y) \)

where \(\hat{Y} \) is the output of the network. The pairs \((I(X; T_k), I(T_k, Y))\), for each SGD update, form a unique concentrated Information Path for each layer of a DNN, as demonstrated in Shwartz-Ziv & Tishby (2017).

For any fixed realization of the weights, the network is - in principle - a deterministic map. This does not imply that information is not lost between the layers; the inherent finite precision of the layers, with possible saturation of the nonlinear activation functions \(\sigma_k \), can result in non-invariable mapping between the layers. Moreover, we argue below that for large networks this mapping becomes effectively stochastic due to the diffusion phase of the SGD.

On the other hand, the Information Plane layer paths are invariant to invertible transformations of the representations \(T_k \). Thus the same paths are shared by very different weights and architectures, and possibly different encoder-decoder pairs. This freedom is drastically reduced when the target information, \(I(T_k, Y) \), increases and the layers approach the IB limit. Minimizing the training error (ERM), together with standard uniform convergence arguments clearly increase \(I(T; Y) \), but what in the SGD dynamics can lead to the observed representation compression which further improves generalization? Moreover, can the SGD dynamics push the layer representations all the way to the IB limit, as claimed in Shwartz-Ziv & Tishby (2017)?

We provide affirmative answers to both questions, using the properties of the drift and diffusion phases of the SGD dynamics.

4 The Information Plane and SGD Dynamics for DNNs

4.1 Representation Compression by Diffusion

In this section we quantify the roles of the drift and diffusion SGD phases and their influence on the MI between consecutive layers. Specifically, we show that the drift phase corresponds to an increase in information with the target label \(I(T_k; Y) \), whereas the diffusion phase corresponds to representation compression, or reduction of the \(I(X; T_k) \). The representation compression is accompanied by further improvement in the generalization.

The general idea is as follows: the drift phase increases \(I(T_k; Y) \) as it reduces the cross-entropy empirical error. On the other hand, the diffusion phase in high dimensional weight space effectively adds an independent non-uniform random component to the weights, mostly in the directions that do not influence the loss - i.e. irrelevant directions. This results in a reduction of the SNR of the irrelevant features of the patterns, which leads to a reduction in \(I(X; T_k) \), or representation compression. We further argue that different layers filter out different irrelevant features, resulting in their convergence to different locations in the Information Plane.

4.2 The SGD Compression Mechanism

First, DPI implies that \(I(X; T_k) \leq I(T_{k-1}; T_k) \). We focus on the second term during the diffusion phase and prove an asymptotic upper bound for \(I(T_{k-1}; T_k) \), which reduces sub-linearly with the number of SGD updates. For clarity, we describe the case where \(T_k \in \mathbb{R}^{d_k} \) is a vector and \(T_{k+1} \in \mathbb{R} \) is a scalar. The generalization to higher \(d_{k+1} \) is straightforward. We examine the network during the diffusion phase, after \(\tau \) iterations of the SGD beyond the drift-diffusion transition. For each layer, \(k \), the weights matrix, \(W^k(\tau) \) can be decomposed as follows,

\[
W^k(\tau) = W^k + \delta W^k(\tau).
\]

The first term, \(W^k \), denotes the weights at the end of the drift phase \((\tau_0 = 0) \) and remains constant with increasing \(\tau \). As we assume that the weights converge to a (local, flat) optimum during the
Let finally, we apply an orthogonal eigenvalue decomposition to this multivariate Gaussian channel (7). Corresponding eigenvalues, normally distributed). Hence, for sufficiently large d, almost surely, where the first inequality is due to DPI for the Markov chain signal and conditions. Note that in this case, (5) behaves like an additive Gaussian channel where d, and T_k is the optimum. For large τ we know that $\delta W^k(\tau) \sim \mathcal{N}(0, \tau C(W^k(\tau_0)))$ where τ_0 is the time of the beginning of the diffusion phase. Note that at any given τ, we can treat the weights as a fixed (quenched) realization, $w^k(\tau)$, of the random Brownian process $W^k(\tau)$. We can now model the mapping between the layers T_k and T_{k+1} at that time as

$$T_{k+1} = \sigma_k \left(w^{*T} T_k + \delta w^k(\tau)^T T_k + Z \right)$$

(5)

where $w^* \in \mathbb{R}^{d_k}$ is the SGD’s empirical minimizer, and $\delta w \in \mathbb{R}^{d_k}$ is a realization from a Gaussian vector $\delta w \sim \mathcal{N}(0, C_{\delta w})$, of the Brownian process discussed in Section 2.3. In addition, we consider $Z \sim \mathcal{N}(0, \sigma^2_z)$ to be the small Gaussian measurement noise, or quantization, independent of δw^k and T_k. This standard additive noise allows us to treat all the random variables as continuous.

For simplicity we assume that the d_k components of T_k have zero mean and are asymptotically independent for $d_k \to \infty$, and that $\lim_{d_k \to \infty} w^{*T} \delta w = 0$ almost surely.

Proposition 2. Assume that the moments of T_k are finite. Further, assume that the components of w^* and $\delta w(\tau)$ are in-general-positions, satisfying $\lim_{d_k \to \infty} \sum_{k=1}^{d_k} w^{*T} \delta w = 0$ and $\lim_{d_k \to \infty} \sum_{k=1}^{d_k} \delta w_i^2 / (\sum_{k=1}^{d_k} \delta w_i^2)^2 = 0$ almost surely. Then,

$$\frac{1}{\sqrt{\sigma^2_{T_k}}} \left[\begin{array}{c} w^{*T} T_k \
 \|w^*\|_2 \delta w^T T_k \
 \end{array} \right]^{T} \frac{d}{d_k \to \infty} \mathcal{N}(0, I)$$

(6)

almost surely, where $\sigma^2_{T_k}$ is the variance of the components of T_k.

A proof for this CLT proposition is given in Appendix B.

Proposition 2 shows that under the standard conditions above, $w^{*T} T_k$ and $\delta w^T T_k$ are asymptotically jointly Gaussian and independent, almost surely. We stress that the components of T_k do not have to be identically distributed to satisfy this property; Proposition 2 may be adjusted for this case with different normalization factors. Similarly, the i.i.d. assumption on T_k can easily be relaxed to Markovian ergodic, as we assume the input patterns. It is easy to verify that Proposition 2 can be extended to the general case where $w^*, \delta w \in \mathbb{R}^{d_k \times d_{k+1}}$, under similar general position conditions, with almost sure orthogonality of w^* and δw.

We can now bound the mutual information between T_{k+1} and the linear projection of the previous layer $W^* T_k$, during the diffusion phase, for sufficiently high dimensions d_k, d_{k+1}, under the above conditions. Note that in this case, (5) behaves like an additive Gaussian channel where $w^{*T} T_k$ is the signal and $\delta w^T T_k + Z$ is an independent additive Gaussian noise (i.e., independent of signal and normally distributed). Hence, for sufficiently large d_k and d_{k+1}, we can write

$$I(T_{k+1}; T_k|w^*) \leq I(T_{k+1}; w^{*T} T_k|w^*) \leq I \left(w^{*T} T_k + \delta w^T T_k + Z; w^{*T} T_k|w^* \right) = \frac{1}{2} \log \left(\frac{\sigma^2_{T_k} w^{*T} w^* + \sigma^2_{\delta w} \delta w^T \delta w + \sigma^2_Z}{\sigma^2_{T_k} \delta w^T \delta w + \sigma^2_Z} \right)$$

(7)

almost surely, where the first inequality is due to DPI for the Markov chain $T_k - w^{*T} T_k - T_{k+1}$. Finally, we apply an orthogonal eigenvalue decomposition to this multivariate Gaussian channel (7). Let $\delta w^T \delta w = Q \Lambda Q^T$ where $Q \Lambda Q^T = I$ and Λ is a diagonal matrix whose diagonal elements are the corresponding eigenvalues, λ_i, of $\delta w^T \delta w$. Then, we have that

$$\left| \sigma^2_{T_k} w^{*T} T_k + \sigma^2_{\delta w} \delta w^T \delta w + Z \right| = \sigma^2_{T_k} |Q| \cdot |Q^T w^{*T} T_k^* Q + \Lambda + \sigma^2_{T_k} Q \Lambda^T Q | \cdot |Q^T| = \sigma^2_{T_k} |Q^T w^{*T} T_k^* Q + \Lambda + \frac{\sigma^2_{T_k} \Lambda^T Q}{\sigma^2_{T_k}}| \leq \sigma^2_{T_k} \prod_{i=1}^{d_{k+1}} \left(A_{ii} + \lambda_i + \frac{\sigma^2_{T_k}}{\sigma^2_{T_k}} \right)$$

(8)
where \(A \triangleq Q^{T}W^{*}T^{*}W^{*}Q \). The last inequality is due to the Hadamard inequality. Plugging (8) into (7) yields that for sufficiently large \(d_{k} \) and \(d_{k+1} \),

\[
I(T_{k+1}; T_{k}|w^{*}) \leq \frac{1}{2} \log \left(\frac{\prod_{i=1}^{d_{k+1}} (A_{ii} + \lambda_{i} + \frac{\sigma_{i}^{2}}{\sigma_{k}^{2}})}{\prod_{i=1}^{d_{k+1}} (\lambda_{i} + \frac{\sigma_{i}^{2}}{\sigma_{k}^{2}})} \right) = \frac{1}{2} \sum_{i=1}^{d_{k+1}} \log \left(1 + \frac{A_{ii}}{\lambda_{i} + \frac{\sigma_{i}^{2}}{\sigma_{k}^{2}}} \right) \sigma_{i}^{2} \rightarrow 0 \leq \frac{1}{2} \sum_{i=1}^{d_{k+1}} \log \left(1 + \frac{A_{ii}}{\lambda_{i}} \right) .
\]

As previously established, \(\delta w \) is a Brownian motion along the SGD iterations during the diffusion phase. This process is characterized by a low (and fixed) variance of the informative gradients (relevant dimensions), whereas the remaining irrelevant directions suffer from increasing variances as the diffusion proceeds (see, e.g. (Sagun et al., 2017; Zhu et al., 2018; Jastrzebski et al., 2017)). In other words, we expect the “informative” \(\Lambda_{I} \) to remain fixed, while the irrelevant consistently grow as sub-linearly with time. Denote the set of “informative/relevant” directions as \(\Lambda^{*} \) and the set of “non-informative” as \(\Lambda_{NI} \). Then our final limit (9), as the number of SGD steps grows, is

\[
I(T_{k+1}; T_{k}|w^{*}) \leq \frac{1}{2} \sum_{\lambda_{i} \in \Lambda^{*}} \log \left(1 + \frac{\delta w}{\lambda_{i}} \right) .
\]

Note that which directions are compressed and which are preserved depend on the required compression level. This is why different layers converge to different values of \(I(T_{k}; X) \).

4.3 Relation to Other Works

The above analysis suggests that the SGD compresses during the diffusion phase in many directions of the gradients. We argue that these directions are the ones in which the variance of the gradients is increasing (non-informative) whereas the information is preserved in the directions where the variance of the gradients remain small.

This statement is consistent with recent (independent) works on the statistical properties of gradients and generalization. (Sagun et al., 2017; Zhu et al., 2018; Zhang et al., 2018b) showed that typically, the covariance matrix of the gradients is highly non-isotropic and that this is crucial for generalization by SGD. They suggested that the explanation lies in the proximity of the gradients’ covariance matrix to the Hessian of the loss approximation. Furthermore, it was argued in (Zhang et al., 2018b; Keskar et al., 2016; Jastrzebski et al., 2017) that SGD tends to converge to flat minima. These flat minima often correspond to a better generalization. (Zhang et al., 2018b) emphasized that SGD converges to flat minima values characterized by high entropy due to the non-isotropic nature of the gradients’ covariance and its alignment with the error Hessian at the minima. In other words, all of the finding above suggest that good generalization performance is typically characterized by non-isotropic gradients and Hessian, that are in orthogonal directions to the flat minimum of the training objective.

5 The Computational Benefit of the Hidden Layers

Our Gaussian bound on the representation compression, equation (9) allows us to relate the convergence time of the layer representation information, \(I(T_{k}; X) \), to the diffusion exponent \(\alpha \), defined in section 2.3.

Considering the representation information as a function of the diffusion time \(\tau \), in \(I(X; T_{k})(\tau) \), using (9),

\[
I(X; T_{k})(\tau) \leq C + \frac{1}{2} \sum_{\lambda_{i} \in \Lambda_{NI}} \log \left(1 + \frac{A_{ii}}{\lambda_{i}(\tau)} \right) \leq C + \frac{1}{2} \sum_{\lambda_{i} \in \Lambda_{NI}} \left(\frac{A_{ii}}{\lambda_{i}(\tau)} \right) \leq C + \frac{1}{\tau^{\alpha}} \sum_{\lambda_{i} \in \Lambda_{NI}} \left(\frac{A_{ii}}{\lambda_{i}} \right) .
\]

where \(C \) depends on the informative information for this layer, but not on \(\tau \).

As \(\lambda_{i}(\tau) \) are the singular values of the weights of a diffusion process they grow as \(\tau^{\alpha} \) where \(\alpha \) is the diffusion exponent. Hence, \(\lambda_{i}(\tau) = \lambda_{0}^{i} \cdot \tau^{\alpha} \). Then \(I(X; T_{k})(\tau) \leq C + \frac{1}{\tau^{\alpha}} \sum_{\lambda_{i} \in \Lambda_{NI}} \left(\frac{A_{ii}}{\lambda_{0}^{i}} \right) .
\)
The change of weights, the SNR of the gradients, the MI and the Gaussian bound during the training for one layer. In log-log scale

(b) The transition point of the SNR (Y-axis) versus the beginning of the information compression (X-axis), for different mini-batch sizes

Figure 1: MNIST data-set

Inverting this relation, the time to compress the representation T_k by $\Delta I(X; T_k) = \Delta I_k$ scales as: $\tau(\Delta I_k) \propto \left(\frac{R}{\Delta I(X; T_k)}\right)^{\frac{1}{\alpha}}$, where $R = \frac{1}{2} \sum_{i \in \Lambda} \sum_{j \in \Lambda} (A_{ij}^2)$.

6 Experiments

We now illustrate our results in a series of experiments. We examine several different setups. In the first experiment, we evaluate the MNIST handwritten digit recognition task [LeCun et al., 1990]. For this data set, we use a fully-connected network with 4 hidden layers of width $250 - 100 - 50 - 20$, with an hyperbolic tangent (tanh) activation function. The relative low dimension of the network and the bounded activation function allow us to empirically measure the MI in the network. The MI is estimated by binning the neurons’ output into the interval $[-1, 1]$. The discretized values are then used to estimate the joint distributions and the corresponding MI, as described by Shwartz-Ziv & Tishby (2017).

In the second experiment we consider two large-scale data sets, CIFAR-10 and CIFAR-100. Here, we train a ResNet-32 network, using a standard architecture as described in [He et al., 2016]. In this experiment we do not estimate the MI directly, due to the large scale of the problem. MNIST dataset - Figure [a] depicts the norms of the weights, the signal-to-noise ratio (the ratio between the means of the gradients and their standard deviations), the compression rate $I(X; T)$ and the Gaussian upper bound on $I(X; T)$, as defined in [9]. As expected, the two distinct phases correspond to the drift and diffusion phases. Further, these two phases are evident by independently observing the SNR, the change of the weights $|W(t) - W(0)|$, the MI and the upper bound. In the first phase, the weights grow almost linearly with the iterations, the SNR of the gradients is high, and
there is almost no change in the MI. Then, after the transition point (that accrued almost at the same iteration for all the measures above), the weights behave as a diffusion process, and the SNR and the MI decrease remarkably. In this phase, there is also a clear-cut reduction of the bound.

CIFAR-10 and CIFAR-100 - Next, we validate our theory on large-scale modern networks. Figure 2 shows the SNR of the gradients and the Gaussian bound for one layer in CIFAR-10 and CIFAR-100 on the ResNet-32 network, averaged over 50 runs. Here, we observed similar behavior as reported in the MNIST experiment. Specifically, there was a clear distinction between the two phases and a reduction of the MI bound along the diffusion phase. Note that the same behavior was observed in most of the 32 layers in the network.

Recently there have been several attempts to characterize the correspondence between the diffusion rate of the SGD and the size of the mini-batch (Hu et al. (2017); Hoffer et al. (2017)). In these articles, the authors claimed that a larger mini-batch size corresponds to a lower diffusion rate. Here, we examined the effect of the mini-batch size on the transition phase in the Information Plane. For each mini-batch size, we found both the starting point of the information compression and the gradient phase transition (the iteration where the derivative of the SNR is maximal).

Figure 1b illustrates the results. The X-axis is the iteration where the compression started, and the Y-axis is the iteration where the phase transition in the gradients accrued for different mini-batch sizes. There was a clear linear trend between the two. This further justifies our suggested model, since that the two measures are strongly related.

7 Discussion and Conclusions

In this work, we examined DNNs using information-theoretic principles. We described the training process of the network as two separate phases, as has been done elsewhere. In the first phase (drift) we show that $I(T_k; Y)$ increases, corresponding to improved generalization with ERM. In the second phase (diffusion), the representation information, $I(X; T_k)$ slowly decreases, while $I(T_k; Y)$ continues to increase. We rigorously prove that the representation compression is a direct consequence of the diffusion phase, independent of the non-linearity of the activation function. We provide a new Gaussian bound on the representation compression and then relate the diffusion exponent to the compression time. One key outcome of this analysis is a novel proof of the computational benefit of the hidden layers, where we show that they boost the overall convergence time of the network by at least a factor of K^2, where K is the number of non-degenerate hidden layers. This boost can be exponential in the number of hidden layers if the diffusion is “ultra slow”, as recently reported.
REFERENCES

Appendix A - Proof of Theorem [1]

We first first revisit the well-known Probably Approximately Correct (PAC) bound. Let \(\mathcal{H} \) be a finite set of hypotheses. Let \(\ell_h(x, y) \) be a bounded loss function, for every \(h \in \mathcal{H} \). For example, \(\ell_h(x, y) = (y - h(x))^2 \) is the squared loss while \(\ell_h(x, y) = -y \log h(x) \) is the logarithmic loss (which may be treated as bounded, assuming that the underlying distribution is bounded away from zero and one). Let \(L_h(S_n) = \frac{1}{n} \sum_{i=1}^{n} \ell_h(x_i, y_i) \) be the empirical error. Hoeffding’s inequality [Hoeffding (1963)] shows that for every \(h \in \mathcal{H} \),

\[
\mathbb{P} \left[|L_h(S_n) - \mathbb{E}_{S_n}[L_h(S_n)]| \geq \epsilon \right] \leq 2 \exp \left(-2 \epsilon^2 n \right). \tag{11}
\]

Then, we can apply the union bound and conclude that

\[
\mathbb{P} \left[\exists h \in \mathcal{H} \left| L_h(S_n) - \mathbb{E}_{S_n}[L_h(S_n)] \right| \geq \epsilon \right] \leq 2|\mathcal{H}| \exp \left(-2 \epsilon^2 n \right). \tag{12}
\]

We want to control the above probability with a confidence level of \(\delta \). Therefore, we ask that \(2|\mathcal{H}| \exp \left(-2 \epsilon^2 n \right) \leq \delta \). This leads to a PAC bound, which states that for a fixed \(n \) and for every \(h \in \mathcal{H} \), we have with probability \(1 - \delta \) that

\[
|L_h(S_n) - \mathbb{E}_{S_n}[L_h(S_n)]|^2 \leq \frac{\log |\mathcal{H}| + \log \frac{2}{\delta}}{2n}. \tag{13}
\]

Note that under the definitions stated in Section 1.1 we have that \(|\mathcal{H}| \leq 2^X \). However, the PAC bound above also holds for an infinite hypotheses class, where \(\log |\mathcal{H}| \) is replaced with the VC dimension of the problem, with several additional constants [Vapnik & Chervonenkis (1968), Sauer (1972)].

Let us now assume that \(X \) is a \(d \)-dimensional random vector which follows a Markov random field structure. As stated above, this means that \(p(x_i) = \prod_i p(x_i|Pa(x_i)) \) where \(Pa(X_i) \) is a set of components in the vector \(X \) that are adjacent to \(X_i \). Assuming that the Markov random field is ergodic, we can define a typical set of realizations from \(X \) as a set that satisfies the Asymptotic Equipartition Property (AEP) [Cover & Thomas (2012)]. Therefore, for every \(\epsilon > 0 \), the probability of a sequence drawn from \(X \) to be in the typical set \(A_\epsilon \) is greater than \(1 - \epsilon \) and \(|A_\epsilon| \leq 2^{H(X)+\epsilon} \).

Hence, if we only consider a typical realization of \(X \) (as opposed to every possible realization), we have that asymptotically \(|A_\epsilon| \leq 2^{H(X)} \). Finally, let \(T \) be a mapping of \(X \). Then, \(2^{H(X|T)} \) is the number of typical realizations of \(X \) that are mapped to \(T \). This means that the size of the typical set of \(T \) is bounded from above by \(2^{H(X|T)} \). Plugging this into the PAC bound above yields that with probability \(1 - \delta \), the typical squared generalization error of \(T \), \(\epsilon^2_T \) satisfies

\[
\epsilon^2_T \leq \frac{2^{H(X|T)} + \log \frac{2}{\delta}}{2n}. \tag{13}
\]

Appendix B - Proof of Proposition [2]

Consider a sequence of i.i.d. random variable, \(\{X_i\}_{i=1}^d \) with zero mean and finite moments, \(\mathbb{E}[X_i^r] < \infty \) for every \(r \geq 1 \).

Let \(\{a_i\}_{i=1}^d \) be a sequence of constants. Denote \(Y_i = a_iX_i \), so that \(\{Y_i\}_{i=1}^d \) are independent with zero mean and \(\text{Var}(Y_i) = a_i^2 \mathbb{E}[X^2] \). Let \(S = \sum_{i=1}^d a_i X_i = \sum_{i=1}^d Y_i \) and denote \(U_d^2 = \sum_{i=1}^d \text{Var}(Y_i) = \mathbb{E}[X^2] \sum_{i=1}^d a_i^2 \).

The Lyapunov Central Limit Theorem (CLT) [Billingsley (2008)] states that if there exists some \(\delta > 0 \) for which

\[
\lim_{d \to \infty} \frac{1}{U_d^{2+\delta}} \sum_{i=1}^d \mathbb{E} \left[|Y_i|^{2+\delta} \right] = 0 \tag{14}
\]

then

\[
\frac{1}{U_d^2} \sum_{i=1}^d Y_i \xrightarrow{d \to \infty} \mathcal{N}(0, 1). \tag{15}
\]
Plugging $\delta = 2$ yields the following sufficient condition,

$$
\lim_{d \to \infty} \frac{1}{U_d^4} \sum_{i=1}^{d} \mathbb{E} \left[Y_i^4 \right] = \frac{\sum_{i=1}^{d} a_i^4}{\left(\sum_{i=1}^{d} a_i^2 \right)^2} \mathbb{E} \left[X_i^4 \right] = 0 \quad (16)
$$

Let us apply the Lyapunov CLT to our problem. Here, the components of T_k are i.i.d. for sufficiently large d_k, with zero mean and finite rth moments for every $r \geq 1$. Further, we assume that the components of w^* and δw are points-in-general-locations, satisfying

$$
\lim_{d_k \to \infty} \sum_{i=1}^{d_k} w_{i,1}^4 \left(\sum_{i=1}^{d_k} w_{i,2}^2 \right)^2 = 0 \quad \text{and} \quad \lim_{d_k \to \infty} \sum_{i=1}^{d_k} \delta w_{i,1}^4 \left(\sum_{i=1}^{d_k} \delta w_{i,2}^2 \right)^2 = 0
$$

almost surely. This means that Lyapunov condition (16) is satisfied for both $w^* T_k$ and $\delta w T_k$ almost surely, which means that

$$
\frac{1}{\sqrt{\sigma_{T_k}^2 ||w^*||_2}} w^T T_k \xrightarrow{d_{k \to \infty}} \mathcal{N}(0, 1) \quad (17)
$$

and

$$
\frac{1}{\sqrt{\sigma_{T_k}^2 ||\delta w||_2}} \delta w^T T_k \xrightarrow{d_{k \to \infty}} \mathcal{N}(0, 1). \quad (18)
$$

almost surely, where $\sigma_{T_k}^2$ is the variance of the components of T_k.

Further, for every pair of constants a and b, the linear combination $(aw^* + b\delta w)^T T_k$ also satisfies Lyapunov’s condition almost surely, which means that $w^* T_k$ and $\delta w T_k$ are asymptotically jointly Gaussian, with

$$
\mathbb{E} \left[w^T T_k \left(\delta w^T T_k \right)^T \right] = \sigma_{T_k}^2 w^T \delta w \xrightarrow{d_{k \to \infty}} 0
$$

almost surely. \qed