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Abstract

There is significant recent evidence in supervised
learning that, in the over-parametrized setting,
wider networks achieve better test error. In other
words, the bias-variance tradeoff is not directly
observable when increasing network width arbi-
trarily. We investigate whether a corresponding
phenomenon is present in reinforcement learn-
ing. We experiment on four OpenAI Gym en-
vironments, increasing the width of the policy
and value networks beyond their prescribed val-
ues. Our empirical results lend support to this hy-
pothesis. However, tuning the hyperparameters
of each network width separately remains as im-
portant future work in environments/algorithms
where the optimal hyperparameters vary notica-
bly across widths, confounding the results when
the same hyperparameters are used for all widths.

1. Introduction
A longstanding notion in supervised learning is that, as
model complexity increases, test error decreases initially
and, eventually, increases again. Intuitively, the idea is
that as the size of your hypothesis class grows, the closer
you can approximate the ground-truth function with some
function in your hypothesis class. At the same time, the
larger amount of functions to choose from in your hypoth-
esis class leads to higher estimation error (overfitting) from
fitting the finite data sample too closely. This is the es-
sential bias-variance tradeoff in supervised learning. We
discuss these tradeoffs in more depth in Section 2.2.

However, Neyshabur et al. (2015) found that increasing
the width of a single hidden layer neural network leads
to decreasing test error on MNIST and CIFAR-10. Since
then, there has been a large amount of evidence that wider
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networks generalize better in a variety of different archi-
tectures and hyperparameter settings (Zagoruyko & Ko-
modakis, 2016; Novak et al., 2018; Lee et al., 2018; Neal
et al., 2018; Belkin et al., 2018; Spigler et al., 2018; Liang
et al., 2017), once in the over-parametrized setting (Spigler
et al., 2018; Belkin et al., 2018). In other words, the bias-
variance tradeoff is not observed in this over-parametrized
setting, as network width grows (Neal et al., 2018).

How far can we inductively infer from this? Is this phe-
nomenon also present in deep reinforcement learning or do
we eventually see a degradation in performance as we in-
crease network width? In this paper, we present prelimi-
nary evidence that this phenomenon is also present in re-
inforcement learning. For example, using default hyper-
parameters, we can already see performance increase well
past the default width that is commonly used (64) in Fig. 1.
We test the hypothesis that wider networks (both policy
and value) perform monotonically better than their smaller
counterparts in policy gradients methods. Of course, we
will hit diminishing returns as the network width gets very
large, but this is very different from the competing hypoth-
esis that larger networks will overfit more.

Figure 1: PPO with network widths up to 2048 on the Cart-
Pole task, using the default Stable Baselines hyperparame-
ters. Wider networks perform better.

https://stable-baselines.readthedocs.io/en/master/


Wider Networks in Deep RL

2. Preliminaries
2.1. Supervised Learning Setting

We are given a training set S =
{(x1, y1), (x2, y2), . . . , (xm, ym)} of m training ex-
amples, where xi ∈ X and yi ∈ Y . Furthermore,
Z = X ×Y , so S ∈ Zm. D denotes a distribution over Z ,
so we have (xi, yi) ∼ D and S ∼ Dm. We use lowercase
x and y to denote random variables because of convention
in this field.

We learn a hypothesis h ∈ H via a learning algorithm A :
Zm → H. We denote a hypothesis learned from training
set S as hS = A(S). Given a loss function, ` : Y×Y → R,
the goal is to minimize the expected risk:

R(h) = E(x,y)∼D `(h(x), y) (1)

2.2. Tradeoffs in Model Complexity

We present a discussion on tradeoffs in model complex-
ity because it does not appear to be much of a focus in
the reinforcement learning community. A common way of
thinking about the generalization performance of a learner
is through the lens of a tradeoff. For example, when hS is
chosen from a hypothesis class H, R(hS) can be decom-
posed into approximation error and estimation error

R(hS) = Eapp + Eest

where Eapp = minh∈HR(h) and Eest = R(hS) − Eapp.
Shalev-Shwartz & Ben-David (2014, Section 5.2) present
this decomposition and frame it as a tradeoff. Bottou &
Bousquet (2008) describe this as the “well known trade-
off between approximation error and estimation error” and
present it in a slightly more lucid way as a decomposition
of the excess risk:

E[R(hS)−R(h∗)]
= E[R(h∗H)−R(h∗)] + E[R(hS)−R(h∗H)]

where R(h∗) is the Bayes error and h∗H =
argminh∈HR(h) is the best hypothesis in H. The
approximation error can then be interpreted as the distance
of the best hypothesis in H from the Bayes classifier,
and the estimation error can be interpreted as the average
distance of the learned hypothesis from the best hypothesis
in H. It is common to associate larger H with smaller
approximation error and larger estimation error.

The commonly cited universal approximation property of
neural networks (Cybenko, 1989; Hornik, 1991; Leshno &
Schocken, 1993) means that the approximation error goes
to 0 as the network width increases; these results do not say
anything about estimation error.

A similar tradeoff in model complexity is known as the
bias-variance tradeoff (Geman et al., 1992). Bias is anal-
ogous to the approximation error while variance is analo-
gous to the estimation error. This tradeoff is probably even
more pervasive (Bishop (2006, Chapter 3.2), Geman et al.
(1992), Hastie et al. (2001, Chapter 2.9), Goodfellow et al.
(2016, Chapter 5.4.4)). It is common to view the problem
of designing a good learning algorithm as choosing a good
H that optimizes this tradeoff.

2.3. Comparison of Supervised Learning with
Reinforcement Learning

Statistical learning theory for supervised learning is given
in the i.i.d. setting. That is, examples are independent and
identically distributed. This also means the training distri-
bution is the same as the test distribution. In reinforcement
learning, training examples are not independent because
examples within the same episode depend on each other
through the current behavior policy and through the envi-
ronment’s transition dynamics. Training examples are not
identically distributed because the policy produces training
examples, and the policy changes over time. For the same
reason, the training distribution and the test distribution are
not completely the same. These differences make it non-
obvious that the phenomenon seen in supervised learning
would extend to reinforcement learning.

3. Experiments
3.1. Experimental Details

We run experiments, with a variety of combinations of en-
vironments and learning algorithms, where we vary the
width of the shared policy and value network. We use
four different environments from OpenAI Gym (Brockman
et al., 2016): CartPole, Acrobot, MountainCar, and Pen-
dulum. We use four different learning algorithms: PPO
(Schulman et al., 2017), A2C (Mnih et al., 2016), ACER
(Wang et al., 2017), and ACKTR (Wu et al., 2017). We
make use of the existing implementations of these algo-
rithms in the Stable Baselines library (Hill et al., 2018),
an improved fork of OpenAI Baselines (Dhariwal et al.,
2017). We were only able to train ACKTR up to width 512
because it is an approximate second-order method. Exper-
iments with ACKTR are in Appendix B.

We get hyperparameters that were tuned on networks of
width 64 from the RL Baselines Zoo that was built on top
of Stable Baselines. One hyperparameter is how many time
steps the learners are trained for. It is different for different
environment/learner pairs, but always on the order of 1 mil-
lion. It is always the same across widths within an environ-
ment/learner pair. In some of the plots, learners see fewer
episodes because their episodes are, on average, longer.

https://stable-baselines.readthedocs.io/en/master/
https://github.com/openai/baselines
https://github.com/araffin/rl-baselines-zoo/tree/master/hyperparams
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Figure 2: PPO (left), ACER (center), and A2C (right) experiments on CartPole

Figure 3: PPO (left), ACER (center), and A2C (right) experiments on Acrobot

We choose relatively simple tasks for these experiments
partially because they are faster to train on, but more im-
portantly, we choose them because their simplicity lends
itself to more ease of overfitting. In other words, on these
tasks, we will see diminishing returns with much smaller
networks, so we can test the “very wide networks will not
see degraded performance” hypothesis with a much smaller
range of networks.

We run each experiment with 5 different random seeds.
The policy and value networks are shared. The architec-
ture consists of 2 hidden fully connected layers followed
by separate linear transformations: one to yield the policy
and one to yield the value. We use 2 hidden layers, rather
than just 1, because 2 hidden layers are more common in
reinforcement learning.

3.2. CartPole, Acrobot, and Pendulum Environments

In CartPole (Fig. 2), we see a lot of evidence for the hypoth-
esis. In the both the PPO and A2C experiments, peak per-
formance is reached by width 64, and that level of perfor-
mance is maintained through width 2048. In the ACER ex-
periment, near peak performance is reached by width 128,
and through width 2048, we see peak performance.

Similarly, in Acrobot (Fig. 3), we see even more evidence
for the hypothesis. We see peak performance as early as
width 16 in PPO, ACER, and A2C. This means that Ac-

robot is simple enough to only require a network of width
16 (compared to 64 for CartPole). Still, we see peak per-
formance through width 2048 in all 3 learners.

In Pendulum (Appendix A), we see more evidence for the
hypothesis. The default width (64) network, performs dis-
tinctly worse than the wider networks. We do not see any
degradation of performance through width 2048. We only
run PPO with the Pendulum environment because RL Base-
lines Zoo did not have tuned hyperparameters for the other
algorithms.

3.3. MountainCar Environment

In the MountainCar environment, we see the first hint of
what looks like could be evidence against the hypothe-
sis (Fig. 4). PPO (left) performance begins to degrade at
width 2048, ACER (center) performance begins to degrade
at width 512, and we see a sharp drop in performance from
width 1024 to width 2048 in A2C (right).

RL algorithms are known to be highly sensitive to hyper-
parameter settings (Henderson et al., 2018a; Islam et al.,
2017), especially learning rate (Henderson et al., 2018b).
We believe this performance degradation is due to more
variability across widths of the optimal hyperparameters
on MountainCar (compared CartPole, Acrobot, and Pen-
dulum).
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Figure 4: PPO (left), ACER (center), and A2C (right) experiments on MountainCar

Figure 5: PPO (left), ACER (center), and A2C (right) experiments on MountainCar with learning rate scaling of h−1

3.4. Automatic Learning Rate Scaling

In order to fairly compare all the widths, we would like the
hyperparameters for each of them to be optimal. (Geiger
et al., 2019) study test error when scaling network width
in supervised learning, and they scale the learning rate as
h−1.5, where h is the network width. This scaling is mo-
tivated by making the number of steps to convergence in-
dependent of width, but it does not necessarily make the
learning rate for each network optimal. Because learn-
ing rate is such an important and sensitive hyperparam-
eter in reinforcement learning (Henderson et al., 2018b),
we try scaling the learning rate α with both of the fol-
lowing schemes: α ← min(α∗64, (h/64)

−1) and α ←
min(α∗64, (h/64)

−1.5), where α∗64 is the learning rate that
was tuned to network width 64 (pulled from RL Baselines
Zoo). We see that scaling the learning rate as h−1 (Fig. 5)
and h−1.5 (Appendix C, Fig. 8) actually make the largest
networks perform worse, indicating that this scaling is not
useful for comparing networks with optimal hyperparame-
ters. We present these scalings on MountainCar because it
was the environment that did not look like the others, but
the scalings on CartPole and Acrobot are in Appendix D.

4. Conclusion and Future Work
The phenomenon in supervised learning that motivated this
work is that, in the over-parametrized setting, increasing

network width leads to monotonically lower test error (no
U curve). We find a fair amount of evidence of this phe-
nomenon extending to reinforcement learning in our pre-
liminary experiments (namely CartPole, Acrobot, and Pen-
dulum).

However, we also saw that performance did consistently
degrade in the MountainCar experiments. We believe this
to be because that environment is more sensitive to hyper-
parameters; since the hyperparameters were chosen using
width 64 and then used for all of the other widths, the hy-
perparameters are likely not optimal for the other widths
like they are for width 64. The MountainCar environment
exaggerates this lack suboptimality more than the other 3
environments.

The main next experiments we plan to run will use an au-
tomated tuning procedure that chooses the hyperparame-
ters for each width individually. We believe this protocol
will yield MountainCar results that look much more like
the CartPole and Acrobot results. We then plan to replicate
these findings across more learning algorithms and more
environments.
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Appendices
A. Pendulum

Figure 6: PPO experiment on Pendulum

B. Experiments with ACKTR

Figure 7: ACKTR experiments on CartPole (left), Acrobot (center), and MountainCar (right)
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C. Learning Rate Scaling on MountainCar

Figure 8: PPO (left), ACER (center), and A2C (right) experiments on MountainCar with learning rate scaling of h−1.5

D. Learning Rate Scaling Experiments on CartPole and Acrobot

Figure 9: PPO (left), ACER (center), and A2C (right) experiments on CartPole with learning rate scaling of h−1

Figure 10: PPO (left), ACER (center), and A2C (right) experiments on CartPole with learning rate scaling of h−1.5
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Figure 11: PPO (left), ACER (center), and A2C (right) experiments on Acrobot with learning rate scaling of h−1

Figure 12: PPO (left), ACER (center), and A2C (right) experiments on Acrobot with learning rate scaling of h−1.5


