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ABSTRACT

We propose a new approach to combine Restricted Boltzmann Machines (RBMs)
that can be used to solve combinatorial optimization problems. This allows syn-
thesis of larger models from smaller RBMs that have been pretrained, thus effec-
tively bypassing the problem of learning in large RBMs, and creating a system
able to model a large, complex multi-modal space. We validate this approach by
using learned representations to create “invertible boolean logic”, where we can
use Markov chain Monte Carlo (MCMC) approaches to find the solution to large
scale boolean satisfiability problems and show viability towards other combinato-
rial optimization problems. Using this method, we are able to solve 64 bit addition
based problems, as well as factorize 16 bit numbers. We find that these combined
representations can provide a more accurate result for the same sample size as
compared to a fully trained model.

1 INTRODUCTION

The Ising Problem has long been known to be in the class of NP-Hard problems, with no exact poly-
nomial solution existing. Because of this, a large class of combinatorial optimization problems can
be reformulated as Ising problems and solved by finding the ground state of that system (Barahona,
1982; Kirkpatrick et al., 1983; Lucas, 2014). The Boltzmann Machine (Ackley et al., 1987) was
originally introduced as a constraint satisfaction network based on the Ising model problem, where
the weights would encode some global constraints, and stochastic units were used to escape local
minima. The original Boltzmann Machine found favor as a method to solve various combinatorial
optimization problems (Korst & Aarts, 1989). However, learning was very slow with this model
due to the difficulties with sampling and convergence, as well as the inability to exactly calculate
the partition function. More recently, the Restricted Boltzmann Machine (RBM) has experienced
a resurgence as a generative model that is able to fully approximate a probability distribution over
binary variables due to its ease of computation and training via the contrastive divergence method
(Hinton, 2002). The success of the RBM as a generative model has been limited due to the difficul-
ties in running the Markov chain Monte Carlo (MCMC) algorithm to convergence (Tieleman, 2008;
Tieleman & Hinton, 2009).

In this work, we propose a generative model composed of multiple learned modules that is able to
solve a larger problem than the individually trained parts. This allows us to circumvent the problem
of training large modules (which is equivalent to solving the optimization problem in the first place,
as we are simply providing the correct answers to the module as training data), thus minimizing
training time. As RBMs have the ability to fill in partial values and solutions, this approach is
very flexible to the broad class of combinatorial optimization problems which can be composed of
individual atomic operations or parts. Most notably, we show that our approach of using “invertible
boolean logic” is a method of solving the boolean satisfiability problem, which can be mapped to a
large class of combinatorial optimization problems directly (Cook, 1971; Karp, 1972). The ability of
RBMs to fully model a probability distribution ensures model convergence and gives ideas about the
shape of the underlying distribution. Many other generative models, such as Generative Adverserial
Neural Networks (GANs), (Goodfellow et al., 2014) Generative Stochastic Networks (Alain et al.,
2015) and others do not explicitly model the probability distribution in question, but rather train a
generative machine to draw samples from the desired distribution. Although these can be useful for
modeling high dimensional data, they do not provide the same guarantees that RBMs do. Because
we use an RBM as our generative model we can perform a full Bayesian analysis, and condition on
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any subset of the variables to solve a variety of problems. This leads to increased model flexibility,
and the ability to generalize the learned models further.

2 RELATED WORK

People have shown that learned and trained features have the ability to outperform hand calculated
features in a variety of tasks, from image classification to speech detection and many others. In
addition, other network architectures, such as Recurrent Neural Networks (RNNs) have been shown
to be Turing complete, and posses the ability to be used as a conventional Turing machine (Graves
et al., 2014; Zaremba & Sutskever, 2014). However, these architectures have mostly been used as
generalized computers, rather than to solve specific problems. Deterministic, feedforward neural
networks have also been used to solve factorization problems, but their approach does not solve the
factors for as high bit numbers as presented here, and is not flexible enough to be used in problems
outside of prime factorization (Jansen & Nakayama, 2005). In addition, these models are not
generative or reversible.

Many attempts have also been made to use quantum computers to solve such Ising model based
problems. Large scale realizations of quantum computers, however, are still far from completion
(Whitfield et al., 2012; Lucas, 2014; Roland & Cerf, 2002; Xu et al., 2012). Therefore, methods
than can exploit a classical hardware are of critical importance.

In this regard, one recent work has proposed the use of “p-bits”, to realize a form of Boltzmann
Machine (Camsari et al., 2017). The work by (Traversa & Di Ventra, 2017) similarly tries to create
an “invertible boolean logic”, but does so in a deterministic manner, rather than the probabilistic
one presented in this work.

Our approach falls within the broad category of transfer learning and compositional learning. There
have been other works on using combinations of RBMs for object recognition and computer vision
tasks (Ranzato et al., 2010), and on combinations of RBMs with weight sharing for collaborative
filtering (Salakhutdinov et al., 2007). Nonetheless, the specific method presented here, as described
in the following sections, to the best of our knowledge has not been used before.

3 APPROACH
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Figure 1: Merging procedure to combine RBMs. This combination scheme retains both the bipartite
nature of the graph, as well as the product of experts nature. This allows the combined model to
retain the sharp distributions of the original models.

An RBM is a binary stochastic neural network, which can be understood as a Markov random field
of binary variables divided into a bipartite graph structure, where all of the visible units are condi-
tionally independent of each other given the hidden unit states, and all hidden units are conditionally
independent given the visible unit states. Here we denote v as the visible state, h as the hidden
states, and E(v, h) as the energy associated with those states. The probability assigned to a given
state p(v, h) = 1

Z e
−E(v,h) whereZ =

∑
v,h e

−E(v,h) is the normalizing constant of the distribution.
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The general approach to solving these combinatorial optimization problems is to recognize the
atomic unit necessary to solve the problem, and use this as a base trained unit (this is discussed
further later in the approach section). We combine these units by performing a merge operation of
different RBMs. If we know two different units share a connection (such as the output of one logical
unit being the input of another, or two cities being identical in a TSP), then these units would be
merged to create a larger unit (see Figure 1 and explanation with weight matrices and biases below).

The probabilities and energies of the two RBMs are dictated by their weight matrices, WA ∈ Rn×r
and WB ∈ Rm×s, visible biases bA ∈ Rn and bB ∈ Rm, and hidden biases aA ∈ Rr and aB ∈ Rs.
The energies and probabilities of these are as follows:

EA(v, h) = −vTWAh− aTAh− bTAv; pA(v, h) =
1

ZA
e−EA(v,h)

EB(v, h) = −vTWBh− aTBh− bTBv; pB(v, h) =
1

ZB
e−EB(v,h)

(1)

We can write the weight matrices as a series of row vectors corresponding to one visible units
connections to a set of hidden units.

WA =

 wA1
...
wAn

 , WB =

 wB1
...
wBm

 , (2)

With this definition, the merge operation is shown below. If units k of RBM A is merged with unit l
of RBM B the associated weight matrix WA+B ∈ R(n+m−1)×(r+s) , visible bias vA+B ∈ Rn+m−1

and hidden bias hA+B ∈ Rr+s dictate the probabilities and energies for the merged RBM. Merging
multiple units between these two RBMs corresponds to moving multiple row vectors from WB to
WA, which creates the associated decrease in dimensionality of WA+B and bA+B (where WA+B ∈
R(n+m−d)×(r+s) and vA+B ∈ Rn+m−d where d is the number of merged units.

WA+B =

WA

0
wBl
0

0 WB\l

 =



wA1
...
wAk

...
wAn

0

wBl

0

0

wB1
...

wBl−1

wBl+1
...
wBm



bA+B =



bA1
...

bAk + bBl
...
bAn
bB1
...

bBl−1

bBl+1
...
bBm



aA+B =



aA1
...
aAr
aB1
...

aBs



(3)

Below, we show how this relates to the original energies and probabilities. The vectors v and h
corresponds to the visible vector put into the combined RBM, while vA, vB , hA and hB correspond
to the equivalent state vectors that would be inputted into the single RBMs. Using these equations,
we can see that the combined RBM energy factorizes into a sum of the original RBM energies and
the probability is the product of the original probabilities.
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v =

 v1

...
vn+m−1

 h =

 h1

...
hr+s

 vA =


v1

...
vl
...
vn

 , vB =



vn+1

...
vn+l−1

vl
vn+l

...
vn+m−1


, hA =

h1

...
hr

hB =

hr+1

...
hr+s



(4)

EA+B(v, h) = EA(vA, hA) + EB(vB , hB), (5)

pA+B(v, h) =
1

ZA+B
e−EA+B(v,h) ∝ pA(vA, hA)pB(vB , hB) (6)

An alternative way of viewing the merged probability distribution is to multiply the distributions of
the original RBMs, and marginalize over all states where the merged units are different.

Because of the probabilities approximately multiplying, we can also say that if each of the distri-
butions differed from the “ideal” distribution (denoted here by q), then we can expect the error (as
measured by the KL divergence) to increase approximately linearly with the number of connections.
This shows that the error should increase with the number of connected units, rather than directly
with the number of bits. This is especially important with combinatorial optimization problems
where the deterministic algorithm run time increases exponentially with the number of bits. How-
ever, we note that as the number of connections between the units increases, the KL divergence
increasingly diverges from linear.

DKL(q‖p) ≈ DKL(qA‖pA) +DKL(qB‖pB);

p = pA(vA, hA)pB(vB , hB), q = qA(vA, hA)qB(vB , hB)

Many combinatorial optimization problems can be broken down into associated sub-problems,
and solved using a greedy approach (i.e. using the nearest neighbor approach in the Travelling
Salesman Problem, or multiplying single digits in a larger multiplication, or evaluating one Boolean
logic statement in a Boolean satisfiability problem). Using a greedy approach (such as used in
the travelling salesman problem with nearest neighbors) can produce non-optimal results, and
evaluating all permutations of possible solutions to find the most optimal can be computationally
intractable in a large problem space. By combining these sub-problems using the method proposed
here, we bypass the problems associated with those two approaches. We encode possible solutions
as a probability indicating its local optimality, and combine these sub problems by merging the
visible units of their RBMs as shown. The approach is that each sub-problem has overlapping
units that share the same value, allowing them to be combined. This combination mechanism
multiplies the probabilities such that the solution with global optimality is encoded as the mode of
the distribution modeled by the larger RBM. As the combination method shown here still keeps
the less optimal local solutions as a possible part of a global solution, we effectively bypass the
problem of locally optimal solutions not solving the globally optimal problem. In addition, as the
phase space of the problem space is 2v where v is the number of visible units, we can also encode a
large problem space using minimal units and decrease the amount of computation. In this work we
show a usage of this structure to solve a variant of the Boolean satisfiability problem by combining
multiple trained logic gates, and use this to perform integer factorization and other arithmetic
tasks. As the Boolean satisfiability problem can be mapped to solving a variety of NP-Hard
problems (Cook, 1971; Karp, 1972), we believe variants of this approach can be used to solve
other tasks. As an example, a usage for this approach to solve the Travelling Salesman Problem
(TSP) might be to have an atomic unit that is the one step (or few) transitions between cities, and
the global problem solved by combining these one (or few) step transition RBMs to create a full tour.
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Solving a given optimization problem is equivalent to sampling from the model distribution of the
RBM and finding the mode of that distribution. The RBM is partially clamped to values given in
the problem statement, and samples are generated via MCMC as explained and examined below.

3.1 CONVERGENCE OF MCMC

As sampling from the full distribution of an RBM is intractable due to the the partition function, a
Markov chain Monte Carlo based technique is used to generate samples from the model distribution
during inference both while training and while solving. Due to the bipartite graph nature of RBMs,
Gibbs sampling is computationally efficient and can be done in 2 steps. Gibbs sampling converges
to the model distribution in a geometric number of steps (Bremaud, 1999). Exact estimates of the
convergence rate is intractable, as it involves calculating the SLEM (Second Largest Eigenvalue
Modulus) of the gibbs transition matrix. However, a theoretical bound can be analyzed using Do-
brushin’s Ergodic Coefficient (Dobrushin, 1956) as shown below. A similar derivation is also shown
in Bremaud (1999).

|µPn − π| ≤ 1

2
|µ− π|(1− e−2∆)n (7)

∆ = sup
x,y∈{0,1}N

{|E(xv, xh)− E(yv, yh))|}

A proof of this is shown in the Appendix, Section 6.1. In this equation, µ is the starting distribution
(or starting point) P is the transition probability matrix (represented by applying the gibbs transition
operator on all units), π is the stationary distribution and n is the number of transition steps taken.
The convergence parameter ∆ represents the maximum energy difference between two states in the
RBM, where we denote the to states x and y, with visible and hidden states (xv, xh) and (yv, yh)
respectively.

From our derivation above, we can estimate the effects of merging on the upper bound of conver-
gence rate. If we combine two RBMs A and B, with parameters labeled as such the highest energy
states correspond to “correct” answers (EmaxA , EmaxB ) and the lowest energy states correspond to
“incorrect” answers (EminA , EminB ). Denote the maximum and minimum energy of the combined
RBM as Emaxcomb and Emincomb, and ∆comb as the convergence coefficient for the combined RBM.

Emaxcomb ≤ EmaxA + EmaxB ; Emincomb ≥ EminA + EminB

∆comb ≤ ∆A + ∆B

|µPn − π| ≤ 1

2
|µ− π|(1− e−2∆comb)n ≤ 1

2
|µ− π|(1− e−2(∆A+∆B))n

This implies a considerable decrease in convergence rate over the original RBMs, amounting
to an exponential increase in the upper bound of convergence constant as more RBMs are
combined together. We note that this is meant to be a theoretical upper bound on convergence,
and thus the bound is never tight. Empirical results show that in many cases, this bound tends
to be very loose, even while merging. For this reason, an empirical study is necessary to under-
stand the effects of merging RBMs. We explain some of the empirical effects and their causes below.

The autocorrelation coefficient (AR(k)) is a good proxy for empirically measuring rate of conver-
gence, as it measures how correlated samples from subsequent steps are. WhenAR(k) ≈ 0 samples
separated by k steps are expected to be independent. There are many things that can effect the
convergence rate of the Markov chain, such as the magnitude of the weight matrices, the modality
of the phase space, and the sparsity of the weight matrix.
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3.1.1 WEIGHT MATRIX MAGNITUDE

Large magnitude weights and biases create higher and lower energy states, and thus a higher ∆.
This is a well known phenomenon, and effects RBMs during both training and inference. The
magnitude of the weights can be controlled by using finite weight decay during training (Hinton,
2002; Tieleman, 2008).

3.1.2 STATE SPACE & MODEL MODALITY

Many combinatorial optimization problems are highly multimodal, which can lead to problems of
getting stuck in local minima and spurious modes during MCMC. This problem can manifest itself
in a large combined structure, where there are many low energy states caused by the low energy
states of the individual RBMs. Once the MCMC algorithm finds a low energy mode it tends to stay
around it. To leave the mode, the Markov Chain must do a traversal from one of these modes to
another, which goes as pn where p is the probability of transition between states and n is the number
of transitions needed to go from one mode to another. As the distribution becomes increasingly
multimodal, pseudo-convergence of the MCMC becomes a problem.

3.1.3 SPARSITY

A very sparse weight matrix (as is pictured in Figure 2) can cause a relatively sparse 1 step transition
probability matrix while running MCMC (we note that a precisely 0 transition would only occur with
infinite energies, we mean that the probability of transitioning between two states becomes small).
This means that for visible units on the either end of the model to mix, they would have to cross a
large number of intermediate states. This can be seen in figure 2 where in the 16 bit adder composed
of multiple one 1 bit adders, there is no hidden unit directly connecting the first full adder to the
last full adder. Thus, for information about the change of state in the first full adder must pass
through all of the individual adders before it can manifest itself as a change in the last full adder.
This means additional gibbs sampling steps must be taken, causing a slower convergence rate for
the RBM during inference. This effect is partially mitigated by the fact that very sparse matrices can
be more computationally efficient for matrix multiplications, causing the actual computation time to
be less.
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Figure 2: Weights matrices for a 16 bit adder circuit created by directly training the device (top left),
combination of 8 bit units (top right), combinations of 4 bit units (bottom left) and combination of
1 bit units (bottom right). The x axis enumerates hidden units, and y axis visible units. The sparsity
can cause matrix multiplication to be more efficient, but can also lead to poor mixing between states.
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3.2 TRAINING VS. SETTING MODEL PARAMETERS

If we are aware of the exact distribution we are trying to model, we can also directly set the weight
matrix and biases for the RBM instead of training using samples from this exact distribution. As the
RBM is a universal function approximator, we are guaranteed to have the correct distribution for an
arbitrary sized model. Using the method outlined in the proof of universal function approximation
in (Le Roux & Bengio, 2008) we can create an “ideal” RBM for this problem, and merge copies of
these ideal RBMs together. We note that using these directly calculated RBMs can allow for further
guarantees for convergence rates, but suffers in other ways (Bremaud, 1999).

There are a few problems with this method, most notably that directly calculated RBMs are not
compact function approximators. To exactly model these distributions, 1 hidden unit is needed to
approximate every data vector meaning the number of hidden units would scale as 2n for multiplier
and adder units. This type of scaling is not expected for most highly structured problems, as many
combinatorial optimization tasks are. The directly calculated RBM is more susceptible to being
trapped in local minima than a trained RBM is due to poor mixing between modes. This is because
they have a uniformly low probability in states that are not exactly part of the data distribution
as described above. This is also seen in Figure 4 where the directly calculated unit has a slower
convergence rate, owing to the slower decay to an autocorrelation of 0.

4 EXPERIMENTS

To experimentally demonstrate the viability of this method of combination, we have used it to create
“invertible boolean logic”, which is a form of solving the boolean satisfiability problem. With
this, we are able to create logical units of varying sizes, and combine them to create adders and
multipliers. We could also combine these logical units to solve other types of boolean satisfiability
problems, but we do explain that further here. Using the property of RBMs that they can partially
fill in visible units conditioned on the values of other units, we can use these adder RBMs to
solve addition, subtraction, reverse sum carry, and combine these adders with multiplier RBMs to
solve multiplication, division, and factorization tasks. Precisely, we train the RBMs on the joint
distribution of n-bit addition (or multiplication), then clamp some of the values to data and perform
gibbs sampling on the others conditioned on the partial data. We are able to use a circuit that is
traditionally used to multiply numbers to also divide, factorize, and solve any problem involving
partial multiplication and division, as we are just sampling from the joint distribution of variables
over multiplication and conditioning over variables we are interested in.

Performance on these various tasks was characterized by using Gibbs sampling, and taking samples
from the distribution conditioned on partial inputs. After a number of samples, we check the mode
of the distribution against the expected minimal energy state. As described in Section 3 the sampled
distribution converges in distribution to the model distribution in a geometric number of steps, at
which point the mode is guaranteed to be correctly identified.

This merging method is validated by the equilibrium distributions of a merged adder vs. a trained
adder in Figure 3. We compare the performance of an RBM created by merging individually trained
logic units (AND, XOR, OR, etc.) to the performance of a full adder. When we sample from the
full joint distribution, we are solving the boolean satisfiability problem on the network, by finding
all possible solutions to the given boolean statement. The equilibrium distributions are very similar,
but the two distributions mix very differently. The trained full adder mixes rapidly between modes
while the full adder composed of merged logical units is more likely to get stuck in a one mode.
This condition can be mitigated by starting multiple chains from various starting locations in the
state space and combining their distributions using a type of mulistart heuristic (Brooks et al., 2011).
However, it is better practice to design the weight matrix to have better mixing properties and to use
more advanced sampling techniques other than Gibbs Sampling.
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Figure 3: Probability distributions calculated for a trained full adder, as well as a full adder composed
of merged logical units as shown on the left using the method in Section 3. The comparison shows
that merging units can approach similar performance to a fully trained unit, with similar error levels
even with a reasonable number of merged units. These probabilities were directly calculated and
normalized by the exact partition function (no gibbs sampling was done). We also show directly
calculated (as described in Le Roux & Bengio (2008)) units have the distribution closest to the ideal
distribution. We note that this is exactly solving the boolean satisfiability problem over the boolean
circuit shown on the left, and thus inherently solves the boolean satisfiability problem.
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Figure 4: Autocorrelation coefficients (above) and time series (below) of MCMC algorithm compar-
ison. All three units are attempting to model the behavior of a full adder circuit using either Merged
Logical Units, a fully trained unit, or a directly calculated unit. The probability distribution modeled
by all of these units is seen in Figure 3. We can see that the convergence rate for a fully trained
unit is much faster than that of both a directly calculated unit and of merged logical units as the
autocorrelation coefficient quickly decays to 0 for this case. From the time series analysis below we
can also see that the merged logical units take a longer time to visit the entirety of the state space, as
is expected by the autocorrelation coefficients.

4.1 ADDERS

Multi bit adders were created using the combination scheme outlined in Figure 5. From the data
based on trained and merged 64 bit adders, we are unable to improve performance by training larger
individual units. One of the biggest issues is the exponential growth in the size of the training space
(and time) needed to effectively train larger units. As the training set grows as 2n, training on the
entirety of an addition dataset becomes intractable at 16 bit adders, where a training set that would
encompass the entire space would contain 233 ≈ 8 billion training examples. Even though we
expect these models to generalize effectively, training a good model becomes increasingly difficult
as the dataset grows. This can be seen in greater degree in the 32 bit adder unit, whose performance
is significantly worse than merged units even after training the model for over a week. We attempted
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Figure 5: Diagram of the creation of larger logical units by combining smaller individual units. We
can create a n-bit adder can be created by cascading n copies of a 1 bit adder (or n/2 copies of a 2
bit adder etc.) as in A). To create a multiplier, we divide n bit multiplication as described in D) into
n/2 bit multiplication by dividing the problem into multiplication as in B) along with addition of
partial sums, as in C). This can also be extended to create n-bit multiplication using smaller units.

to train a 64 bit adder unit but were unsuccessful in reducing the error by any reasonable amount,
so these results were not included.

We note the relative success of merging addition models in comparison to multiplication models.
This can be explained by the fact that addition models are less prone to getting stuck in local minima,
as each of the adders is clamped to a piece of the data in all modes of operation (addition, subtraction
and reverse sum carry). The 64 bit adder unit can explore a state space of 264 ≈ 2× 1019 states, and
find the exact answer within only ≈ 103 samples, showing a remarkably fast convergence rate. We
also note that the adders converge significantly faster than the upper bound of the convergence rate
given in Section 3.1.

4.2 MULTIPLIERS

Multi bit multipliers were created by the combination scheme outlined in Figure 5, similar to
Adders. Multipliers require heterogeneous integration of different components (adders and multi-
pliers), which means that the magnitude of multiple different weight matrices need to be matched
to get good mixing and to ensure there are minimal spurious modes.

The design of bitwise multipliers faces more challenging issues than that of adders. The state space
of multipliers is much sparser, tends to have more spurious modes, is larger for the same number of
bits. For an adder, the state space is 23n+2 states (2× n inputs, n output, 1 Cin, 1 Cout) with 22n+1

of those states representing valid answers to the addition problem. However, the multiplier has a
state space that is 24n (2× n inputs, 2× n outputs) and 22n of them are valid answers. This means
that an 8 bit multiplier has a state space that is 128 times sparser than an 8 bit adder, and that the
sparsity of an adder scales as≈ 2n while the sparsity of a multiplier scales as≈ 22n. This increased
sparsity makes mixing between modes more difficult, as there are larger areas of low probability
space in between modes.

Multipliers have a more complex state space that leads them to get stuck in spurious modes. This
is due to the fact that not all units in the multiplier are clamped to pieces of the data distribution,
and intermediate units have many equivalent local minima. Because of this, individual units may be
in local minima where their individual constraints are satisfied (i.e. an adder satisfies the condition
that its inputs add to its outputs, or a multiplier satisfies the constraints that the output is equal to the
two inputs are multiplied together), but the global constraint that the output is equal to the inputs
multiplied together is unsatisfied. This can be because one of the units is in an incorrect state, or the
local minima of the other units corresponds to an unsatisfiable constraint on one of the units (i.e. an
adder that is forced into a state where the numbers cannot add up to one another, or a multiplier that
is forced to factorize a number whose factors are outside the input bit range).
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Even with the complexities of multipliers, we have shown that an 16 bit multiplier created from
trained and merged is able to outperform a multiplier created just by training, as can be seen in
Figure 6. Currently, the number of samples needed to compute the factors is not competitive with a
direct search. However, we believe that this situation will be significantly improved by engineering
of the convergence rate of the MCMC algorithm, and using more advanced sampling techniques (as
mentioned below in Section 5).
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Figure 6: In both the factorization and addition problems, as we approach higher bit problems it
becomes increasingly difficult to fully train a module. At 16 bits for factorization (8 bit factors,
16 bit number) and 64 bits for addition (64 bit inputs), it becomes clear that merged logical units
can outperform fully trained units. There is a clear trade off between the ability to train the model
and number of samples needed to perform accurate inference. The legends indicate the number of
bits the base trained model (before combination) is using, i.e. “FA8” corresponds to combined 8 bit
adders, “FA4” is 4 bit adders, “log” refers to merged logical units. Further results are presented in
the Appendix, Section 6.3

5 CONCLUSION & FUTURE WORK

In this work we have shown the viability of merging RBMs of individually trained distributions
and using this merged RBM to solve combinatorial optimization tasks. Although mixing in these
merged RBMs is a problem, these merged representations can outperform fully trained structures on
tasks where training is difficult. We have used boolean satisfiability and factorization as an example
problem to validate this technique. However, the approach is generally applicable to a variety of
other combinatorial optimization tasks.

One of the biggest challenges in making this approach viable as a stochastic optimization algorithm
is to improve the convergence rate of the merged RBMs. In addition to the weight decay approaches
already implemented in this work, significant improvement in this regard is expected from using
advanced sampling techniques such as tempered transitions (Desjardins et al., 2010), fast weight
decay (Tieleman & Hinton, 2009), adaptive MCMC (Salakhutdinov, 2010), annealed importance
sampling (Neal, 2001), parallel tempering (Cho et al., 2010), or using a different transition operation
for the RBM (Brgge et al., 2013). It will also be necessary to develop mathematical models that
can describe the differences in the convergence rate of the merged model as compared to that of the
constituent units.

RBMs have been used for classical combinatorial optimization problems such as the travelling
salesman (Shim et al., 2012; Aarts & Korst, 1989). The method presented here is generally
applicable to all such combinatorial optimization tasks. We have outlined how such an approach
could be done in Section 3. As a specific example, a natural application for the adders, that we used
as an example case, could be to solve 3SUM and subset sum problems . There have already been
initial results on these problems using cascaded, fully connected Boltzmann Machines (Hassan
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et al., 2018).
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6 APPENDIX

6.1 PROOF OF EQUATION 7

This proof follows a similar structure to Bremaud (1999), but has further simplifications and addi-
tions due to the conditional independence structure of the RBM.

Gibbs Transitions over the RBM can be be factored into two stages, a transition probability distri-
bution over visible units, and a transition probability distribution over hidden units. The respective
transition matrices are multiplied to yield the full state transition matrix. We will call P the full
transition matrix with elements pxy , and Pv , Ph the visible and hidden transitions with elements
pvxy and phxy respectively.

P = PvPh (8)

pvxy =
e−E(yv,xh)∑
v e
−E(v,xh)

, phxy =
e−E(xv,yh)∑
h e
−E(xv,h)

(9)

The states x and y are parameterized as x = (xv, xh) with visible (xv) and hidden (xh) portions.
The individual transition probabilities pvxy represent the probability of transitioning from state x
to state y, when only changing the visible states of x. Thus, the entry pvxy in Pv is nonzero iff
xh = yh.

Starting with the convergence inequality from Dobrushin (1956).

|µPn − π| ≤ 1

2
|µ− π|(δ(P)n

δ(P) = 1− inf
x,y∈{0,1}N

∑
k∈{0,1}N

min(pxk, pyk)

From here, we can take further bounds on the ergodic coefficient:

δ(P) ≤ 1− 2N inf
x,y

pxy

Defining mv(h) = infv∈{0,1}Nv (E(v, h)) and mh(v) = infh∈{0,1}Nh (E(v, h)), these represent the
states with lowest transition probability from a given input state. The variablesNv andNh represents
the number of visible and hidden units respectively.

pvxy =
e−(E(yv,xh)−mv(x))∑
v e
−(E(v,xh)−mv(x))

≥ e−δv

2Nv

δv = sup
h∈{0,1}Nh

(|E(v′, h)− E(v, h)|; v, v′ ∈ {0, 1}Nv )

phxy =
e−(E(xv,yh)−mh(x))∑
h e
−(E(xv,h)−mh(x))

≥ e−δh

2Nh

δh = sup
v∈{0,1}Nv

(|E(v, h′)− E(v, h)|;h, h′ ∈ {0, 1}Nh)

In words, δv is the maximal energy difference between two states that have the same hidden states,
and δh is the maximal energy difference between two states that have the same visible states. Using
this definition, we can define
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inf
x,y

pxy ≥
e−(δv+δh)

2N
≥ e−2∆

2N

∆ = sup
x,y∈{0,1}N

{|E(xv, xh)− E(yv, yh))|}

And finally
δ(P) ≤ 1− 2N inf

x,y
pxy ≤ 1− e−2∆

|µPn − π| ≤ 1

2
|µ− π|(δ(P))n ≤ 1

2
|µ− π|(1− e−2∆)n

6.2 TRAINING

In this paper we trained the RBMs by contrastive divergence as described by Hinton (2002). Each
of the models in this paper were validated by checking their performance on the problem they
were trying to solve (i.e addition and subtraction for an adder, multiplication and factorization for
a multiplier). This method was also used to assess model complexity (i.e number of hidden units)
and evaluate learning parameters (learning rate, batch size, etc.). The final results for RBM sizes
are shown below.

Training was conducted on a computer with 2 Intel Xeon E5-2620 processors, and 2 Nvidia Titan
V GPUs with 128Gb RAM. Each RBM was trained for 10 epochs, where an epoch was 4 copies of
the full state space, with a learning rate of 1. After 10 epochs, the CDk of learning was increased
to combat the worse mixing as the weight matrix increases, with an initial CDk of 2. This process
was repeated until the test error stopped decreasing. In the case that the state space was too large to
train on all of it (such as the 16 bit and 32 bit adders), a random sample of the training set was used,
and a new random sample was reinitialized every epoch of training.

Table 1: Trained RBM Parameters
RBM Hidden Units Training Time (minutes)

1 bit Adder 6 1
2 bit Adder 28 13.5
4 bit Adder 64 133
8 bit Adder 96 201

16 bit Adder 128 321
32 bit Adder 192 13000 (approx)

1 bit Multiplier 4 1
2 bit Multiplier 12 46
4 bit Multiplier 64 655
8 bit Multiplier 96 2794

The training time tends to increase with the number of bits in the adder or multiplier due to both
the size of the data set (which increases exponentially with the number of bits) and the number
of hidden and visible units (which both increase approximately linearly). The slower increase of
training time for adders after the 4 bit adder is due to the usage of GPUs to increase the parallelism.

At the 16 bit adder level, the size of the data set was so large that the entire data set could not be
used for training (≈ 8 billion data points) and a randomized sample of the set had to be taken. As
generalization is not perfect, we can attribute the decrease in their performance (as described in
Figures 6 8 7) to this fact. For the 32 bit adder, this problem was exacerbated, and the 32 bit adder
was outperformed by most units even after training for a full week.
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For multipliers, the 8 bit multiplier has a tractable amount of data, but a good joint density model
could not be formed even after a large training time. We believe this is due to an inherent difficult in
the multiplication problem that is not present in the addition problem. As there is not as distinct of
a correlation between higher level bits in the 8 bit multiplication problem as there is in the addition
problem, first level correlations (as an RBM with 1 layer of hidden units would find) are more
difficult to find. We believe that using deep boltzmann machines might help fix the problem of
training in large multipliers.

6.3 FURTHER DATA
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Figure 7: A comparison of probability of being correct vs. number of samples taken for a 64 bit
adder unit composed of smaller merged units. It is clear from these figures that smaller bit units that
can be trained better outperform larger, harder to train units.
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Figure 8: A comparison of probability of being correct vs. number of samples taken for a 32 bit
adder unit composed of smaller merged units compared to a fully trained model. The joint density
model for the 32 bit adder is an intractable training problem due to the size of the data set (266

datapoints).
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Figure 9: A comparison of probability of being correct vs. number of samples for an 16 bit multiplier
unit. Here we compare using a fully trained unit, vs. composing it of 8 bit trained multiplier and
adder units, vs. composing it with 8 bit directly calculated unit. The trained unit outperforms both
of these units, even after extensive training of the 16 bit multiplier unit (see above 6.2)
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Factors of 179*199=35621 after 100000 samples
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Figure 10: An example output from a factorization problem for the merged 8 bit multiplier formed
from 4 bit units. This is an example of the probability distribution generated by MCMC after 100000
samples. In this example, we are trying to find the coprimes that multiply to 35621. The factors it
should find are 179 and 199, which it correctly identifies as the most likely factors.
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Figure 11: A comparison of probability of being correct vs. number of samples for an 8 bit multiplier
unit. Training of an 8 bit multiplier is a tractable problem, and we can see that both the trained
and the directly calculated models outperform the merged models. This can be understood as a
consequence of worse mixing present in the merged models. (see above 6.2)
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