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ABSTRACT

Most deep learning-based models for speech enhancement have mainly focused
on estimating the magnitude of spectrogram while reusing the phase from noisy
speech for reconstruction. This is due to the difficulty of estimating the phase
of clean speech. To improve speech enhancement performance, we tackle the
phase estimation problem in three ways. First, we propose Deep Complex U-Net,
an advanced U-Net structured model incorporating well-defined complex-valued
building blocks to deal with complex-valued spectrograms. Second, we propose a
polar coordinate-wise complex-valued masking method to reflect the distribution
of complex ideal ratio masks. Third, we define a novel loss function, weighted
source-to-distortion ratio (wSDR) loss, which is designed to directly correlate
with a quantitative evaluation measure. Our model was evaluated on a mixture of
the Voice Bank corpus and DEMAND database, which has been widely used by
many deep learning models for speech enhancement. Ablation experiments were
conducted on the mixed dataset showing that all three proposed approaches are
empirically valid. Experimental results show that the proposed method achieves
state-of-the-art performance in all metrics, outperforming previous approaches by
a large margin1.

1 INTRODUCTION

Speech enhancement is one of the most important and challenging tasks in speech applications
where the goal is to separate clean speech from noise when noisy speech is given as an input.
As a fundamental component for speech-related systems, the applications of speech enhancement
vary from speech recognition front-end modules to hearing aid systems for the hearing-impaired
(Erdogan et al., 2015; Weninger et al., 2015; Wang, 2017).

Due to recent advances in deep learning, the speech enhancement task has been able to reach high
levels in performance through significant improvements. When using audio signals with deep learn-
ing models, it has been a common practice to transform a time-domain waveform to a time-frequency
(TF) representation (i.e. spectrograms) via short-time-Fourier-transform (STFT). Spectrograms are
represented as complex matrices, which are normally decomposed into magnitude and phase com-
ponents to be used in real-valued networks. In tasks involving audio signal reconstruction, such as
speech enhancement, it is ideal to perform correct estimation of both components. Unfortunately,
complex-valued phase has been often neglected due to the difficulty of its estimation. This has led
to the situation where most approaches focus only on the estimation of a magnitude spectrogram
while reusing noisy phase information (Huang et al., 2014; Xu et al., 2015; Grais et al., 2016; Nu-
graha et al., 2016; Takahashi et al., 2018b). However, reusing phase from noisy speech has clear
limitations, particularly under extremely noisy conditions, in other words, when signal-to-noise ra-
tio (SNR) is low. This can be easily verified by simply using the magnitude spectrogram of clean

1Audio samples are available in the following link: http://kkp15.github.io/DeepComplexUnet
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speech with the phase spectrogram of noisy speech to reconstruct clean speech, as illustrated in Fig-
ure 1. We can clearly see that the difference between clean and estimated speech signals gets larger
as the input SNR gets lower.
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Figure 1: Effects of reusing phase of noisy speech under different SNR conditions.

A popular approach to speech enhancement is to optimize a mask which produces a spectrogram
of clean speech when applied to noisy input audio. One of the first mask-based attempts to perform
the task by incorporating phase information was the proposal of the phase-sensitive mask (PSM)
(Erdogan et al., 2015). Since the performance of PSM was limited because of reusing noisy phase,
later studies proposed using complex-valued ratio mask (cRM) to directly optimize on complex
values (Williamson et al., 2016; Ephrat et al., 2018). We found this direction promising for phase
estimation because it has been shown that a complex ideal ratio mask (cIRM) is guaranteed to give
the best oracle performance out of other ideal masks such as ideal binary masks, ideal ratio masks, or
PSMs (Wang et al., 2016). Moreover, this approach jointly estimates magnitude and phase, removing
the need of separate models. To estimate a complex-valued mask, a natural desire would be to use
an architecture which can handle complex-domain operations. Recent work gives a solution to this
by providing deep learning building blocks adapted to complex arithmetic (Trabelsi et al., 2018).

In this paper, we build upon previous studies to design a new complex-valued masking framework,
based on a proposed variant of U-Net (Ronneberger et al., 2015), named Deep Complex U-Net
(DCUnet). In our proposed framework, DCUnet is trained to estimate a complex ratio mask repre-
sented in polar coordinates with prior knowledge observable from ideal complex-valued masks. With
the complex-valued estimation of clean speech, we can use inverse short-time-Fourier-transform
(ISTFT) to convert a spectrogram into a time-domain waveform. Taking this as an advantage, we
introduce a novel loss function which directly optimizes source-to-distortion ratio (SDR) (Vincent
et al., 2006), a quantitative evaluation measure widely used in many source separation tasks.

Our contributions can be summarized as follows:

1. We propose a new neural architecture, Deep Complex U-Net, which combines the advan-
tages of both deep complex networks and U-Net, yielding state-of-the-art performance.

2. While pointing out limitations of current masking strategies, we design a new complex-
valued masking method based on polar coordinates.

3. We propose a new loss function weighted-SDR loss, which directly optimizes a well known
quantitative evaluation measure.

2 RELATED WORKS

Phase estimation for audio signal reconstruction has been a recent major interest within the audio
source separation community because of its importance and difficulty. While iterative methods such
as the Griffin-Lim algorithm and its variants (Griffin & Lim, 1984; Perraudin et al., 2013) aimed
to address this problem, neural network-based approaches are recently attracting attention as non-
iterative alternatives.

One major approach is to use an end-to-end model that takes audio as raw waveform inputs without
using any explicit time-frequency (TF) representation computed via STFT (Pascual et al., 2017;
Rethage et al., 2018; Stoller et al., 2018; Germain et al., 2018). Since raw waveforms inherently
contain phase information, it is expected to achieve phase estimation naturally. Another method is
to estimate magnitude and phase using two separate neural network modules which serially estimate
magnitude and phase (Afouras et al., 2018; Takahashi et al., 2018a). In this framework, the phase
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estimation module uses noisy phase with predicted magnitude to estimate phase of clean speech.
There is also a recent study which proposed to use additional layers with trainable discrete values
for phase estimation (Roux et al., 2018).

A more straightforward method would be to jointly estimate magnitude and phase by using a con-
tinuous complex-valued ratio mask (cRM). Previous studies tried this joint estimation approach
bounding the range of the cRM (Williamson et al., 2016; Ephrat et al., 2018). Despite the advan-
tages of the cRM approach, previously proposed methods had limitations with regard to the loss
function and the range of the mask which we will be returning with more details in Section 3 along
with our proposed methods to alleviate these issues. As a natural extension to the works above, some
studies have also undergone to examine whether complex-valued networks are useful when dealing
with intrinsically complex-valued data. In the series of two works, complex-valued networks were
shown to help singing voice separation performance with both fully connected neural networks and
recurrent neural networks (Lee et al., 2017a;b). However, the approaches were limited as it ended
up only switching the real-valued network into a complex-valued counterpart and leaving the other
deep learning building blocks such as weight initialization and normalization technique in a real-
valued manner. Also, the works do not show whether the phase was actually well estimated either
quantitatively or qualitatively, only ending up showing that there was a performance gain.

3 PHASE-AWARE SPEECH ENHANCEMENT

In this section we will provide details on our approach, starting with our proposed model Deep
Complex U-Net, followed by the masking framework based on the model. Finally, we will introduce
a new loss function to optimize our model, which takes a critical role for proper phase estimation.

Before getting into details, here are some notations used throughout the paper. The input mixture
signal x(n) = y(n) + z(n) ∈ R is assumed to be a linear sum of the clean speech signal y(n) ∈ R
and noise z(n) ∈ R, where estimated speech is denoted as ŷ(n) ∈ R. Each of the corresponding
time-frequency (t, f) representations computed by STFT is denoted as Xt,f ∈ C, Yt,f ∈ C, Zt,f ∈
C, and Ŷt,f ∈ C. The ground truth mask cIRM is denoted as Mt,f ∈ C and the estimated cRM is
denoted as M̂t,f ∈ C, where Mt,f = Yt,f/Xt,f .

3.1 DEEP COMPLEX U-NET
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Figure 2: Illustration of speech enhancement framework with DCUnet.

The U-Net structure is a well known architecture composed as a convolutional autoencoder with
skip-connections, originally proposed for medical imaging in computer vision community (Ron-
neberger et al., 2015). Furthermore, the use of real-valued U-Net has been shown to be also effective
in many recent audio source separation tasks such as music source separation (Jansson et al., 2017;
Stoller et al., 2018; Takahashi et al., 2018b), and speech enhancement (Pascual et al., 2017). Deep
Complex U-Net (DCUnet) is an extended U-Net, refined specifically to explicitly handle complex
domain operations. In this section, we will describe how U-Net is modified using the complex build-
ing blocks originally proposed by (Trabelsi et al., 2018).

Complex-valued Building Blocks. Given a complex-valued convolutional filter W = A+iB with
real-valued matrices A and B, the complex convolution operation on complex vector h = x + iy
with W is done by W ∗h = (A∗x−B ∗y)+ i(B ∗x+A∗y). In practice, complex convolutions
can be implemented as two different real-valued convolution operations with shared real-valued
convolution filters. Details are illustrated in Appendix A.
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Figure 3: Illustration of three cRM methods and their corresponding output range in complex space.
The Neural Network (NN) can be either DCUnet (C) or a corresponding real-valued U-Net (R)
with the same parameter size. Three different output ranges of cRM methods (1, 2 and 3) in (b) are
shown in (1, 2 and 3) in (a). 1. Unbounded mask: a masking method without bounded outputs. 2.
Bounded (sigmoid-sigmoid) mask: The proposed method by Ephrat et al. 3. Bounded (tanh) mask:
Our proposed masking method. The detailed model specification is described in Appendix B.

Activation functions like ReLU were also adapted to the complex domain. In previous work,
CReLU, an activation function which applies ReLU on both real and imaginary values, was shown
to produce the best results out of many suggestions. Details on batch normalization and weight
initialization for complex networks can be found in Trabelsi et al. (2018).

Modifying U-Net. The proposed Deep Complex U-Net is a refined U-Net architecture applied in
STFT-domain. Modifications done to the original U-Net are as follows. Convolutional layers of U-
Net are all replaced to complex convolutional layers, initialized to meet the Glorot’s criteria (Glorot
& Bengio, 2010). Here, the convolution kernels are set to be independent to each other by initial-
izing the weight tensors as unitary matrices for better generalization and fast learning (Cogswell
et al., 2015). Complex batch normalization is implemented on every convolutional layer except the
last layer of the network. In the encoding stage, max pooling operations are replaced with strided
complex convolutional layers to prevent spatial information loss. In the decoding stage, strided com-
plex deconvolutional operations are used to restore the size of input. For the activation function, we
modified the previously suggested CReLU into leaky CReLU, where we simply replace ReLU into
leaky ReLU (Maas et al., 2013), making training more stable. Note that all experiments performed
in Section 4 are done with these modifications.

3.2 COMPLEX-VALUED MASKING ON POLAR COORDINATES

As our proposed model can handle complex values, we aim to estimate cRM for speech enhance-
ment. Although it is possible to directly estimate the spectrogram of a clean source signal, it has
been shown that better performance can be achieved by applying a weighting mask to the mixture
spectrogram (Wang et al., 2014). One thing to note is that real-valued ratio masks (RM) only change
the scale of the magnitude without changing phase, resulting in irreducible errors as illustrated in
Appendix D. On the other hand, cRM also perform a rotation on the polar coordinates, allowing to
correct phase errors. In other words, the estimated speech spectrogram Ŷt,f is computed by multi-
plying the estimated mask M̂t,f on the input spectrogram Xt,f as follows:
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Ŷt,f = M̂t,f ·Xt,f =
∣∣∣M̂t,f

∣∣∣ ·∣∣Xt,f

∣∣ · ei(θM̂t,f
+θXt,f

)
(1)

In this state, the real and imaginary values of the estimated cRM is unbounded. Although estimating
an unbounded mask makes the problem well-posed (see Appendix D for more information), we can
imagine the difficulty of optimizing from an infinite search space compared to a bounded one.

Therefore, a few techniques have been tried to bound the range of cRM. For example, Williamson
et al. tried to directly optimize a complex mask into a cIRM compressed to a heuristic bound
(Williamson et al., 2016). However, this method was limited since it was only able to succeed in
training the model by computing the error between cIRM and the predicted cRM which often leads
to a degradation of performance (Wang et al., 2014; Yu et al., 2017). More recently, Ephrat et al.
proposed a rectangular coordinate-wise cRM made with sigmoid compressions onto each of the real
and imaginary parts of the output of the model (Ephrat et al., 2018). After then MSE between clean
source Y and estimated source Ŷ was computed in STFT-domain to train the model. However, the
proposed masking method has two main problems regarding phase estimation. First, it suffers from
the inherent problem of not being able to reflect the distribution of cIRM as shown in Figure 3 and
Appendix E. Second, this approach results in a cRM with a restricted rotation range of 0◦ to 90◦

(only clock-wise), which makes it hard to correct noisy phase.

To alleviate these problems, we propose a polar coordinate-wise cRM method that imposes non-
linearity only on the magnitude part. More specifically, we use a hyperbolic tangent non-linearity
to bound the range of magnitude part of the cRM be [0, 1) which makes the mask bounded in an
unit-circle in complex space. The corresponding phase mask is naturally obtained by dividing the
output of the model with the magnitude of it. More formally, let g(·) be our neural network and the
output of it be Ot,f = g(Xt,f ). The proposed complex-valued mask M̂t,f is estimated as follows:

M̂t,f =
∣∣∣M̂t,f

∣∣∣ · eiθM̂t,f = M̂mag
t,f · M̂phase

t,f (2)

M̂mag
t,f =

{
tanh(|Ot,f |) (bounded cond.)
|Ot,f | (unbounded cond.)

, M̂phase
t,f = Ot,f/|Ot,f | (3)

A summarized illustration of cRM methods is depicted in Figure 3.

3.3 WEIGHTED-SDR LOSS

A popular loss function for audio source separation is mean squared error (MSE) between clean
source Y and estimated source Ŷ on the STFT-domain. However, it has been reported that optimiz-
ing the model with MSE in complex STFT-domain fails in phase estimation due to the randomness
in phase structure (Williamson et al., 2016). As an alternative, it is possible to use a loss function de-
fined in the time-domain instead, as raw waveforms contain inherent phase information. While MSE
on waveforms can be an easy solution, we can expect it to be more effective if the loss function is
directly correlated with well-known evaluation measures defined in the time-domain.

Here, we propose an improved loss function weighted-SDR loss by building upon a previous work
which attempts to optimize a standard quality measure, source-to-distortion ratio (SDR) (Venkatara-
mani et al., 2017). The original loss function lossV en suggested by Venkataramani et al. is formu-
lated upon the observation from Equation 4, where y is the clean source signal and ŷ is the estimated
source signal. In practice, the negative reciprocal is optimized as in Equation 5.

max
ŷ

SDR(y, ŷ) := max
ŷ

< y, ŷ >2

||y||2||ŷ||2− < y, ŷ >2
∝ min

ŷ

||ŷ||2

< y, ŷ >2
(4)

lossV en(y, ŷ) := −
< y, ŷ >2

||ŷ||2
(5)

Although using Equation 5 works as a loss function, there are a few critical flaws in the design.
First, the lower bound becomes −‖y‖2, which depends on the value of y causing fluctuation in the
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loss values when training. Second, when the target y is empty (i.e., y = 0) the loss becomes zero,
preventing the model to learn from noisy-only data due to zero gradients. Finally, the loss function
is not scale sensitive, meaning that the loss value is the same for ŷ and cŷ, where c ∈ R.

To resolve these issues, we redesigned the loss function by giving several modifications to Equation
5. First, we made the lower bound of the loss function independent to the source y by restoring back
the term ‖y‖2 and applying square root as in Equation 6. This makes the loss function bounded
within the range [-1, 1] and also be more phase sensitive, as inverted phase gets penalized as well.

lossSDR(y, ŷ) := −
√
− lossV en
‖y‖2

= −< y, ŷ >

‖y‖‖ŷ‖
(6)

Expecting to be complementary to source prediction and to propagate errors for noise-only samples,
we also added a noise prediction term lossSDR(z, ẑ). To properly balance the contributions of each
loss term and solve the scale insensitivity problem, we weighted each term proportional to the energy
of each signal. The final form of the suggested weighted-SDR loss is as follows:

losswSDR(x, y, ŷ) := α lossSDR(y, ŷ) + (1− α)lossSDR(z, ẑ) (7)

where, ẑ = x− ŷ is estimated noise and α = ||y||2/(||y||2+ ||z||2) is the energy ratio between clean
speech y and noise z. Note that although weighted SDR loss is a time-domain loss function, it can be
backpropagated through our framework. Specifically, STFT and ISTFT operations are implemented
as 1-D convolution and deconvolution layers consisting of fixed filters initialized with the discrete
Fourier transform matrix. The detailed properties of the proposed loss function are in Appendix C.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Dataset. For all experiments, we used the same experimental setups as previous works in order
to perform direct performance comparison (Pascual et al., 2017; Rethage et al., 2018; Soni et al.,
2018; Germain et al., 2018). Noise and clean speech recordings were provided from the Diverse
Environments Multichannel Acoustic Noise Database (DEMAND) (Thiemann et al., 2013) and the
Voice Bank corpus (Veaux et al., 2013), respectively, each recorded with sampling rate of 48kHz.
Mixed audio inputs used for training were composed by mixing the two datasets with four signal-
to-noise ratio (SNR) settings (15, 10, 5, and 0 (dB)), using 10 types of noise (2 synthetic + 8 from
DEMAND) and 28 speakers from the Voice Bank corpus, creating 40 conditional patterns for each
speech sample. The test set inputs were made with four SNR settings different from the training set
(17.5, 12.5, 7.5, and 2.5 (dB)), using the remaining 5 noise types from DEMAND and 2 speakers
from the Voice Bank corpus. Note that the speaker and noise classes were uniquely selected for the
training and test sets.

Pre-processing. The original raw waveforms were first downsampled from 48kHz to 16kHz. For the
actual model input, complex-valued spectrograms were obtained from the downsampled waveforms
via STFT with a 64ms sized Hann window and 16ms hop length.

Implementation. All experiments were implemented and fine-tuned with NAVER Smart Machine
Learning (NSML) platform (Sung et al., 2017; Kim et al., 2018).

4.2 COMPARISON RESULTS

In this subsection, we compare overall speech enhancement performance of our method with pre-
viously proposed algorithms. As a baseline approach, Wiener filtering (Wiener) with a priori noise
SNR estimation was used, along with recent deep-learning based models which are briefly described
as the following: SEGAN: a time-domain U-Net model optimized with generative adversarial net-
works. Wavenet: a time-domain non-causal dilated wavenet-based network. MMSE-GAN: a time-
frequency masking-based method with modified adversarial training method. Deep Feature Loss: a
time-domain dilated convolution network trained with feature loss from a classifier network.

2https://www.crcpress.com/downloads/K14513/K14513_CD_Files.zip
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Table 1: Quantitative evaluation results of other algorithms and proposed methods (DCUnet-20,
Large-DCUnet-20). Higher score means better performance where bold text indicates highest score
per evaluation measure. CSIG: Mean opinion score (MOS) predictor of signal distortion CBAK:
MOS predictor of background-noise intrusiveness COVL: MOS predictor of overall signal quality
PESQ: Perceptual evaluation of speech quality SSNR: Segmental SNR. All evaluation measures
were computed by using open source implementation.2

CSIG CBAK COVL PESQ SSNR
Wiener (Scalart et al., 1996) 3.23 2.68 2.67 2.22 5.07
SEGAN (Pascual et al., 2017) 3.48 2.94 2.80 2.16 7.73
Wavenet (Rethage et al., 2018) 3.62 3.23 2.98 - -
MMSE-GAN (Soni et al., 2018) 3.80 3.12 3.14 2.53 -
Deep Feature Loss (Germain et al., 2018) 3.86 3.33 3.22 - -
DCUnet-20 (ours) 4.24 4.00 3.69 3.13 15.95
Large-DCUnet-20 (ours) 4.34 4.10 3.81 3.24 16.85

For comparison, we used the configuration of using a 20-layer Deep Complex U-Net (DCUnet-
20) to estimate a tanh bounded cRM, optimized with weighted-SDR loss. As a showcase for the
potential of our approach, we also show results from a larger DCUnet-20 (Large-DCUnet-20) which
has more channels in each layer. Both architectures are specified in detail in Appendix B. Results
show that our proposed method outperforms the previous state-of-the-art methods with respect to all
metrics by a large margin. Additionally, we can also see that larger models yield better performance.
We see the reason to this significant improvement coming from the phase estimation quality of our
method, which we plan to investigate in later sections.

4.3 ABLATION STUDIES

Table 2: Table of quantitative evaluation results with corresponding mask and loss function in three
different model configurations (DCU-10, DCU-16 and DCU-20). The bold font indicates the best
loss function when fixing the masking method. The underline indicates the best masking method
when fixing the loss function.

CSIG CBAK COVL PESQ SSNR
DCU-10 Spc Wav wSDR Spc Wav wSDR Spc Wav wSDR Spc Wav wSDR Spc Wav wSDR

UBD 3.51 3.71 3.72 3.50 3.52 3.56 3.13 3.15 3.19 2.78 2.61 2.67 11.86 13.18 13.37
BDSS 2.94 3.19 3.21 3.43 3.35 3.39 2.81 2.85 2.89 2.79 2.61 2.67 11.61 12.30 12.30
BDT 3.30 3.74 3.72 3.52 3.57 3.60 3.02 3.19 3.22 2.79 2.66 2.72 12.30 13.54 13.60
DCU-16 Spc Wav wSDR Spc Wav wSDR Spc Wav wSDR Spc Wav wSDR Spc Wav wSDR

UBD 3.97 4.00 4.07 3.66 3.72 3.75 3.46 3.43 3.48 2.96 2.85 2.93 12.75 14.25 14.44
BDSS 3.63 3.57 3.72 3.59 3.51 3.56 3.28 3.15 3.27 2.98 2.82 2.87 12.05 12.89 12.89
BDT 3.97 4.03 4.10 3.70 3.74 3.77 3.49 3.45 3.52 3.01 2.88 2.93 12.96 14.39 14.44
DCU-20 Spc Wav wSDR Spc Wav wSDR Spc Wav wSDR Spc Wav wSDR Spc Wav wSDR

UBD 4.02 4.15 4.25 3.88 3.93 4.01 3.57 3.59 3.70 3.11 3.01 3.13 14.81 16.03 16.36
BDSS 3.77 3.74 3.93 3.68 3.65 3.72 3.40 3.33 3.47 3.06 2.98 3.05 12.80 13.66 13.68
BDT 4.02 4.18 4.24 3.87 3.95 4.00 3.58 3.64 3.69 3.13 3.08 3.13 14.59 15.85 15.95

Masking strategy and loss functions. In this experiment, we show the evaluation results on how
the various masking strategies and loss functions affect the performance of speech enhancement.
Three masking strategies (Unbounded (UBD); Ephrat et al.: Bounded (sig-sig) (BDSS); Bounded
(tanh) (BDT)) are compared to see the effect of each different masking method. Then, to compare
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our proposed loss function (weighted-SDR) with MSE, we compared two MSE in STFT-domain and
time-domain (Spectrogram-MSE (Spc); Wave-MSE (Wav); and proposed: weighted-SDR (wSDR)).

Table 2 shows the jointly combined results on varied masking strategies and loss functions, where
three models (DCU-10 (1.4M), DCU-16 (2.3M), and DCU-20 (3.5M)) are investigated to see how
architectural differences in the model affect quantitative results. In terms of masking strategy, the
proposed BDT mask mostly yields better results than UBD mask in DCU-10 and DCU-16, imply-
ing the importance of limiting optimization space with prior knowledge. However, in the case of
DCU-20, UBD mask was able to frequently surpass the performance of BDT mask. Intuitively, this
indicates that when the number of parameter gets large enough, the model is able to fit the distri-
bution of data well even when the optimization space is not bounded. In terms of the loss function,
almost every result shows that optimizing with wSDR loss gives the best result. However, we found
out that Spc loss often provides better PESQ results than wSDR loss for DCU-10 and DCU-16
except DCU-20 case where Spc and wSDR gave similar PESQ results.

Table 3: Table of quantitative evaluation results from three different settings (cRMCn: Complex-
valued output/Complex-valued network, cRMRn: Complex-valued output/Real-valued network, and
RMRn: Real-valued output/Real-valued network) to show the appropriateness of using complex-
valued networks for speech enhancement. Bold font indicates the best results.

20-layer 16-layer 10-layer

cRMCn cRMRn RMRn cRMCn cRMRn RMRn cRMCn cRMRn RMRn

CSIG 4.24 4.21 4.06 4.10 4.06 3.88 3.74 3.71 3.71
CBAK 4.00 3.92 3.40 3.77 3.75 3.33 3.60 3.59 3.23
COVL 3.69 3.65 3.40 3.52 3.49 3.26 3.22 3.20 3.01
PESQ 3.13 3.07 2.74 2.93 2.91 2.66 2.72 2.72 2.51
SSNR 15.95 15.54 9.90 14.44 14.25 9.66 13.60 13.49 9.43

Validation on complex-valued network and mask. In order to show that complex neural networks
are effective, we compare evaluation results of DCUnet (Cn) and its corresponding real-valued U-
Net setting with the same parameter size (Rn). For the real-valued network, we tested two settings
cRMRn and RMRn to show the effectiveness of phase estimation. The first setting takes a complex-
valued spectrogram as an input, estimating a complex ratio mask (cRM) with a tanh bound. The
second setting takes a magnitude spectrogram as an input, estimating a magnitude ratio mask (RM)
with a sigmoid bound. All models were trained with weighted-SDR loss, where the ground truth
phase was given while training RMRn. Additionally, all models were trained on different number
of parameters (20-layer (3.5M), 16-layer (2.3M), and 10-layer (1.4M)) to show that the results are
consistent regardless of model capacity. Detailed network architectures for each model are illustrated
in Appendix B.

In Table 3, evaluation results show that our approach cRMCn makes better results than conventional
method RMRn for all cases, showing the effectiveness of phase correction. Also, cRMCn gives bet-
ter results than cRMRn, which indicates that using complex-valued networks consistently improve
the performance of the network. Note that these results are consistent through every evaluation mea-
sure and model size.

4.4 QUALITATIVE EVALUATION

We performed qualitative evaluations by obtaining preference scores between the proposed DCUnet
(Large-DCUnet-20) and baseline methods. 15 utterance samples with different noise levels were se-
lected from the test set and used for subjective listening tests. For each noisy sample, all possible six
pairs of denoised audio samples from four different algorithms were presented to the participants in
a random order, resulting in 90 pairwise comparisons to be made by each subject. For each compar-
ison, participants were presented with three audio samples - original noisy speech and two denoised
speech samples by two randomly selected algorithms - and instructed to choose either a preferred
sample (score 1) or “can’t decide” (score 0.5). A total of 30 subjects participated in the listening test,
and the results are presented in Table 4 and in Table 7.
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Table 4: Preference scores of DCUnet compared to other baseline models. The scores were ob-
tained by calculating the relative frequency the subjects prefer one method to the other method.
Hard/Medium/Easy denote 2.5/7.5/17.5 SNR conditions in dB, respectively. All statistics had sig-
nificance of p<0.001. Complete pairwise preference scores are presented in Appendix H.

Hard Medium Easy Total

DCUnet > Deep Feature Loss 0.90 0.82 0.69 0.82
DCUnet > Wavenet 0.98 0.95 0.75 0.93
DCUnet > SEGAN 0.99 0.93 0.71 0.92

Bounded
(tanh)

Unbounded

Loss
Mask

Bounded
(sig-sig)

weighted-SDR

Ground Truth
2.0

1.0

0.0

-1.0

-2.0

Real

Imag

0.0-1.0-2.0 1.0 2.0

Spectrogram-MSE Wave-MSE

Figure 4: Scatter plots of estimated cRMs with 9 different mask and loss function configurations for
a randomly picked noisy speech signal. Each scatter plot shows the distribution of complex values
from an estimated cRM. The leftmost plot is from the cIRM for the given input. We can observe
that most real-values are distributed around 0 and 1, while being relatively sparse in between. The
configuration that fits the most to this distribution pattern is observed in the red dotted box which is
achieved by the combination of our proposed methods (Bounded (tanh) and weighted-SDR).

Table 4 shows that DCUnet clearly outperforms the other methods in terms of preference scores
in every SNR condition. These differences are statistically significant as confirmed by pairwise
one-tailed t-tests. Furthermore, the difference becomes more obvious as the input SNR condition
gets worse, which supports our motivation that accurate phase estimation is even more important
under harsh noisy conditions. This is further confirmed by in-depth quantitative analysis of the phase
distance as described in Section 5 and Table 5.

5 IN-DEPTH ANALYSIS ON PHASE

In this section, we aim to provide constructive insights on phase estimation by analyzing how and
why our proposed method is effective. We first visualized estimated complex masks with scatter
plots in Figure 4 for each masking method and loss function configuration from Table 2. The plots
clearly show that the Bounded (sig-sig) mask by Ephrat et al. fails to reflect the distribution of the
complex ideal ratio mask (cIRM), whereas the proposed Bounded (tanh) or Unbounded mask tries
to follow the ground truth. One interesting finding is that, while time-domain loss functions such
as weighted-SDR or Wave-MSE can capture the distribution of the ground truth, Spectrogram-MSE
fails to capture the distribution of the cIRM. More specifically, when we use Spectrogram-MSE,
the imaginary values of the predicted cRMs are almost always zero, indicating that it ends up only

9



Published as a conference paper at ICLR 2019

(a)   CMNP
0.3

-0.2
-0.1

0.2
0.1
0.0

0 500
(b)   Spectrogram-MSE

0 500

0.3

-0.2
-0.1

0.2
0.1
0.0

(d)   weighted-SDR
0.3

-0.2
-0.1

0.2
0.1
0.0

0 500

-0.2
-0.1

(c)   Wave-MSE

0 500

0.3
0.2
0.1
0.0

Clean
CMNP

Clean
Spc

Clean
wSDR

Clean
Wav

Figure 5: Illustration of four wave-plot segments of estimated speech with reference clean speech.
(a) shows the wave-plot of synthesized speech with clean magnitude speech and noisy phase
(CMNP). Three other cases show the wave-plots of estimated speech with different loss functions
(b) Spectrogram-MSE, (c) Wave-MSE, and (d) weighted-SDR.

scaling the magnitude of noisy speech and fails to correct the phase of noisy speech with rotations
(e.g., (Xreal

t,f + iXimag
t,f )(a+ i · 0) = a(Xreal

t,f + iXimag
t,f )).

In order to demonstrate this effect in an alternate perspective, we also plotted estimated waveforms
for each loss function in Figure 5. As one can notice from Figure 5 (c) & (d), estimated speech from
models optimized with time-domain loss functions are well-aligned with clean speech. However,
Figure 5 (a) & (b) align poorly to the ground truth while showing almost identical estimations.
Note that Figure 5 (a) is the best possible result without estimating the phase of clean speech. This
again confirms that optimizing the model with Spectrogram-MSE makes it difficult to learn phase
correction, meaning that the model ends up reusing noisy phase just like conventional approaches.

To explicitly support these observations, we would need a quantitative measure for phase estimation.
Here, we define the phase distance between target spectrogram (A) and estimated spectrogram (B) as
the weighted average of angle between corresponding complex TF bins, where each bin is weighted
by the magnitude of target speech (

∣∣At,f ∣∣ ) to emphasize the relative importance of each TF bin.
Phase distance is formulated as the following:

PhaseDist(A,B) =
∑
t,f

∣∣At,f ∣∣∑
t′,f ′

∣∣At′,f ′
∣∣∠(At,f , Bt,f ) (8)

where, ∠(At,f , Bt,f ) represents the angle between At,f and Bt,f , having a range of [0,180].

The phase distance between clean and noisy speech (PhaseDist(C, N)) and the phase distance be-
tween clean and estimated speech (PhaseDist(C, E)) are presented in Table 5. The results show that
the best phase improvement (Phase Improvement = PhaseDist(C, N)− PhaseDist(C, E)) is obtained
with wSDR loss under every SNR condition. Also Spc loss gives the worst results, again reinforcing
our observation. Analysis between the phase improvement and performance improvement is further
discussed in Appendix G.

6 CONCLUSION

In this paper, we proposed Deep Complex U-Net which combines two models to deal with complex-
valued spectrograms for speech enhancement. In doing so, we designed a new complex-valued
masking method optimized with a novel loss function, weighted-SDR loss. Through ablation studies,
we showed that the proposed approaches are effective for more precise phase estimation, resulting in
state-of-the-art performance for speech enhancement. Furthermore, we conducted both quantitative
and qualitative studies and demonstrated that the proposed method is consistently superior to the
previously proposed algorithms.
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Table 5: Phase distance and phase improvement under four different SNR conditions. The Spc, Wav,
and wSDR column show results from models trained with three different objectives Spectrogram-
MSE, Wave-MSE, and weighted-SDR, respectively.

SNR (dB) PhaseDist(C, N) PhaseDist(C, E) Phase Improvement
Spc Wav wSDR Spc Wav wSDR

2.5 14.521° 10.512° 9.288° 7.807° 4.009° 5.233° 6.714°
7.5 10.066° 7.548° 6.919° 5.658° 2.518° 3.147° 4.408°
12.5 7.197° 5.455° 5.105° 4.215° 1.742° 2.092° 2.982°
17.5 4.853° 3.949° 3.872° 3.151° 0.905° 0.981° 1.702°

In the near future, we plan to apply our system to various separation tasks such as speaker separation
or music source separation. Another important direction is to extend the proposed model to deal
with multichannel audio since accurate estimation of phase is even more critical in multichannel
environments (Wang et al., 2018). Apart from separation, our approach can be generalized to various
audio-related tasks such as dereverberation, bandwidth extension or phase estimation networks for
text-to-speech systems. Taking advantage of sequence modeling, it may also be interesting to find
further extensions with complex-valued LSTMs (Arjovsky et al., 2016; Wisdom et al., 2016).
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APPENDIX

A REAL-VALUED CONVOLUTION & COMPLEX-VALUED CONVOLUTION

In this section, we address the difference between the real-valued convolution and the complex-
valued convolution. Given a complex-valued convolution filter W = A + iB with real-valued
matrices A and B, the complex-valued convolution can be interpreted as two different real-valued
convolution operations with shared parameters, as illustrated in Figure 6 (b). For a fixed number of
#Channel product = #Input channel(M)×#Output channel(N), the number of parameters
of the complex-valued convolution becomes double of that of a real-valued convolution. Considering
this fact, we built the pair of a real-valued network and a complex-valued network with the same
number of parameters by reducing #Channel product of complex-valued convolution by half for
a fair comparison. The detail of models reflecting this configuration is explained in Appendix B.

#Parameters = Filter Size ×	M ×	N

#Input channel: M #Output channel: N

(a) Real-valued Convolution

#Parameters = 2 ×	Filter Size ×	M ×	N

Real

Imag

Real

Imag

#Input channel: M #Output channel: N

-B

A

Real

Imag

Real

Imag

#Input channel: M #Output channel:	N

A

B

(b) Complex-valued Convolution

Figure 6: Illustration of (a) real-valued convolution and (b) complex-valued convolution.

B MODEL ARCHITECTURE

In this section, we describe three different model architectures (DCUnet-20 (#params: 3.5M),
DCUnet-16 (#params: 2.3M), and DCUnet-10 (#params: 1.4M)) each in complex-valued network
setting and real-valued network setting in Figure 7, 8, 9. Both complex-valued network (C) and real-
valued network (R) have the same size of convolution filters with different number of channels to
set the parameter equally. The largest model, Large-DCUnet-20, in Table 1 is also described in Fig-
ure 10. Every convolution operation is followed by batch normalization and an activation function
as described in Figure 11. For the complex-valued network, the complex-valued version of batch
normalization and activation function was used following Deep Complex Networks (Trabelsi et al.,
2018). Note that in the very last layer of every model the batch normalization and leaky ReLU
activation was not used and non-linearity function for mask was applied instead. The real-valued
network configuration was not considered in the case of largest model.

C PROPERTIES OF WEIGHTED-SDR LOSS

In this section, we summarize the properties of the proposed weighted-SDR loss. First, we show that
the range of weighted-SDR loss is bounded and explain the conditions under which the minimum
value is obtained. Next, we explain the gradients in the case of noise-only input.
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Figure 7: DCUnet-20 (20-layer): a model with 20 convolutional layers.
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Figure 8: DCUnet-16 (16-layer): a model with 16 convolutional layers.
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Figure 9: DCUnet-10 (10-layer): a model with 10 convolutional layers.

input

Enc.
F: 1×7
S: (1,1)
C: 	45

Enc.
F: 7×5
S: (2,2)
C: 90

Enc.
F: 7×5
S: (2,1)
C: 90

Enc.
F: 5×3
S: (2,2)
C: 90

Enc. 
F: 5×3
S: (2,1)
C: 90

Enc.
F: 7×1
S: (1,1)
C: 45

Enc.
F: 5×3
S: (2,2)
C: 90

Enc. 
F: 5×3
S: (2,1)
C: 90

Enc.
F: 5×3
S: (2,2)
C: 90

Dec.
F: 1×7
S: (1,1)
C: 90

Dec.
F: 7×5
S: (2,2)
C: 90

Dec.
F: 7×5
S: (2,1)
C: 90

Dec.
F: 5×3
S: (2,2)
C: 90

Dec. 
F: 5×3
S: (2,1)
C: 90

Dec.
F: 5×3
S: (2,2)
C: 90

Dec. 
F: 5×3
S: (2,1)
C: 90

Dec.
F: 5×3
S: (2,2)
C: 90

Dec. 
F: 5×3
S: (2,1)
C: 90

output

Dec.
F: 7×1
S: 1,1

Mask act.

Enc. 
F: 5×3
S: (2,1)
C: 128

Figure 10: Large-DCUnet-20: a model with 20 convolutional layers with more number of channels
per layer.
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Figure 11: Description of encoder and decoder block. Ff and Ft denote the convolution filter size
along the frequency and time axis, respectively. Sf and St denote the stride size of convolution filter
along the frequency and time axis, respectively. OC and OR denote the different number of channels
in complex-valued network setting and real-valued network setting, respectively. The number of
channels of OR is set to be roughly

√
2 times the number of channels of OC so that the number of

trainable parameters of real-valued network and complex-valued network becomes approximately
the same.

Let x denotes noisy speech with T time step, y denotes target source and ŷ denotes estimated source.
Then, losswSDR(x, y, ŷ) is defined as follows:

losswSDR(x, y, ŷ) = −α
< y, ŷ >

‖y‖‖ŷ‖
− (1− α)< x− y, x− ŷ >

‖x− y‖‖x− ŷ‖
(9)

where, α is the energy ratio between target source and noise, i.e.,‖y‖2 /(‖y‖2 +‖x− y‖2).
Proposition 1. losswSDR(x, y, ŷ) is bounded on [-1,1] . Moreover, for fixed y 6= 0 and x− y 6= 0,
the minimum value -1 can only be attained when ŷ = y, if x 6= cy for ∀c ∈ R.

Proof. Cauchy-Schwarz inequality states that for a ∈ RT and b ∈ RT , −‖a‖‖b‖ ≤ < a, b > ≤
‖a‖‖b‖. By this inequality, [-1,1] becomes the range of losswSDR. To attain the minimum value,
the equality condition of the Cauchy-Schwarz inequality must be satisfied. This equality condition
is equivalent to b = 0 or a = tb, for ∃t ∈ R. Applying the equality condition with the assumption
(y 6= 0, x−y 6= 0) to Equation 9 leads to ŷ = t1y and x− ŷ = t2(x−y), for ∃t1 ∈ R and ∃t2 ∈ R.
By adding these two equations, we can get (1 − t1)x = (t1 − t2)y. By the assumption x 6= cy,
which is generally satisfied for large T , we can conclude t1 = 1, t1 = t2 must be satisfied when the
minimum value is attained.

The following property of the weighted-SDR loss shows that the network can also learn from noise-
only training data. In experiments, we add small number ε to denominators of Equation 9. Thus for
the case of y = 0, Equation 9 becomes

losswSDR(x, 0, ŷ) = −
< x, x− ŷ >
‖x‖‖x− ŷ‖+ ε

(10)

Proposition 2. When we parameterize ŷ = gθ(x), the losswSDR(x, y, gθ(x)) has a non-zero gra-
dient with respect to θ even if the target source y is empty.

Proof. We can calculate partial derivatives as follows:

∂losswSDR(x, y, gθ(x))

∂θ

∣∣∣
(x=x0,y=0,θ=θ0)

=
∂losswSDR(x0, 0, gθ(x0))

∂θ

∣∣∣
θ=θ0

=<
x0
‖x0‖

,
∂

∂θ
{ x0 − gθ(x0)∥∥x0 − gθ(x0)∥∥+ ε/‖x0‖

}
∣∣∣
θ=θ0

>

(11)

Thus, the non-zero gradients with respect to θ can be back-propagated.
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D IRREDUCIBLE ERRORS

In this section, we illustrate two possible irreducible errors. Figure 12 (a) shows the irreducible
phase error due to lack of phase estimation. Figure 12 (b) shows the irreducible error induced when
bounding the range of mask. Not bounding the range of the mask makes the problem well-posed
but it may suffer from the wide range of optimization search space because of the lack of prior
knowledge on the distribution of cIRM.

Real

Imag

Source

Error
Noise

(a) Real

Imag

Source

Est.

Error

Noise

(b)

Figure 12: Two cases of possible irreducible error types in a TF bin in spectrogram. (a) The case
where phase is not estimated and phase of mixture is reused. Even if the magnitude estimation
is assumed to be perfect, there is still an irreducible phase error between the true source and the
estimation. (b) The case where the magnitude of an estimated mask is bounded to 1. This again
induces an irreducible error since there can be sources which have a higher magnitude than the
magnitude of a mixture.

E SCATTER PLOTS OF CIRM

The scatter plots of cIRM from training set is shown in Figure 13. We show four different scatter
plots according to their SNR values of mixture (0, 5, 10, and 15 (dB)). Each scattered point of cIRM,
Mt,f , is defined as follows:

Mt,f =

∣∣Yt,f ∣∣∣∣Xt,f

∣∣ei(θYt,f
−θXt,f

) (12)

The scattered points near origin indicate the TF bins where the value of
∣∣Yt,f ∣∣ is significantly small

compared to
∣∣Xt,f

∣∣. Therefore, those TF bins can be interpreted as the bins dominated with noise
rather than source. On the other hand, the scattered points near (1,0) indicates the TF bins where the
value of

∣∣Yt,f ∣∣ is almost the same as
∣∣Xt,f

∣∣. In this case, those TF bins can be interpreted as the bins
dominated with source rather than noise. Therefore, as SNR becomes higher, the amount of TF bins
dominated with clean source becomes larger compared to the lower SNR cases, and consequently
the portion of real part close to 1 becomes larger as in Figure 13.

F VISUALIZATION OF ESTIMATED PHASE

In this section, we show a supplementary visualization of phase of estimated speech. Although the
raw phase information itself does not show a distinctive pattern, the hidden structure can be revealed
with group delay, which is the negative derivative of the phase along frequency axis (Yegnanarayana
& Murthy, 1992). With this technique, the phase information can be explicitly shown as in Figure
14. Figure 14 (d) shows the group delay of clean speech and the corresponding magnitude is shown
in Figure 14 (a). The two representations shows that the group delay of phase has a similar structure
to that of magnitude spectrogram. The estimated phase by our model is shown in in Figure 14 (c).
While the group delay of noisy speech (Figure 14 (b)) does not show a distinctive harmonic pattern,
our estimation show the harmonic pattern similar to the group delay of clean speech, as shown in
the yellow boxes in Figure 14 (c) and (d).
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(a) SNR: 0 (dB) (b) SNR: 5 (dB)

(c) SNR: 10 (dB) (d) SNR: 15 (dB)
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Figure 13: Four different scatter plots of cIRM according to the four different SNR values of input
mixture in training set, (a) SNR: 0 (dB) (b) SNR: 5 (dB) (c) SNR: 10 (dB) (d) SNR: 15 (dB).

Clean Speech Magnitude(a) Noise + Speech(b) Estimation(c) Clean Speech(d)

Figure 14: Illustration of phase group delay. The group delay of the estimated phase from our model
(c) shows the similar pattern to that of clean speech (d). For better visualization, we only show the
TF bins where the magnitude of clean speech spectrogram exceeds certain threshold 0.01.

G IMPORTANCE OF PHASE ESTIMATION

In this section, to show the limitation of conventional approach (without phase estimation), we em-
phasize that the phase estimation is important, especially under low SNR condition (harsh condi-
tion).
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We first make an assumption that the estimation of phase information becomes more important
when the given mixture has low SNR. Our reasoning behind this assumption is that if the SNR of
a given mixture is low, the irreducible phase error is likely to be greater, hence a more room for
improvement with phase estimation as illustrated in Figure 15. This can also be verified in Table 5
columns PhaseDist(C, N) and Phase Improvement where the values of both columns increase as
SNR becomes higher.

(a) Real

Imag

Source

Error

Noise

(b)Real

Imag

Source
Noise

Figure 15: (a) The case where SNR of given mixture is high. In this case the source is likely to be
dominant in the mixture. Therefore it is relatively easier to estimate ground truth source with better
precision even when the phase is not estimated. (b) The case where SNR of given mixture is low. In
this case the source is not dominant in the mixture. Therefore, the irreducible phase error is likely to
be higher in low SNR conditions than higher SNR conditions. Under this circumstance, we assume
the lack of phase estimation will result in a particularly bad system performance.

To empirically show the importance of phase estimation, we show correlation between phase im-
provement and performance difference between the conventional method (without phase estimation)
and our proposed method (with phase estimation) in Table 6. The performance difference was calcu-
lated by simply subtracting the evaluation results of conventional method from the evaluation results
of our method with phase estimation. For fair comparison, both conventional method (RMRn) and
proposed method (cRMCn) were set to have the same number of parameters. Also, both models
were trained with weighted-SDR loss. The results show that when the SNR is low, both the phase
improvement and the performance difference are relatively higher than the results from higher SNR
conditions. Furthermore, almost all results show an incremental increase of phase improvement and
performance difference as the SNR decreases, which agrees on our assumption. Therefore we be-
lieve that phase estimation is important especially in harsh noisy conditions (low SNR conditions).

Table 6: The performance difference between conventional method (without phase estimation) and
our method (with phase estimation). The performance difference is presented with four different
SNR values of mixture in test set.

SNR (dB) Phase Improvement Performance Difference
PESQ CSIG CBAK COVL SSNR

2.5 6.714° 0.06 0.44 0.14 0.21 5.32
7.5 4.408° 0.03 0.42 0.11 0.19 5.21
12.5 2.982° 0.05 0.39 0.11 0.18 4.96
17.5 1.702° 0.05 0.30 0.09 0.13 3.93
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H COMPLETE QUALITATIVE RESULTS

Table 7: Pairwise preference scores of four models including DCUnet. The scores are ob-
tained by calculating the relative frequency the subjects prefer one method to the other method.
Hard/Medium/Easy denote 2.5/7.5/17.5 SNR conditions in dB, respectively. Significance for each
statistic is also described (n.s.: not significant, ∗: p<0.05, ∗∗: p<0.01, ∗∗∗: p<0.001).

Hard Medium Easy Total

DCUnet > Deep Feature Loss 0.90 (***) 0.82 (***) 0.69 (***) 0.82 (***)
DCUnet > Wavenet 0.98 (***) 0.95 (***) 0.75 (***) 0.93 (***)
DCUnet > SEGAN 0.99 (***) 0.93 (***) 0.71 (***) 0.92 (***)
Deep Feature Loss > Wavenet 0.67 (***) 0.83 (***) 0.48 (n.s.) 0.74 (***)
Deep Feature Loss > SEGAN 0.72 (***) 0.81 (***) 0.40 (**) 0.73 (***)
SEGAN > Wavenet 0.53 (n.s.) 0.58 (**) 0.50 (n.s.) 0.56 (**)
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