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ABSTRACT

Recent results from linear algebra stating that any matrix can be decomposed into products
of diagonal and circulant matrices has lead to the design of compact deep neural network
architectures that perform well in practice. In this paper, we bridge the gap between these
good empirical results and the theoretical approximation capabilities of Deep diagonal-
circulant ReLU networks. More precisely, we first demonstrate that a Deep diagonal-
circulant ReLU networks of bounded width and small depth can approximate a deep ReLU
network in which the dense matrices are of low rank. Based on this result, we provide new
bounds on the expressive power and universal approximativeness of this type of networks.
We support our experimental results with thorough experiments on a large, real world
video classification problem.

1 INTRODUCTION

Recent progress in deep neural networks came at the cost of an important increase of model sizes. Nowadays,
state-of-the-art architectures for common tasks such as object recognition typically have tens of millions of
parameters (He et al., 2016) and up to a billion parameters in some cases (Dean et al., 2012). Best performing
(ensemble) models typically combine dozens of such models, and their size can quickly add up to ten or
twenty gigabytes. Large models are often more accurate, but training them requires time and large amounts
of computational resources. Even when they are trained, they remain difficult to deploy, especially on mobile
devices where memory or computational power is limited.

In linear algebra, it is common to exploit structural properties of matrices to speedup computations, or reduce
memory usage. Cheng et al. (2015) have applied this principle in the context of deep neural networks, and
proposed a network architecture in which large unstructured weight matrices have been replaced with more
compact matrices with a circulant structure. Since any n-by-n circulant matrix can be represented in memory
using only a vector of dimension n, the change resulted in a drastic reduction of the model size (from 230MB
to 21MB). Furthermore, Cheng et al. have shown empirically that their network architecture can be almost
as accurate as the original network.

Moczulski et al. (2015) have proposed a more principled approach leveraging a result by Huhtanen &
Perämäki (2015) stating that any matrix A ∈ Cn×n can be decomposed into 2n − 1 diagonal and cir-
culant matrices. They use this result to design Deep diagonal-circulant ReLU networks. However their
experiments show good results even with a small number of factors (down to 2 factors), suggesting that
Deep diagonal-circulant ReLU networks can achieve good approximation error, even with few factors.

In this paper, we bridge the gap between the good empirical results observed by Moczulski et al. (2015), and
the theoretical approximation capabilities of Deep diagonal-circulant ReLU networks. We prove that Deep
diagonal-circulant ReLU networks with bounded width and small depth can approximate any dense neural
network. We obtain this result by showing that any matrix A can be decomposed into 4k + 1 diagonal and
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circulant matrices where k is the rank of the matrix A. In practice, this result is more useful than the one
by Huhtanen & Perämäki since one can rely on a low rank SVD decomposition of A while controlling the
approximation error.

In addition to this theoretical contribution, we also conduct thorough experiments on synthetic and real
datasets. In accordance with the theory, our experiments demonstrate that we can easily tradeoff accuracy
for model size by adjusting the number of factors in the matrix decomposition. Finally we evaluate the
applicability of this approach on state-of-the-art neural network architectures trained for video classification
on the Youtube-8m Video dataset (over 1TB of training data). This experiment demonstrates that Deep
diagonal-circulant ReLU networks can be used to train more compact neural networks on large scale, real
world scenarios.

2 RELATED WORK

A variety of techniques have been proposed to build more compact deep learning models. A first category of
techniques aims at compressing a trained network into a smaller model, without compromising the accuracy.
For example model distillation (Hinton et al., 2015) is two step training procedure: first a large model
is trained to be as accurate as possible, second a more compact model is trained to approximate the first
one. Other approaches have focused on compressing the network by reducing the memory, at the level of
individual weights, (for example, using weight quantization (Han et al., 2016) or parameter pruning) or at
the level of weight matrices, using low rank decomposition of the original weight matrix (Sainath et al.,
2013) or using sparse representations (Collins & Kohli, 2014; Dai et al., 2018; Liu et al., 2015).

Instead of compressing the network a posteriori, several researchers have focused on designing models
that are compact by design. This approach has several benefits, but most importantly, it reduces memory
footprint, both required during training and inference. Chen et al. (2015) have proposed to compress weight
matrices by using hashing functions to map several matrix coefficients into the same memory cell. The
techniques works well in theory, but suffers from poor performance on modern GPU devices due to irregular
access patterns.

In their paper, Cheng et al. (2015) observed that fully connected layers (which typically occupy 90%1. of
the total number of weights) are often used to perform simple dimensionality reduction operation between
layers of different dimension. The idea of replacing large weight matrices from fully connected layers with
more compact circulant layers comes from a result by Hinrichs & Vybı́ral (2011) that have demonstrated
that circulant matrices can be use to approximate the Johson-Lindenstrauss transform, often used to perform
dimensionality reduction. Building on this result Cheng et al. proposed to replace the weight matrix of a
fully connected layer by a circulant matrix initialized with random weights. The resulting models achieve
good accuracy, with the random circulant matrix, but even better when the weights of the circulant matrix
are trained with the rest of the network using a gradient based optimization algorithm. This suggests that
such layers, often perform more than simple random projections, and that more expressive fully connected
layers are beneficial to the overall accuracy of the model.

Fortunately, more general linear transforms can also be described using circulant matrices or other structured
matrices, at the cost of using more of them. Müller-Quade et al. (1998) and Schmid et al. (2000) have
demonstrated this formally by showing that any matrix can be decomposed into the product of diagonal
and circulant matrices, and Moczulski et al. (2015) have proposed a compact neural network architecture
based on this decomposition that exhibit good accuracy in practice. Other researchers have investigated
using alternative structures such as Toeplitz (Sindhwani et al., 2015), Vandermonde (Sindhwani et al., 2015)
or Fastfood transforms (Yang et al., 2015). Despite demonstrating good empirical results, there have been

1In network such as AlexNet, the last 3 fully connected layers use 58M out of the 62M total trainable parameters.
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little theoretical insight to explain the good approximation capabilities of deep neural networks based on
structured matrices.

Barron (1993) presented the universal approximation theorem which states that any neural network with
at least 1 hidden layer and sigmoid non linearity can approximate any function. However, the theorem by
Barron (1993) does not bound the width of the neural network and does not consider the training procedure.
Since then, substantial theoretical work has been done to evaluate the expressiveness of a neural network
as a function of the width (i.e. the number of neurons) and the depth of the network Arora et al. (2018);
Mhaskar et al. (2017); Lin et al. (2017); Poole et al. (2016); Raghu et al. (2016); Telgarsky (2016); Mhaskar
& Poggio (2016). In 2000, Hanin (2017) have investigated the approximation capabilities of neural networks
with ReLU activations and demonstrated that such networks can approximate any function.

More recently, Zhao et al. (2017) have provided a theoretical study of Deep diagonal-circulant ReLU net-
works and demonstrated that 2-layers networks of unbounded width are universal approximators. However,
these results are of limited interest because the networks used in practice are of bounded width. Unfortu-
nately, nothing is known about the theoretical properties of Deep diagonal-circulant ReLU networks in this
case.

3 BUILDING COMPACT DEEP NEURAL NETWORKS USING CIRCULANT MATRICES

3.1 PRELIMINARIES ON CIRCULANT MATRICES

A n-by-n circulant matrix C is a special kind of Toeplitz matrix where each row is a cyclic right shift of the
previous one as illustrated below.

C = circ(c) =


c0 cn−1 cn−2 . . . c1
c1 c0 cn−1 c2
c2 c1 c0 c3
...

. . .
...

cn−1 cn−2 cn−3 c0


Despite their rigorous structure, circulant matrices are expressive enough to model a variety of linear trans-
forms such as random projections (Hinrichs & Vybı́ral, 2011) and when they are combined together with
diagonal matrices, they can be used to represent an arbitrary transform (Schmid et al., 2000).

Circulant matrices also exhibit several properties that are interesting from a computational perspective. First,
a circulant n-by-n matrix C can be represented using only n coefficients. Thus, it is far more compact that
a full matrix that requires n2 coefficient. Second, the product between a circulant matrix C and a vector x
can be simplified to a simple element-wise product between the vector c and x in the Fourier domain (which
is generally performed efficiently on GPU devices). This results in a complexity reduced from O(n2) to
O(nlog(n)).

In their paper, Huhtanen & Perämäki (2015) have demonstrated that any matrix A ∈ Cn×n can be approxi-
mated with an arbitrary precision by a product of circulant and diagonal matrices:
Theorem 1. (Huhtanen & Perämäki, 2015) For any given matrix A ∈ Cn×n, let p be the smallest integer
such that A =

∑p
i=1DiS

i−1 where D1 . . . Dp are diagonal matrices. Then for any ε > 0, for any matrix
norm ‖·‖, there exists a sequence of matrices B1 . . . B2n−1 where Bi is a circulant matrix if i is odd, and a
diagonal matrix otherwise, such that ‖B1B2 . . . B2n−1 −A‖ < ε, and where S = circ(0, 1, 0, . . . , 0)

Because of their interesting properties, several researchers have considered circulant matrices as a replace-
ment from full weight matrices inside neural networks.
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3.2 THEORETICAL PROPERTIES OF DEEP DIAGONAL-CIRCULANT RELU NETWORKS

There has already been some recent theoretical work on Deep diagonal-circulant ReLU networks, in which
2-layer networks of unbounded width where shown to be universal approximators. These results are of
limited interest, because the networks used in practice are of bounded width. Unfortunately, nothing is
known about the theoretical properties of Deep diagonal-circulant ReLU networks in this case. In particular,
the following questions remained unanswered up to now: Are Deep diagonal-circulant ReLU networks
with bounded width universal approximators? What kind of functions can Deep diagonal-circulant ReLU
networks with bounded-width and small depth approximate?

In this section, we first define formally diagonal-circulant ReLU networks, and then provide a theoretical
analysis of their approximation capabilities.

Definition 1 (Deep ReLU networks). With ReLU(x) = max(0, x), let fA,b(x) = ReLU (Ax+ b) for any
matrices A ∈ Cn×n, and any b ∈ Rn. A Deep ReLU network is a function fAl,bl ◦ . . . ◦ fA1,b1 , where
A1 . . . Al are arbitrary n× n matrices and b1 . . . bl ∈ Cn and where l and n are the depth and the width of
the network respectively.

As in Moczulski et al. (2015), Deep diagonal-circulant ReLU networks can be defined as follows:

Definition 2 (Deep diagonal-circulant ReLU networks). A Deep diagonal-circulant ReLU network is a
function fDlCl,bl ◦ . . . ◦ fD1C1,b1 where D1 . . . Dl ∈ Cn×n are diagonal matrices, C1 . . . Cl ∈ Cn×n
are circulant matrices, and where l and n are the depth and the width of the network respectively.

To show that bounded-width Deep diagonal-circulant ReLU networks are universal approximators, we first
need a proposition relating standard deep neural networks to Deep diagonal-circulant ReLU networks.

Proposition 2. Let N : Rn → Rn be a deep ReLU networks of width n and depth l, and let X ⊂ Rn be
a compact set. For any ε > 0, there exists a deep diagonal-circulant ReLU network N ′ of width n and of
depth (2n− 1)l such that ‖N (x)−N ′(x)‖2 < ε for all x ∈ X .

We can now state the universal approximation corrolary:

Corrolary 1. Bounded depth Deep diagonal-circulant ReLU networks are universal approximators on any
compact set X .

Proof. Proposition 2 shows that bounded-width Deep diagonal-circulant ReLU networks can approximate
any Deep ReLU network. It has been shown recently in Hanin (2017) that bounded-width deep ReLU
networks are universal approximators. Together, these two results concludes the proof.

It is important to remark that Deep diagonal-circulant ReLU networks are not necessarily more compact than
Deep ReLU networks. Indeed, consider a n-wide Deep ReLU network with l layers having ln2 weights. The
previous corollary tells us that this network can be decomposed in a Deep ReLU networks involving l(2n−1)
matrices, i.e. 2ln(2n− 1) weights.

Despite the lack of theoretical guarantees a number of work provided empirical evidence that bounded
width and small depth Deep diagonal-circulant ReLU networks result in good performance (e.g. Moczulski
et al. (2015); Araujo et al. (2018); Cheng et al. (2015)). The following theorem studies the approximation
properties of these small depth networks.

Proposition 3. Let N : fAl,bl ◦ . . . ◦ fA1,b1 be a deep ReLU network of width n and depth l, such that
each matrix Ai is of rank ki, where ki divides n. Let X ⊂ Rn be a compact set. For any ε > 0, there
exists a deep diagonal-circulant ReLU network N ′ of width n and of depth (

∑n
i=1 (4ki + 1)) l such that

‖N (x)−N ′(x)‖2 < ε for all x ∈ X .
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This result generalizes Proposition 2, showing that a Deep diagonal-circulant ReLU networks of bounded
width and small depth can approximate a deep ReLU network in which the dense matrices are of low rank.
Note in the proposition, we require that ki divides n. We conjecture that the proposition holds even without
this condition, but we were not able to prove it.

Finally, what if we choose to use small depth network to approximate deep ReLU networks where matrices
are not of low rank ? To answer this question, we first need to show the negative impact of replacing matrices
by their low rank approximators in neural networks:

Proposition 4. Let N = fAl,bl ◦ . . . ◦ fA1,b1 be a deep ReLU network, where Ai ∈ Cn×n, bi ∈ Cn for all
i ∈ [l]. Let Āi be the matrix obtained by a SVD approximation of rank k of matrix Ai. Let σi,j is the jth

singular value of Ai. Define N̄ = fĀl,bl ◦ . . . ◦ fĀ1,b1 . Then, for any x ∈ Cn, we have
∥∥N (x)− N̄ (x)

∥∥ ≤
(σl

max,1−1)Rσmax,k

σmax,1−1 where R is an upper bound on norm of the output of any layer in N , and σmax,j =
maxi σi,j .

Basically, this proposition shows that we can approximate matrices in a neural network by low rank matrices,
and control the approximation error. In general, the term σlmax,1 could seem large, but in practice, it is likely
that most singular values in deep neural network are small in order to avoid divergent behaviors. We can
now prove the result on Deep diagonal-circulant ReLU networks:

Corrolary 2. Consider any deep ReLU network N = fAl,bl ◦ . . . ◦ fA1,b1 of depth l and width n. Let
σmax,j = maxi σi,j where σi,j is the jth singular value of Ai. Let X ⊂ Rn be a compact set. For any k
dividing n, there exists a deep diagonal-circulant ReLU network N ′ = fDmCm,b′l

◦ . . . ◦ fD1C1,b′1
of width

n and of depth m = 4(k + 1)n, such that for any x ∈ X , ‖N (x)−N ′ (x)‖ < (σl
max,1−1)Rσmax,k

σmax,1−1 , where
R is an upper bound on the norm of the outputs of each layer in N .

Proof. Let N̄ = fĀl,bl ◦ . . . ◦ fĀ1,b1 , where each Āi is the matrix obtained by a SVD approximation of rank
k of matrix Ai.

With proposition 4, we have an error bound on
∥∥N (x)− N̄ (x)

∥∥. Now each matrix Āi can be replaced by a
product of k diagonal-circulant matrices. By lemma 1, this product yields a Deep diagonal-circulant ReLU
networks of depth m = 4(k + 1)n, strictly equivalent to N̄ on X . The result follows.

4 EMPIRICAL EVALUATION

The experiments that we present in this section aim at answering the following questions. First question:
what is the impact of increasing the number of diagonal-circulant factors on the accuracy of the network?
To answer this question, we conduct a series of experiments on a synthetic classification dataset with an
increasing number of factors. As we will show, the results match our theoretical analysis from Section 3.
Second question: can this approach be useful to build more compact models in the context of large scale real-
world machine learning applications. To answer this second question, we build a deep diagonal-circulant
neural network architecture for video classification. The architecture is based on state-of-the-art architecture
initially proposed by Abu-El-Haija et al. (2016b) and later improved by Miech et al. (2017) in involve several
large layers that can be made more compact using circulant matrices as done in Araujo et al. (2018). As we
will show, the approach demonstrate good accuracy and can be used to build a more compact network than
the original one.
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4.1 IMPACT OF THE NUMBER OF DIAGONAL-CIRCULANT FACTORS ON ACCURACY

Experimental setup The dataset is generated using the make classification2 function from Scikit-
Learn (Pedregosa et al., 2011). It is made of 10000 examples, 5 variables, 2 classes and 2 clusters for
each class. We train a neural network with 3 hidden layers of 1024 neurons each. We used a batch size of
50, a learning rate of 5× 10−2, a learning rate decay of 0.9 every 10 000 examples. We compare the dense
neural network with a Deep diagonal-circulant ReLU networks with several factors. We use the initialization
proposed in Moczulski et al. (2015).

#Factors #Params Compress.
Rate (%) Loss

Dense 2 107 397 - 0.16016
k = 2 19 461 99.0 0.38847
k = 4 35 845 98.2 0.36668
k = 8 68 613 96.7 0.33275
k = 16 134 149 93.6 0.32798
k = 32 523 269 75.1 0.32657

Table 1: This table shows the loss obtain on the synthetic dataset given the number of factor used for each
layer.

Results Table 4.1 shows the loss of the dense architecture versus the Deep diagonal-circulant ReLU net-
works with different factors. The table also shows the compression rate obtain with the Deep diagonal-
circulant ReLU networks. We notice that the Deep diagonal-circulant ReLU networks manage to achieve
more than 90% compression rate with a substantial loss in accuracy with factor up to 16. Adding factors
improve the accuracy but make the convergence difficult. We were note able to train a model with more than
32 layers. A solution would be to use the circulant-diagonal ReLU decomposition only on certain layer in
order to trade-off compression with accuracy more precisely.

4.2 DEEP DIAGONAL-CIRCULANT RELU NETWORKS FOR LARGE-SCALE VIDEO CLASSIFICATION

In this section, we demonstrate the applicability of diagonal-circulant ReLU networks in the context of a
large scale video classification architecture trained on the Youtube-8M dataset. Our architecture is based on
a state-of-the-art architecture that was initially proposed by Abu-El-Haija et al. (2016b) and later improved
by Miech et al. (2017).

4.2.1 EXPERIMENTAL SETTINGS

Dataset The dataset is composed of an embedding (each video and audio frames are represented by a
vector of respectively 1024 and 128) of video and audio frames extracted every 1 seconds with up to 300
frames per video.

Model Architecture This architecture can be decomposed into three blocks of layers, as illustrated in
Figure 4.1. The first block of layers, composed of the Deep Bag-of-Frames embedding, is meant to make
an embedding of these frames in order to make a simple representation of each video. The first block
of layers, composed of the Deep Bag-of-Frames embedding, is meant to process audio and video frames

2http://scikit-learn.org/stable/modules/generated/sklearn.datasets.make classification.html
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Embedding Dim Reduction Classification

Video

Audio

FC

FC

concat MoE
Context
Gating

Figure 4.1: This figure shows the architecture used for the training of the YouTube-8M dataset.

independently. The DBoF layer computes two embeddings: one for the audio and one for the video. In
the next paragraph, we will only focus on the describing the video embedding. (The audio embedding is
computed in a very similar way.) A second block of layers reduces the dimensionality of the output of the
embedding and merges the resulting output with a concatenation operation. Finally, the classification block
uses a combination of Mixtures-of-Experts (MoE) Jordan & Jacobs (1993); Abu-El-Haija et al. (2016a) and
Context Gating Miech et al. (2017) to calculate the final probabilities.

Experiment We want to compare the effect on the circulant-diagonal ReLU decomposition only on cer-
tain layer to evaluate the trade-off between compression rate and accuracy. First, we train the architecture
presented in Figure 4.1 without any circulant matrices to serve as a baseline. Then, we used the circulant-
diagonal decomposition on each layer independently.

Hyper-parameters All our experiments are developed with TensorFlow Framework Abadi et al. (2015).
We trained our models with the CrossEntropy loss and used Adam optimizer with a 0.0002 learning rate and
a 0.8 exponential decay every 4 million examples. We used a fully connected layer of size 8192 for the video
DBoF and 4096 for the audio. The fully connected layers used for dimensionality reduction have a size of
512 neurons. We used 4 mixtures for the MoE Layer.

Evaluation Metric We used the GAP (Global Average Precision), as used in Abu-El-Haija et al. (2016b),
to compare our experiments.

4.2.2 RESULTS

This series of experiments aims at understanding the effect of circulant-diagonal ReLU decomposition over
different layers with 1 factors. Table 2 shows the result in terms of number of weights, size of the model
(MB) and GAP. We also compute the compression ratio with respect to the dense model. The compact fully
connected layer achieves a compression rate of 9.5 while having a very similar performance, whereas the
compact DBoF and MoE achieve a higher compression rate at the expense of accuracy. Figure 4.2 shows
that the model with a compact FC converges faster than the dense model. The model with a compact DBoF
shows a big variance over the validation GAP which can be associated with a difficulty to train. The model
with a compact MoE is more stable but at the expense of its performance.
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Baseline Model #Weights Size (MB) Compress.
Rate (%) GAP@20 Diff.

Dense Model 45 359 764 173 - 0.846 -
Compact DBoF 36 987 540 141 18.4 0.838 -0.008
Compact FC 41 181 844 157 9.2 0.845 -0.001
Compact MoE 12 668 504 48 72.0 0.805 -0.041

Table 2: This table shows the effect of circulant-diagonal decomposition on different layers.

0 1 2 3 4 5 6 7
0.77

0.78

0.79

0.8

0.81

0.82

0.83

0.84

0.85

0.86

0.87

Epochs

V
al

id
at

io
n

G
A

P

Comparison of the effect of compactness over
different layers with the base model

Dense Model Model with compact DBoF
Model with compact FC Model with compact MoE

Figure 4.2: Validation GAP according to the number of epochs for different compact models.

5 CONCLUSIONS

In this paper we provided a theoretical study of the properties of Deep diagonal-circulant ReLU networks
and demonstrated that they are bounded width universal approximators. The bound on this decomposition
allowed us to calculate the error bound on any Deep diagonal-circulant ReLU networks given the depth on
the network and the singular values associated with the weight matrices. Our empirical study demonstrate
that we can trade-off model size for accuracy in accordance with the theory, and that we can use Deep
diagonal-circulant ReLU networks in large scale machine learning applications.
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6 SUPPLEMENTAL MATERIAL: TECHNICAL LEMMAS AND PROOFS

Lemma 1. Let Al, . . . A1 ∈ Cn×n, b ∈ Cn and let X ⊂ Rn be a compact set. There exists βl . . . β1 ∈ Cn
such that for all x ∈ X we have fAl,βl

◦ . . . ◦ fA1,β1
(x) = ReLU (AlAl−1 . . . A1x+ b).

Proof. of lemma 1. Define Ω = maxx∈X ,j∈[l]

∥∥∥∏j
k=1Akx

∥∥∥
∞

. Define hj(x) = Ajx + βj . Let β1 = Ω1n

where 1n is the n-vector of ones. Clearly, for all x ∈ X we have h1(x) ≥ 0, so ReLU ◦ h1(x) = h1(x).
More generally, for all j < n − 1 define βj+1 = 1nΩ − Aj+1βj . It is easy to see that for all j < n
we have hj ◦ . . . ◦ h1(x) = AjAj−1 . . . A1x + 1nΩ. This garantees that for all j < n, hj ◦ . . . ◦ h1(x) =
ReLU ◦hj◦. . .◦ReLU ◦h1(x). Finally, define βl = b−Alβl−1 . We have,ReLU ◦hl◦. . .◦ReLU ◦h1(x) =
ReLU (Aj . . . A1x+ b).

Proof. of proposition 2. AssumeN = fAl,bl◦. . .◦fA1,b1 . By theorem 1, for any ε′ > 0, any matrixAi, there

exists a sequence of 2n−1 matricesCi,nDi,n−1Ci,n−1 . . . Di,1Ci,1 such that
∣∣∣∏n−1

j=0 Di,n−jCi,n−j −Ai
∣∣∣ <

ε′, where Di,1 is the identity matrix. By lemma 1, we know that there exists {βij}i∈[l],j∈[n] such that for all
i ∈ [l], fDinCin,βin ◦ . . . ◦ fDi1Ci1,βi1(x) = ReLU (DinCin . . . Ci1x+ bi).

Now if ε′ tends to zero, ‖fDinCin,βin
◦ . . . ◦ fDi1Ci1,βi1

−ReLU (Aix+ bi)‖ will also tend to zero for any
x ∈ X , because the ReLU function is continuous andX is compact. LetN ′ = fD1nC1n,β1n

◦. . .◦fDi1Ci1,βi1
.

Again, because all functions are continuous, for all x ∈ X , ‖N (x)−N ′(x)‖ tends to zero as ε′ tends to
zero.

Proposition 5. Let A ∈ Cn×n a matrix of rank k. Assume that n can be divided by k. For any ε > 0,
there exists a sequence of 4k + 1 matrices B1, . . . , B4k+1, where Bi is a circulant matrix if i is odd, and a
diagonal matrix otherwise, such that
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∥∥∥∥∥A−
4k+1∏
i=1

Bi

∥∥∥∥∥
F

< ε

Proof. of proposition 5. Let UΣV T be the SVD decomposition of M where U, V and Σ are n×n matrices.
BecauseM is of rank k, the last n−k columns of U and V are null. In the following, we will first decompose
U into a product of matrices WRO, where R and O are respectively circulant and diagonal matrices, and
W is a matrix which will be further decomposed into a product of diagonal and circulant matrices. Then,
we will apply the same decomposition technique to V . Ultimately, we will get a product of 4k + 2 matrices
alternatively diagonal and circulant.

Let R = circ(r1 . . . rn). Let O be a n× n diagonal matrix where Oi,i = 1 if i ≤ k and 0 otherwise. The k
first columns of the product RO will be equal to that of R, and the n− k last colomns of RO will be zeros.
For example, if k = 2, we have:

RO =


r1 rn 0 · · · 0
r2 r1

r3 r2

...
...

...
...

rn rn−1 0 · · · 0


Let us define k diagonal matricesDi = diag(di1 . . . din) for i ∈ [k]. For now, the values of dij are unknown,
but we will show how to compute them. Let W =

∑k
i=1DiS

i−1. Note that the n − k last columns of the
product WRO will be zeros. For example, with k = 2, we have:

W =


d1,1 d2,1

d2,2 d1,2

d2,3
. . .
. . .

d2,n d1,n



WRO =


r1d11 + rnd21 rnd11 + rn−1d21 0 · · · 0
r2d12 + r1d22 r1d12 + rnd22

...
...

...
...

rnd1n + rn−1d2n rn−1d1n + rn−2d2n 0 · · · 0


We want to find the values of dij such that WRO = U . We can formulate this as linear equation system. In
case k = 2, we get:
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rn r1

rn−1 rn
r1 r2

rn r1

r2 r3

r1 r2

. . .
. . .


×



d2,1

d1,1

d2,2

d1,2

d2,3

d1,3

...

...


=



U1,1

U1,2

U2,1

U2,2

...


The ith bloc of the bloc-diagonal matrix is a Toeplitz matrix induced by a subsequence of length k of
(r1, . . . rn, r1 . . . rn). Set rj = 1 for all j ∈ {k, 2k, 3k, . . . n} and set rj = 0 for all other values of j. Then
it is easy to see that each bloc is a permutation of the identity matrix. Thus, all blocs are invertible. This
entails that the block diagonal matrix above is also invertible. So by solving this set of linear equations, we
find d1,1 . . . dk,n such that WRO = U . We can apply the same idea to factorize V = W ′.R.O for some
matrix W ′. Finally, we get

A = UΣV T = WROΣOTRTW
′T

Thanks to Theorem 1, W and W ′ can both be factorized in a product of 2k − 1 circulant and diagonal
matrices. Note that OΣOT is diagonal, because all three are diagonal. Overall, A can be represented with a
product of 4k + 2 matrices, alternatively diagonal and circulant.

Proof. of proposition 3 By proposition 5, each low rank matrix of the neural net can be decomposed in a
small number of diagonal and circulant matrices. By lemma 1, the matrices can be connected to form a
neural net.

Proof. of proposition 4 Let x0 ∈ Cn and x̄0 = x0. For all i ∈ [l], define xi = ReLU (Aixi−1 + b) and
x̄i = ReLU

(
Āix̄i−1 + b

)
. By lemma 2, we have

‖xi − x̄i‖ ≤ σi,k+1 ‖xi−1‖+ σi,1 ‖xi−1 − x̄i−1‖

Observe that for any sequence a0, a1 . . . defined reccurently by a0 = 0 and ai = rai−1 + s, the reccurence

relation can be unfold as follows: ai =
s(ri−1)
r−1 . We can apply this formula to bound our error as follows

‖xl − x̄l‖ ≤
(σl

max,1−1)σmax,k maxi‖xi‖
σmax,1−1 .

Lemma 2. Let A ∈ Cn×n with singular values σ1 . . . σn, and let x, x̄ ∈ Cn. Let Ā be the matrix obtained
by a SVD approximation of rank k of matrix A. Then we have:

∥∥ReLU (Ax+ b)−ReLU
(
Āx̄+ b

)∥∥ ≤ σk+1 ‖x‖+ σ1 ‖x̄− x‖

Proof. Recall that ‖A‖2 = supz
‖Az‖2
‖z‖2

= σ1 =
∥∥Ā∥∥

2
, because σ1 is the greatest singular value of both A

and Ā. Also, note that
∥∥A− Ā∥∥

2
= σk+1. Let us bound the formula without ReLUs:
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∥∥(Ax+ b)−
(
Āx̄+ b

)∥∥ =
∥∥(Ax+ b)−

(
Āx̄+ b

)∥∥
=
∥∥Ax− Āx− Ā (x̄− x)

∥∥
≤
∥∥(A− Ā)x∥∥+

∥∥Ā∥∥
2
‖x̄− x‖

≤ ‖x‖σk+1 + σ1 ‖x̄− x‖

Finally, it is easy to see that for any pair of vectors a, b ∈ Cn, we have ‖ReLU(a)−ReLU(b)‖ ≤ ‖a− b‖.
This concludes the proof.
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