
A state-space model for inferring effective
connectivity of latent neural dynamics from

simultaneous EEG/fMRI

Tao Tu
Columbia University

tt2531@columbia.edu

John Paisley
Columbia University

jpaisley@columbia.edu

Stefan Haufe
Charité – Universitätsmedizin Berlin

stefan.haufe@charite.de

Paul Sajda
Columbia University

psajda@columbia.edu

Abstract

Inferring effective connectivity between spatially segregated brain regions is impor-
tant for understanding human brain dynamics in health and disease. Non-invasive
neuroimaging modalities, such as electroencephalography (EEG) and functional
magnetic resonance imaging (fMRI), are often used to make measurements and
infer connectivity. However most studies do not consider integrating the two modal-
ities even though each is an indirect measure of the latent neural dynamics and
each has its own spatial and/or temporal limitations. In this study, we develop a
linear state-space model to infer the effective connectivity in a distributed brain
network based on simultaneously recorded EEG and fMRI data. Our method first
identifies task-dependent and subject-dependent regions of interest (ROI) based
on the analysis of fMRI data. Directed influences between the latent neural states
at these ROIs are then modeled as a multivariate autogressive (MVAR) process
driven by various exogenous inputs. The latent neural dynamics give rise to the ob-
served scalp EEG measurements via a biophysically informed linear EEG forward
model. We use a mean-field variational Bayesian approach to infer the posterior
distribution of latent states and model parameters. The performance of the model
was evaluated on two sets of simulations. Our results emphasize the importance
of obtaining accurate spatial localization of ROIs from fMRI. Finally, we applied
the model to simultaneously recorded EEG-fMRI data from 10 subjects during a
Face-Car-House visual categorization task and compared the change in connectivity
induced by different stimulus categories.

1 Introduction

Identifying the spatiotemporal dependence among distributed cortical regions is often seen as crucial
for understanding the macro-scale neural dynamics underlying human cognition. Such spatiotemporal
dependencies can be quantified statistically by the modeling of effective connectivity, which is defined
as the time-lagged influence of one brain region over another [1]. Effective connectivity has been
introduced in the framework of dynamic causal modeling (DCM). DCM uses a state-space model with
hidden state variables to describe task-dependent "causal" interactions between latent neural states
and how the activity of regional neural states translates into observed neural measurements [2, 3].
Estimating effective connectivity between anatomically segregated brain regions is a challenging
problem for several reasons: 1) the inference is made on unobserved latent states rather than directly
on the observations; 2) latent neural dynamics often evolve on a fast time scale so it requires the
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observation time series to be measured on a similar temporal scale; 3) accurate spatial localization of
the activated brain regions is often a prerequisite for the specification of a meaningful dynamic causal
model.

To address these challenges, a number of state-space based modeling techniques have been developed
and applied to a variety of non-invasive neuroimage modalities such as electroencephalography (EEG)/
magnetoencephalography (MEG), functional magnetic resonance imaging (fMRI), and functional
near-infrared spectroscopy (fNIRS). Modalities like EEG and MEG with high temporal resolution
offer advantages in terms of measuring and inferring effective connectivity. Cheung et al. [4]
proposed a state-space model where the latent neural dynamics at pre-defined ROIs were modeled as
a multivariate autoregressive (MVAR) process. They assumed a known EEG forward model with
unknown spatial distribution of the EEG sources within each ROI. Haufe et al. [5] used a similar
MVAR approach to model the connectivity in EEG source space where the spatial source demixing
was optimized jointly with the connectivity estimation. David et al. [6] used a nonlinear hierarchical
neural mass model for the "casual" modeling of evoked responses in EEG/MEG. Another model
for evoked responses in MEG/EEG was proposed by Yang et al. [7] where a time-varying MVAR
model was used to estimate the dynamic connectivity among multiple ROIs. In contrast to the work
by Cheung et al. [4], they also used a known MEG/EEG forward model for the evoked responses,
but sources within the same ROI were modeled as independent Gaussian variables. Other dynamical
models leveraging the relatively high spatial resolution of fMRI [3, 8, 9] and fNIRs [10, 11] have
also been developed for brain connectivity analysis.

All of these inference methods are based on neural measurements from a single modality, and therefore
suffer from potentially suboptimal estimates of the true latent neural dynamics due to the limitation in
spatial or temporal resolution of the modality. Simultaneous EEG-fMRI is a neuroimaging technique
that leverages the complementary strengths of both modalities, namely 3D spatial resolution of fMRI
and temporal resolution of EEG. Given that the data from two modalities are recorded under identical
experimental conditions, one can use fMRI activations as a spatial prior to improve the accuracy of
EEG source localization [12, 13, 14].

In this paper we propose a linear state-space model for estimating the effective connectivity using, as
observations, data from simultaneously recorded EEG and fMRI. Our goal is to combine EEG with
fMRI to arrive at estimates of the latent neural dynamics with high spatiotemporal resolution. Since
fMRI offers significant advantage over EEG in terms of spatially localizing potential source activity,
we first identify task-specific ROIs from the analysis of fMRI data on each individual subject. The
locations of these ROIs are used as spatial constraints to inform the effective connectivity modeling
of EEG. Similar to the ROI source model proposed by Yang et al. [7], we also model the latent state
variables as the mean source activity at each ROI. Each source inside one ROI follows a Gaussian
distribution with the ROI mean and a shared unknown variance parameter. In contrast to [7], we model
the state equation as an MVAR process, which describes the directed interactions between latent states
driven by deterministic inputs specific to an experiment. Inputs can directly influence the activity at a
particular region (external input) or they can modulate the connectivity between regions. Finally, an
EEG forward model based on a pre-estimated lead field matrix was constructed together with the
ROI source model to generate scalp EEG observations. We use a mean-field variational Bayesian
approach to infer the posterior distribution of latent variables and model parameters. The posterior
estimates are updated efficiently via a sequential Kalman filter and the use of conjugate priors. We
evaluated the model performance on two sets of simulations and demonstrated the importance of
the spatial specificity provided by fMRI. We then applied the state-space model to simultaneously
EEG-fMRI recordings from 10 subjects during a face-car-house rapid decision-making task.

2 Model

Model description Our linear state-space model for inferring the latent neural dynamics consists of
a state equation and two observation equations for EEG. In the state equation, we model the temporal
dependence between latent state variables as a first-order MVAR process in the presence of external
and context-dependent inputs:

st = Ast−1 +

K∑
k=1

Bkmk
t st−1 + Dut + ωt (1)
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where st is an S × 1 vector of latent state variables at time t. Each element in st represents the
mean activity of all EEG sources within one of S ROIs. A is an S × S intrinsic connectivity matrix
wherein each entry denotes the connection strength between a pair of latent variables in the absence
of input. mk

t , where k = 1, 2, ...K, represents the kth modulatory input at time t. Bk ∈ RS×S is the
kth modulatory connectivity matrix where each element denotes the change in connectivity induced
by the modulatory input mk

t . ut is an S × 1 vector that denotes the external input at each ROI and
D is an S × S diagonal matrix whose diagonal element denotes the strength of ut. ωt ∈ RS×1 is a
Gaussian state noise vector at time t with a zero mean and a diagonal covariance matrix Qs. This
bilinear model used to approximate the latent state dynamics modulated by task demand is similar to
that in [3].

The observation model for EEG consists of two equations. We used a volumetric source model which
assumes that EEG sources are uniformly distributed on a 3-D grid inside the brain. The position and
the orientation of each source (dipole) is fixed and pre-estimated from real data in this model. Source
activity xt propagates through brain tissues and generates EEG potentials yt measured by electrodes
placed on the scalp via the following linear forward model:

yt = Lxt + et, (2)

where yt ∈ RM×1 is the EEG observations measured from M channels at time t. xt ∈ RU×1is the
activity of U EEG sources at time t. L ∈ RM×U is the lead field matrix that describes the mapping
from EEG source space to channel space. L in our model was pre-computed by solving the EEG
forward modeling problem [15]. et is an M × 1 vector that models the noise at each channel as
a Gaussian with zero mean and covariance matrix Qy. Solving xt from yt is called EEG inverse
modeling or source localization. It is an ill-posed problem since U � M . Many EEG source
localization methods such as minimum-norm estimation (MNE) [16] require the estimate of Qy from
baseline data. The solution to EEG source localization is not unique and often not robust, especially
based on EEG data alone. Therefore, we did not model each single source in the whole brain as
a latent variable. Similar as in [7], the source activity xt in our model is composed of the latent
variables st by the following equation:

xt = Gst + εt (3)

where G ∈ RU×S is a binary indicator matrix. Each row of G is a one-hot vector that encodes the
membership of each source in one of the ROIs. εt ∈ RU×1 is a Gaussian noise term with zero mean
and U × U diagonal covariance matrix Qx. Consequently, each source in xt is Gaussian distributed
around its corresponding ROI mean in st with a variance σ2

r , r = 1, . . . , S specified in the diagonal
elements of Qx . If a source in xt is not contained in any ROI, it is modeled as a Gaussian variable
with a zero mean and variance σ2

0 . This model assumes that all sources in the rthROI have the same
variance parameter σ2

r , while sources that do not belong to any ROI have the same variance parameter
σ2
0 . Therefore, there are only S + 1 distinct elements in the diagonal of Qx.

Substituting (3) into (2) and eliminating xt, the EEG observation model can be expressed as:

yt = Cst + φt (4)

where C = LG is a known M × S matrix and φt is the Gaussian noise term at time t with a zero
mean and an M ×M covariance matrix R = Qy + LQxL

′. L′ denotes the transpose of L.

Taken together, our linear state-space model can be expressed as (see Figure 1 for illustration):

st|st−1 ∼ N (Ast−1 +

K∑
k=1

Bkmk
t st−1 + Dut,Qs), yt|st ∼ N (Cst,R) . (5)

Model inference Given EEG observations Y = {yt}Tt=1, we use the mean-field variational
Bayesian (VB) approximation to make inference on the posterior distributions of the latent state
variables S = {st}Tt=1 and the unknown model parameters θ =

{
A, {Bk}Kk=1,D,Qs,R

}
. Figure

1B shows the probabilistic graphical representation of our model. In VB, we make analytical approxi-
mation to the joint posterior distribution p(S,θ|Y) in order to maximize the evidence lower bound
(ELBO)[17]:

L(q) =

∫
q(S,θ) log

p(S,θ,Y)

q(S,θ)
dθdS (6)
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Figure 1: Model overview. A, Illustration of the linear state-space model for simultaneous EEG/fMRI.
B, Probabilistic graphical representation of the model.

where q(S,θ) is an arbitrary density from a family of variational distributions. It is easy to show that
the ELBO objective is maximized when q(S,θ) = p(S,θ|Y). Since p(S,θ|Y) is often intractable,
we choose a density from the mean-field variational family having the form q(S,θ) = q(S|Y)q(θ|Y)
to approximate p(S,θ|Y). The solution that maximizes L(q) satisfies [17]:

log q(S|Y) ∝ Eθ(log p(S,θ,Y)) (7)

log q(θ|Y) ∝ ES(log p(S,θ,Y)) (8)

where the expectation is taken with respect to q(θ|Y) and q(S|Y) respectively.

Equation (7) is the VB-E step where we estimate the posterior distribution of latent variable q(S|Y)
given the current estimate of q(θ|Y). Since we assume Gaussian posterior on S, we use Kalman
filtering and smoothing to sequentially update the posterior mean µTt and covariance ΣT

t of the latent
variables at every time t. More details of the derivation are provided in Appendix.

Equation (8) is the VB-M step where we update the posterior distribution of model parameters q(θ|Y)

given the current estimate of q(S|Y). For the state model parameters θS =
{
A, {Bk}Kk=1,D,Qs

}
,

we choose a Gaussian-Gamma conjugate prior according to the principle of automatic relevance
determination (ARD). ARD assigns a separate shrinkage prior to each element of the connectivity
matrices which in turn is adjusted by a hyper-prior [17, 18]. It encourages a sparse structure in the
connectivity matrices to enhance interpretability. The use of conjugate priors also allows one to
obtain closed-form solution for the posterior updates of model parameters. Since we assume the state
noise covariance Qs to be diagonal, we can estimate each row in the model parameters θS separately.
Specifically, the rth row of the state equation can be expressed as:

st[r] = η′[r]̃st[r] + ωt[r], ωt[r] ∼ N (0, β−1[r]), β[r] = 1/Qs(r, r) (9)

where s̃t[r] =

[
F̃tst−1
ut[r]

]
, F̃t =

[
IS m1

t IS . . . mK
t IS

]′
and η[r] = [a[r],b1[r], ...,bK [r], d[r]]

′.

β[r] is the precision of the state noise at the rth row; a[r] and bk[r] are the rth rows of A and Bk,
respectively; d[r] is the rth diagonal element of D.

We assume the following Gaussian-Gamma conjugate priors for η[r], β[r], and α [19]:

p(η[r], β[r]|α) = N
(
0, (β[r]Λα)−1

)
Gamma(a0, b0), p(α) =

(K+1)S+1∏
i=1

Gamma(c0, d0) (10)

where α = [α1, α2, ..., α(K+1)S+1] is a vector of hyperparameters on each element of η[r] and Λα

is a diagonal matrix with the vector α. Each hyperparameter in α has a separate Gamma prior. The
variational joint posterior for η[r] and β[r] has the same form as their priors:

q(η[r], β[r]|Y) = N (µ̄[r], β−1[r]Σ̄[r])Gamma(ā[r], b̄[r]) (11)
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where

Σ̄−1[r] =

[∑T
t=2 F̃tEs[st−1s

′
t−1]F̃′t

∑T
t=2 F̃tµ

T
t−1ut[r]∑T

t=2 ut[r](µ
T
t−1)′F̃′t

∑T
t=2 (ut[r])

2

]
+ Eα(Λα) (12)

µ̄[r] = Σ̄[r]

[∑T
t=2 F̃tEs[st[r]st−1]∑T

t=2 ut[r]µ
T
t [r]

]
, Eα(Λα) = diag

(
c̄1
d̄1
,
c̄2
d̄2
, ...,

c̄(K+1)S+1

d̄(K+1)S+1

)
(13)

ā[r] = a0 +
T − 1

2
, b̄[r] = b0 +

1

2

[
T∑
t=2

Es[(st[r])
2]− µ̄′[r]Σ̄−1[r]µ̄[r]

]
(14)

The posterior for each hyperparameter αj , j = 1, 2, ..., (K+1)S+1 can be computed independently:

q(αj |Y) = Gamma(αj |c̄j , d̄j) (15)
where

c̄j = c0 +
1

2
, d̄j = d0 +

1

2

[
ā[r]

b̄[r]
(µ̄[r, j])2 + Σ̄r[j, j]

]
(16)

µ̄[r, j] is the jth element of µ̄[r] and Σ̄r[j, j] is the jth diagonal element of Σ̄[r].

The noise covariance R comprises two unknown quantities Qy and Qx. Choosing a conjugate prior
for each of them individually is difficult. Since Qy and Qx are not of primary interest in our study,
we optimize R directly. We set the inverse Wishart prior IW (v0,V0) on R [20]:

q(R|y) = IW (vn,Vn) (17)

where
vn = v0 + T, Vn = V0 +

(
T∑
t=1

(yt −CµTt )(yt −CµTt )′ + CΣT
t C′

)
(18)

The implementation of the algorithm in Matlab and the dataset are available at https://github.
com/taotu/VBLDS_Connectivity_EEG_fMRI.

3 Results

We first evaluated the performance of the state-space model on simulated datasets and then applied
the model to real simultaneously recorded EEG and fMRI data (see more details in Appendix). In
the simulation study, we assessed the performance of the model when spatial localization of ROIs
is inaccurate, simulating the scenario when fMRI information is not available. We generated two
simulation scenarios corresponding to two different types of EEG-fMRI experiment designs: a block
design and an event-related design. For analysis of the real simultaneous EEG-fMRI data, we applied
the state-space model on the EEG data recorded simultaneously with fMRI to infer the induced
connectivity change between brain regions activated during a Face-Car-House visual categorization
task. Combining the subject-specific fMRI activation maps and the EEG temporal dynamics enabled
us to compare differences in modulatory connectivity induced by face stimuli vs. house stimuli.

3.1 Simulations

Scenario 1: Block Design We simulated the latent dynamics in the brain network consisting of
S = 5 ROIs using the structure shown in Figure 2A. The external input was modeled as a sequence of
impulse functions with an inter-stimulus interval (ISI) uniformly drawn between 2 s to 2.5 s (longer
than the fMRI repetition time TR=2 s). The modulatory input was modeled as alternating on-off
blocks with a block duration of 20 s to simulate a block design fMRI experiment where change
in the network connectivity could be induced by stimulus presentation or alternation of cognitive
states (such as attention and salience). The external input feeds into FFA with a strength of 0.9 and
the modulatory input changes the connection strength from SPL to PPA and from ACC to FEF. In
particular, the direction of the modulatory connection from SPL to PPA is opposite to that of the
intrinsic connection between them. The state covariance Qs was set to be the identity matrix. The
ROI variance σ2

r , r = 0, 1, . . . , S in Qx was drawn from a Gamma distribution Γ(0.2, 1) whose
shape and scale parameters were estimated from real data. The EEG measurement noise covariance
Qy was also estimated from real data during the baseline period. We simulated the latent ROI mean
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activity and EEG data for a duration of T = 8 min with a sampling rate of 100 Hz. The unit of the
simulated EEG measurements was microvolt.

Scenario 2: Event-related Design To mimic a more realistic EEG-fMRI experiment design, we
simulated two modulatory inputs that induce different connectivity patterns shown in Figure 2B. The
modulatory inputs were modeled as a sequence of discrete events with a duration of 2 s. The ISI
was also drawn uniformly from 2 s to 2.5 s so that there was no overlap between the two inputs.
Other parameters were the same as in scenario 1. The aim of this simulation was to test whether
the algorithm could correctly distinguish the modulatory connectivity matrices induced by different
modulatory inputs.

To illustrate the value of the high spatial specificity provided by fMRI, we simulated an ’EEG-only’
condition where fMRI data was not available. To achieve this, the anatomical region of each ROI
was dilated so that the number of sources erroneously included was approximately 30% of the total
number of true sources across 5 ROIs. The direct outcome of this spatial smearing was that more
rows in G would have nonzero entries. In the absence of fMRI data, one typically has to define
ROIs based on atlases defined based on structural brain images, which may cause inaccurate spatial
localization of ROIs. We compared the performance of the algorithm between the ’EEG-fMRI’ and
the ’EEG-only’ conditions to highlight the importance of the spatial resolution added by fMRI.

Ten independent simulation datasets were generated for each scenario. For each simulation dataset,
we applied the EEG-fMRI method and the EEG-only method separately. Since we simulated relatively
large samples, we chose small non-informative priors for the model parameters. Two methods were
initialized with the same set of parameters (see Appendix). The performance of the algorithm in
recovering the intrinsic and modulatory connectivity matrices A and B as well as the noise covariance
matrices Qs and R was evaluated using the relative error between the true and estimated values
defined as:

e =
||Xtrue − X̂est||F
||Xtrue||F

(19)

where || · ||F is the Frobenius norm of a matrix. Statistical inference on the entries of the connectivity
matrices is straightforward since they have Gaussian posteriors. Prior to calculating the relative error
of A and B, we thresholded each connection according to its posterior distribution at P < 0.05 with
Bonferroni correction to account for multiple comparison (N=108). Figure 2 shows the comparison
of the relative error between the two methods. For both simulation scenarios, EEG-fMRI method
generated more accurate estimation than EEG-only method. In our EEG-only simulation, even though
only a small number of sources (38) that did not contribute to the underlying dynamics was falsely
assigned to all ROIs, the performance largely decreased. In practice, without the fMRI data, one
would only get more inaccurate spatial localization of ROIs.

Figure 2: Performance on two sets of simulations. A, 5-node network structure in scenario 1 and the
relative error of A, B1, Qs, R for the EEG-fMRI (orange) and the EEG-only (blue) conditions. B,
Similar comparison for scenario 2 where two modulatory matrices B2 and B3 were simulated. Blue
line denotes intrinsic connection and blue dotted line denotes modulatory connection between two
nodes. Error bar represents the standard error of the mean across 10 independent simulations.
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3.2 Simultaneous EEG-fMRI Data

We then applied our state-space model method on simultaneously recorded EEG and fMRI data from
10 subjects. The data were recorded when subjects performed an event-related three-choice visual
categorization task. On each trial, an image of a face, car, or house was presented at random for 100
ms. The ISI ranged uniformly between 2 s and 2.5 s. Subjects reported their choice of the image
category by pressing one of the three buttons on an MR-compatible button response pad. Each subject
completed 4 runs of the categorization task. In each run, there were 180 trials (60 per category) with
a total duration of 560 s. Previous studies [21, 22] have implicated two spatially and temporally
separate brain networks (which we term the ’early’ and ’late’ networks) during this rapid perceptual
decision task based on an EEG-informed fMRI analysis approach. However, the latent brain dynamics
were inferred from the fMRI data, which fluctuate on a much slower timescale than the latent neural
processes. In this study, we leveraged the high temporal resolution of the EEG data in combination
with the high spatial specificity of fMRI to estimate the latent brain dynamics underlying behavior in
this task. In particular, we selected 3 regions (FFA, PPA, SPL) from the early network and 3 regions
(ACC, premotor cortex, FEF) from the late network that constituent a brain network of 6 ROIs (Figure
3A). We added premotor cortex (PMC) in our analysis because the task involved motor planning
and execution. FFA and PPA were determined based on a separate functional localizer task for each
subject and they were included because of their selectivity in the early sensory processing of faces
and houses. SPL, ACC and FEF have all been shown to involve at different stages of the perceptual
decision-making. The ROIs were determined based on a group-level EEG-informed fMRI analysis in
the standard space but were then transformed back into each subject’s native anatomical space.

Statistical inference For each subject, we fitted the model to each of the 4 runs separately. The
estimated modulatory connectivity matrices corresponding to face and house were z-scored and
thresholded according to their posterior probability. We then performed a two-tailed z-test on the
mean z-scored connectivity values across 40 runs from 10 subjects. Significance was determined at
p < 0.05 with Bonferroni correction to account for multiple comparisons across three connectivity
matrices. Significant differences between face and house networks was determined using a paired t-
test on the z-scored connections at p < 0.05. Figure 3B shows the mean network connectivity pattern
for face and house stimuli, respectively. Since both positive connections and negative connections are
meaningful, we showed the absolute value of all significant connections.

We consider the effective connectivity we infer with respect to differences between face stimuli
and house stimuli. Faces and houses are object types often used in fMRI and EEG studies to study
object recognition and decision-making. Each of these stimulus categories is known to preferentially
activate different regions of the brain (FFA for faces and PPA for houses/places). These stimuli are
also interesting in this context since they are selected so that the organization of the features making
up the objects overlaps (eyes and windows in same relative positions as are nose and door) and thus
can be challenging to discriminate in the presence of visual noise and rapid stimulus presentation.
Our results show that effective connectivity differences are apparent, specifically we see an increase
in effective connectivity when a house is presented relative to when the stimulus is a face. The
specific connections contributing to this difference are shown in Figure 3C. Interestingly, these
differences involve connections with the ACC as well as the FEF and FFA, which are areas implicated
in cognitive control, decision monitoring, attention and object recognition, especially of faces. The
fact that the connections are more engaged for house stimuli suggests that there is more of a need to
link these areas when a house is presented relative to a face–i.e this additional connectivity is required
for recognizing a house relative to a face. Previous work [21] showed that network connectivity is
likely a source of how bias effects toward faces are manifested in our choices. This current, though
preliminary result, suggests that overcoming this bias requires additional network connectivity.

4 Discussion

Leveraging the complementary strengths of EEG and fMRI, we proposed a linear state-space model
to estimate the effective connectivity between spatially segregated but functionally integrated brain
regions. Specifically, we focused on the analysis of effective connectivity driven by various context-
dependent inputs. We modeled the latent state variables as the mean source activity in each ROI
and assumed that all source points belonging to one ROI are independent Gaussian variables with a
shared variance and common ROI mean, similar to the model proposed by [7]. However, our model
also exploits the simultaneously recorded fMRI data to generate task-dependent ROIs specific to
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Figure 3: Network connectivity patterns estimated from simultaneous EEG/fMRI data. A, Illustration
of ROI locations. B, Mean network connectivity induced by the face and house stimuli. C, Mean
difference in directional connections between face and house. Blue line represents unidirectional
connection and yellow line represents bidirectional connection.

each individual subject. Since the ROIs identified by fMRI are much smaller and more localized than
those defined by an atlas on a standard brain, it was more reasonable to assume that all sources within
one ROI have similar activity. Moreover, important ROIs activated in the task were less likely to be
neglected when fMRI information was available. Our simulation study further demonstrated that the
estimation error largely increased even when a small number of spurious sources were included in
each ROI. Together our results show that the high spatial specificity provided by fMRI is critical to
ROI based connectivity analysis.

Our model substantially differs from [7] in that it is designed to explain continuously evolving EEG
recordings as opposed to epoched EEG responses. Yang et al. [7] modeled the dynamic connectivity
on stimulus-locked evoked responses, a reasonable approach when one is interested in the effect
specific to a single class of stimulus. On the other hand, our approach allows one to incorporate
multiple exogenous covariates either as external or modulatory inputs in the dynamical system so
that one can investigate the causal effects of multiple experimental manipulations simultaneously.
In essence, the learned latent neural dynamics become a low dimensional representation of the
observed EEG dynamics. Our simulation showed that the algorithm could separate the connectivity
matrices induced by different stimuli, even when the sign of the intrinsic and modulatory connectivity
was opposite to each other. Since the number of parameters is large in this case, we used sparsity
regularization via ARD prior to yield more interpretable results. Nevertheless, our model can also
be easily modified to analyze connectivity for resting state experiments. Furthermore, since it is
often difficult to acquire large samples of simultaneous EEG-fMRI data and the interpretability of the
model is important, we chose a biophysically informed linear EEG forward model as opposed to a
deep-learning based approach [23, 24].

One limitation of our model is that we assumed the state noise covariance Qs to be diagonal. This is
often not true in practice. We also assumed that the sources in the same ROI are independent Gaussian
distributed, i.e. Qx is diagonal. But these sources could be both spatially and temporally dependent.
With the available fMRI information, we can potentially design a more complex spatiotemporal
structure for Qx. In this work, we chose to optimize R directly. An alternative approach is to keep
Qy fixed and only optimize with respect to Qx. We did not compare the difference between the two
approaches, but optimizing over R can be easily done via conjugacy.

Since our model solves the ill-posed EEG inverse problem implicitly, we used information from
fMRI as spatial prior to solve the EEG source localization using MNE, and obtained a reasonable
initial guess for our algorithm. Another limitation is that we assumed a fixed dipole orientation in
the lead field matrix and this orientation was estimated based on MNE. In future work, we plan to
treat the dipole orientation as unknown parameter over which to optimize. Finally, the temporally
continuous nature of our estimation scheme provides an easy framework to incorporate fMRI time
series at each ROI so that temporal information from both EEG and fMRI can be used to infer the
latent neural dynamics. Our future work will investigate different choices of generative models for
fMRI signals to better integrate with EEG.
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