
Under review as a conference paper at ICLR 2020

MODEL-FREE CONTROL OF NONLINEAR
STOCHASTIC SYSTEMS WITH STABILITY GUARANTEE

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement learning (RL) offers a principled way to achieve the optimal cu-
mulative performance index in discrete-time nonlinear stochastic systems, which
are modeled as Markov decision processes. Its integration with deep learning
techniques has promoted the field of deep RL with an impressive performance in
complicated continuous control tasks. However, from a control-theoretic perspec-
tive, the first and most important property of a system to be guaranteed is stability.
Unfortunately, stability is rarely assured in RL and remains an open question. In
this paper, we propose a stability guaranteed RL framework which simultaneously
learns a Lyapunov function along with the controller or policy, both of which are
parameterized by deep neural networks, by borrowing the concept of Lyapunov
function from control theory. Our framework can not only offer comparable or
superior control performance over the state-of-the-art RL algorithms, but also
construct a Lyapunov function to validate the closed-loop stability. In the simulated
experiments, our approach is evaluated on several well-known examples including
classic CartPole balancing, 3-dimensional robot control and control of synthetic
biology gene regulatory networks. Compared with RL algorithms without stability
guarantee, our approach can enable the system to recover to the operating point
when interfered by uncertainties such as unseen disturbances and system paramet-
ric variations to a certain extent. (Anonymous code is available to reproduce the
experimental results1.)

1 INTRODUCTION

Control of discrete-time nonlinear stochastic systems is an important topic in both control theory
and reinforcement learning. In the past decades, the advancement of nonlinear control theory in the
control community has been successfully applied in aircraft, automobiles, advanced robots and space
systems (Slotine et al., 1991; Isidori, 1995). Concurrently, reinforcement learning was developed in
the machine learning community to address similar nonlinear control problems (Sutton et al., 1992;
Tesauro, 1995; Bertsekas & Tsitsiklis, 1996). Until recently, significant progress has been made by
combining advances in deep learning (LeCun et al., 2015) with reinforcement learning. Impressive
results are obtained in a series of high-dimensional continuous nonlinear control problems (Duan
et al., 2016; Zhang et al., 2016; Zhu et al., 2017; Gu et al., 2017) in which control-theoretic approach
is typically difficult to apply.

Given a control system, regardless of which controller design method is used, control theory or
reinforcement learning, the first and most important property of a system needs to be guaranteed is
stability, because an unstable control system is typically useless and potentially dangerous (Slotine
et al., 1991). Qualitatively, a system is described as stable if starting the system in the neighborhood
of its desired operating point implies that it will stay around the point ever after. For aircraft control
systems, a typical stability problem is intuitively related to the following question: will a trajectory
perturbation caused by a gust result in a significant deviation in the later flight trajectory? Here, the
desired operating point of the system is the flight trajectory in the absence of disturbance. Every
control system, whether linear or nonlinear, involves a stability problem which should be carefully
studied.

1https://www.dropbox.com/sh/j9mhvi0vydu7x7c/AACwJbqU5MCLcKPGgcOv0zrHa?
dl=0

1

https://www.dropbox.com/sh/j9mhvi0vydu7x7c/AACwJbqU5MCLcKPGgcOv0zrHa?dl=0
https://www.dropbox.com/sh/j9mhvi0vydu7x7c/AACwJbqU5MCLcKPGgcOv0zrHa?dl=0

Under review as a conference paper at ICLR 2020

The most useful and general approach for studying the stability of control systems is Lyapunov
method (Lyapunov, 1892), which is dominant in control engineering (Åström & Wittenmark, 1989;
Mayne et al., 2000). In Lyapunov method, a scalar “energy-like” function called Lyapunov function is
constructed to analyze the stability of the system. For a linear dynamical system, a quadratic function
is typically chosen as Lyapunov function in some classic controller design method, such as linear
quadratic regulator (LQR) and model predictive control (MPC). Unfortunately, there is no universal
method for constructing Lyapunov functions.

In this paper, we propose a stability guaranteed reinforcement learning framework to jointly learn
the controller or policy2 and a Lyapunov function both of which are parameterized by deep neural
networks, with a focus on stabilization and tracking problems in discrete-time nonlinear stochastic
systems modeled by Markov decision process. The contribution of our paper can be summarized
as follows: 1) a novel data-based approach for analyzing the stability of the closed-loop system is
proposed by constructing a Lyapunov function parameterized by deep neural network; 2) a practical
learning algorithm is designed to search the stability guaranteed controller; 3) the learned controller
is able to stabilize the system when interfered by uncertainties such as unseen disturbance and system
parameters variations of certain extent. In our experiment, we can show that the stability guaranteed
controller is more capable of handling uncertainties compared to those without such guarantees in
nonlinear control problems including classic CartPole stabilization tasks, control of 3D legged robots
and manipulator and reference tracking tasks for synthetic biology gene regulatory networks.

1.1 RELATED WORKS

In model-free reinforcement learning (RL), stability is rarely addressed due to the formidable chal-
lenge of analyzing and designing the closed-loop system dynamics in a model-free manner (Buşoniu
et al., 2018), and the associated stability theory in model-free RL remains as an open problem (Buşoniu
et al., 2018; Gorges, 2017).

Recently, Lyapunov analysis is used in model-free RL to solve control problems with safety constraints
(Chow et al., 2018; 2019). In Chow et al. (2018), Lyapunov-based approach for solving constrained
Markov decision process is proposed with a novel way of constructing the Lyapunov function through
linear programming. In Chow et al. (2019), the above results were further generalized to continuous
control tasks. Even though Lyapunov-based methods were adopted in these results, neither of them
addressed the stability of the system.

As a basic tool in control theory, the construction/learning of Lyapunov function is not a trivial issue
and many works are devoted to this problem. In Perkins & Barto (2002), the RL agent controls
the switch between controllers designed using Lyapunov domain knowledge, so that any policy is
safe and reliable. Petridis & Petridis (2006) proposes a straightforward approach for constructing
Lyapunov function for nonlinear systems using neural networks. Richards et al. (2018) proposes
a learning-based approach for constructing Lyapunov neural networks with maximized region of
attraction. Results on learning and construction of Lyapunov functions are referred to Noroozi et al.
(2008); Prokhorov (1994); Serpen (2005); Prokhorov & Feldkamp (1999).

Other interesting results on the stability of learning-based control systems are reported in recent years.
In Postoyan et al. (2017), an initial result is proposed for the stability analysis of deterministic nonlin-
ear systems with optimal controller for infinite-horizon discounted cost, based on the assumption
that discount is sufficiently close to 1. In Berkenkamp et al. (2017), a learning model-based safe RL
approach with safety guarantee during exploration is introduced but limited to Lipschitz continuous
nonlinear systems such as Gaussian process model. In addition, the verification of stability condition
requires the discretization of state space, which limits its application to tasks with low-dimensional
finite state space.

2 PROBLEM STATEMENT

We consider discrete-time nonlinear stochastic systems modeled by the Markov decision process
(MDP). A MDP is defined by the tuple (S,A, c, P, ρ), where S ⊆ Rn is the set of states, A ⊆ Rm is
the set of actions, c(s, a) : S ×A → R+ is the cost function, P (s′|s, a) is the transition probability
function, and ρ(s) is the starting state distribution.

2Controller and policy will be used interchangeably throughout the paper.

2

Under review as a conference paper at ICLR 2020

In this paper, we focus on the stabilization and tracking problems for discrete-time nonlinear stochastic
systems modeled by MDP. For both problems, the goal is to find a policy π which can bring the cost
c to zero. In stabilization problems, the cost function is defined as the norm of states ‖s‖ where ‖ · ‖
denotes the Euclidean norm. In tracking problems, we divide the state s into two vectors, s1 and
s2, where s1 is composed of elements of s that are aimed at tracking the reference signal r while s2
contains the rest. For tracking, ‖s1 − r‖ is chosen to be the cost function.

From a control theoretic perspective, the task of stabilization and tracking could be addressed as
ensuring the closed-loop system or error system to be asymptotically stable, i.e., starting from an
initial point, the trajectories of state always converge to a single point or the reference trajectory. Let
cπ(s) , Ea∼πc(s, a) denote the cost function under policy π, the definition of stability studied in
this paper is given as follows.

Definition 1 The stochastic system is said to be stable in mean cost if limt→∞ Estcπ(st) = 0 holds
for any initial condition s0 ∈ {s0|cπ(s0) ≤ b}. If b is arbitrarily large then the stochastic system is
globally stable in mean cost.

Remark 1 Form of the cost is strictly ruled as the Euclidean norm of state or partial state, while
other forms are not considered in this paper. The stability studied in this paper is a type of local
asymptotic stochastic stability, which is different to the definition of mean square stability (MSS) that
extensively studied on stochastic systems in control theory (Shaikhet, 1997; Huang, 2012).

Before proceeding, some notations are to be defined. The closed-loop transition probability is
denoted as Pπ(s′|s) ,

∫
A π(a|s)P (s′|s, a)da. We also introduce the closed-loop state distribution

at certain instant t as P (s|ρ, π, t), which could be defined in an iterative way: P (s′|ρ, π, t + 1) =∫
S Pπ(s′|s)P (s|ρ, π, t)ds,∀t ∈ Z+ and P (s|ρ, π, 0) = ρ(s).

3 MAIN RESULTS

In this section, we propose the main assumptions and a new theorem.

Assumption 1 The stationary distribution of state qπ(s) , limt→∞ P (s|ρ, π, t) exists.

Assumption 2 There exists a positive constant b such that ρ(s) > 0,∀s ∈ {s|cπ(s) ≤ b}.

Our approach is to construct/find a Lyapunov function which can be used to analyze the stability of
the closed-loop system. The Lyapunov method has long been used for stability analysis and controller
design in control theory (Boukas & Liu, 2000), but mostly exploited along with a known model,
whether deterministic or probabilistic (Corless & Leitmann, 1981; Thowsen, 1983; Huang et al.,
2011).

The Lyapunov function is a class of semi-positive definite functions L : S → R+. The general idea
of exploiting Lyapunov function is to ensure that the difference (or derivative, if the system is in
continuous time) of Lyapunov function along the state trajectory is semi-negative definite, so that the
state goes in the direction of decreasing the value of Lyapunov function and eventually converges to
the origin or a sub-level set of Lyapunov function. Next, we give sufficient conditions for a system to
be stable in mean cost in the following.

Theorem 1 The stochastic system is stable in mean cost if there exists a function L : S → R+ and
positive constants α1, α2 and α3, such that

α1cπ (s) ≤ L(s) ≤ α2cπ (s) (1)

Es∼µπ (Es′∼PπL(s′)− L(s)) ≤ −α3Es∼µπcπ (s) (2)

where µπ(s) , limN→∞
1
N

∑N
t=0 P (st = s|ρ, π, t) is the sampling distribution.

Due to space limitations, we will include the detailed proof in Appendix A. Eq. (2) is called the energy
decreasing condition, i.e., requiring the expectation of Lyapunov function to be decreasing between
two consecutive instants. Eq. (1) is the constraint for Lyapunov function, though a rather broad range
of parameterization is covered. The sum of quadratic polynomials, e.g., L(s) = sTQs where Q is a

3

Under review as a conference paper at ICLR 2020

positive definite matrix, are extensively used in the control theory. Such Lyapunov functions can be
efficiently discovered by the semi-definite programming solvers and bring in limited conservatism
for the control tasks where the cost are also of a quadratic form. In (Richards et al., 2018), a neural
network φθ(·) is designed to construct the Lyapunov function, L(s) = φθ(s)

Tφθ(s). As explored
in (Chow et al., 2018) and (Berkenkamp et al., 2017), the value function could be exploited as a
Lyapunov function as well. Additionally, the sum of cost over a limited time horizon could also be
employed as Lyapunov function, i.e., L(s) =

∑t+N
t Ecπ(st), which is a valid Lyapunov candidate

in model predictive control literature (Mayne & Michalska, 1990; Mayne et al., 2000).

The choice of Lyapunov function candidate plays an important role in learning a policy. Value
function evaluates the infinite time horizon and thus offers a better performance in general, but is
rather difficult to approximate because of significant variance and bias (Schulman et al., 2015). On
the other hand, the finite horizon sum of cost provides an explicit target for learning a Lyapunov
function, thus inherently reduces the bias and enhances the learning process. However, as the model
is unknown, predicting the future costs based on the current state and action inevitably introduces
variance, which grows as the prediction horizon extends. In principle, for tasks with simple dynamics,
the sum-of-cost choice enhances the convergence of learning and robustness of the trained policies,
while for complicated systems the choice of value function generally produces better performance. In
this paper, we use both value function and sum-of-cost over various horizons as Lyapunov function
candidates in different tasks and compare their strength and weakness respectively. Now we would
like to give the following two remarks.

Remark 2 This remark is on Assumption 1 and sampling distribution µπ . If an MDP is ergodic then
the existence of qπ is naturally assured, but all states have to be positive recurrent and aperiodic (Pa-
poulis & Pillai, 2002). The existence of sampling distribution µπ(s) is guaranteed by the existence of
qπ(s). Since the sequence {P (s|ρ, π, t), t ∈ Z+} converges to qπ(s) as t approaches∞, then by the
Abelian theorem, the sequence { 1

N

∑N
t=0 P (s|ρ, π, t), N ∈ Z+} also converges and µπ(s) = qπ(s).

Thus we use µπ to approximate the qπ since the evaluation of qπ requires data to be sampled after
infinite instants the episode begins. Even if the sampling period N <<∞, one can still assure that
cπ converges to a neighborhood of zero, which is related to the initial state distribution and length of
N , i.e., EsN cπ(sN) ≤ α2

α1+α3
Eρcπ(s0)− α3

α1+α3

∑N−1
t=0 Estcπ(st).

Remark 3 This remark is on the connection to previous results concerning the stability of stochastic
systems. It should be noted that the stability conditions of Markov chains have been reported
in (Shaikhet, 1997; Meyn & Tweedie, 2012), however, of which the validation requires the full
knowledge of the model, i.e., the transition probability P (s′|s, a). On the contrary, our approach
solely depends on data to analyze the stability of the closed-loop system, which further enables the
model-free learning algorithms with stability guarantee. However, the validation of stability through
a sample-based approach theoretically requires tremendous, if not infinite, amount of samples to
thoroughly estimate the distributions, which is the drawback of our approach. We would demonstrate
empirically that the algorithm built upon this theorem is reliable though only limited sample is
collected.

4 ALGORITHM

In this section, we propose an off-policy RL algorithm to learn stability guaranteed policies for
discrete-time nonlinear stochastic system modeled by MDP. First, based on the maximum entropy
actor-critic framework, we use the Lyapunov function as the critic in the policy gradient formulation.
In this algorithm, a Lyapunov critic function Lc is needed, which satisfies L(s) = Ea∼πLc(s, a).
The objective function J(π) is given as follows

J(π) = E(s,a,s′,c)∼D[β(log(πθ(fθ(ε, s)|s)) +Ht) + λ(Lc(s
′, fθ(ε, s

′))− Lc(s, a) + α3c)] (3)

where the policy πθ is parameterized by a deep neural network fθ, ε is an input vector consisted
of Gaussian noise. It should be noted that the Lyapunov critic Lc(s, a) will be parameterized
by the square of a neural network to ensure the semi-positive definiteness of Lyapunov function
required in Eq.(1), inspired by the structure explored in Richards et al. (2018). More specifically,
Lc(s, a) = φT (s, a)φ(s, a), where φ(s, a) is a multi-layer fully connected neural network. D is the
distribution of previously sampled states and actions, or a replay buffer. In the above objective, β

4

Under review as a conference paper at ICLR 2020

and λ are Lagrange multipliers which control the relative importance of policy entropy versus energy
decreasing constraint derived from Eq.(2). Similar to Haarnoja et al. (2018), the entropy of policy
is expected to remain above the target entropy Ht. The parameters of policy network are updated
through gradient descent, where the gradient of Eq.(3) is approximated by

∇θJ(π) = ∇θβ log(πθ(a|s)) +∇aβ log(πθ(a|s))∇θfθ(ε, s) + λ∇a′Lc(s′, a′)∇θfθ(ε, s′) (4)

We use J(Lc) in the following equation as the objective function to update the Lyapunov critic,

J(Lc) = ED
[

1

2
(Lc(s, a)− Ltarget(s, a))2

]
(5)

where Ltarget is the approximation target for Lc.

If the sum of cost is chosen as Lyapunov function candidate, we have

Ltarget(s, a) = Σt+Nt ct (6)

Here, the time horizonN is a hyperparameter to be tuned, of which the influence will be demonstrated
in the experiment in Section 5.5. If the value function is chosen as Lyapunov function candidate,

Ltarget(s, a) = c+ γL′c(s
′, f(ε, s′)) (7)

where L′c is the target network parameterized by θ as typically used in the actor-critic meth-
ods (Haarnoja et al., 2018; Lillicrap et al., 2015b). L′c has the same structure with Lc, but the
parameter is updated through exponentially moving average of weights of Lc controlled by a hyper-
parameter τ . In fact, the value function is the discounted sum of cost over infinite time horizon. Later
in Section 5, we will show the influence of choosing different Lyapunov function candidates.

The value of Lagrange multipliers λ and β are adjusted by the gradient method maximizing the
following two objectives respectively,

J(β) = EDβ[log(πθ(a|s)) +Ht] (8)

J(λ) = EDλ[Lc(s
′, fθ(ε, s

′))− Lc(s, a) + α3c] (9)

It should be noted that the value of λ and β are clipped to be positive. In addition, to prevent λ
from growing unlimitedly causing the algorithm to diverge, we set an upper bound for λ. In our
experiments, we found that 1 is a suitable value without much further tuning. Pseudo code of the
proposed algorithm is shown in Algorithm 1 in Appendix B.

Remark 4 The convergence of the algorithm is composed of the convergence of Lyapunov critic Lc
and policy πθ respectively. Empirically, the convergence can be judged by the error of Lyapunov
function approximation and value of the Lagrange multiplier (close to zero at convergence). In
practice, we found that the algorithm converges well in different experiments without much tuning.

5 EXPERIMENT

In this section, we illustrate four simulated examples to demonstrate the general applicability of the
proposed method. First of all, the classic control problem of CartPole balancing from control and RL
literature (Barto et al., 1983) is illustrated. Then, we consider more complicated high-dimensional
continuous control problem of 3D robots, e.g., HalfCheetah and FetchReach, using MuJoCo physics
engine (Todorov et al., 2012). Last, we extend our approach to control robots in nanoscale, i.e.,
molecular robots. Specifically, we consider the problem of reference tracking for a synthetic biology
gene regulatory network known as the Repressilator (Elowitz & Leibler, 2000).

The proposed method is evaluated for the following aspects:

• Convergence: does the proposed training algorithm converge with random parameter initial-
ization and does the stability condition (2) hold for the learned policies;
• Performance: can the goal of the task be achieved or the cumulative cost be minimized;
• Robustness: how do the trained policies perform when faced with uncertainties unseen

during training, such as parametric variation and external disturbances;

5

Under review as a conference paper at ICLR 2020

• Generalization: can the trained policies generalize to follow reference signals that are
different from the one seen during training.

We compare our approach with soft actor-critic (SAC) (Haarnoja et al., 2018), one of the state-
of-the-art off-policy actor-critic algorithms that outperform a series of off-policy and on-policy
methods such as DDPG (Lillicrap et al., 2015a), PPO (Schulman et al., 2017) on the continuous
control benchmarks. The variant of safe proximal policy optimization (SPPO) (Chow et al., 2019), a
Lyapunov-based method, is also included in the comparison. The original SPPO is developed to deal
with constrained MDP, where safety constraints exist. In our experiments, we modify it to apply the
Lyapunov constraints on the MDP tasks and see whether it can achieve the same stability guarantee
as LAC. In CartPole example, we also compare with linear quadratic regulator (LQR), a classical
model-based optimal control method for stabilization.

The outline of this section is as follows. In Section 5.1, a brief introduction will be given on the
background and problem description of each example. Then in Section 5.2, the convergence, and
performance of the proposed method is demonstrated and compared with SAC. In Section 5.4, the
ability of generalization and robustness of the trained policies are evaluated and analyzed. Finally,
in Section 5.5, we show the influence of choosing different Lyapunov function candidates upon the
performance and robustness of trained policies.

5.1 BACKGROUND AND PROBLEM DESCRIPTION

In this section, we will give a brief introduction to the examples considered in this paper. Detailed
setup information of the first three examples can be found in Appendix C.

5.1.1 CARTPOLE

This is a classical control problem. The controller is to stabilize the pole vertically at a given position.
The cost is determined by the norm of the angular position of the pole and the horizontal position
of the cart. The control input is the horizontal force F ∈ [−20, 20] applied in the cart. The agent is
dead if the angle θ between pole and vertical position exceeds a threshold, and the episode ends.

5.1.2 HALFCHEETAH

The goal is to control a 17-dimensional 2-legged robot simulated in the MuJoCo simulator. The
control task belongs to the reference tracking problem, i.e., to enable the robot to run at the speed of
1m/s in the X-axis direction. The cost is determined by the Euclidean difference between current
speed and target speed. The control input is the torque implemented at each joint.

5.1.3 FETCHREACH

The agent is to control a simulated manipulator to track a randomly generated goal position with
its end effector. The cost is determined by the Euclidean distance between end effector and goal.
The control input is the torque implemented at each joint. The manipulator is also simulated in the
MuJoCo simulator.

5.1.4 REPRESSILATOR

The repressilator is a synthetic biology gene regulatory network with a ring structure pioneered
in Elowitz & Leibler (2000), in which each gene represses the other gene cyclically. The dynamics of
temporal gene expression exhibit periodic oscillatory behavior. The dynamics of repressilator can
be quantitatively described by a set of discrete-time nonlinear difference equations consisting of six
states, three mRNAs for transcription and three proteins for translation, based on biochemical kinetic
laws. We also include a complicated repressilator example with 4 genes to be controlled, which
exhibits an unstable oscillation and is even harder to control.

The objective is to force one protein concentrations to follow a priori defined reference trajectories
using partially observed states. Detailed setup information of these examples are in Appendix D.

5.1.5 MARKOVIAN JUMP SYSTEMS

In addition to the systems described above, we introduce two Markovian jump systems (MJS), named
MJS1 and MJS2, which contain both discrete switchings (or jumps) and continuous dynamics (Shi &

6

Under review as a conference paper at ICLR 2020

Li, 2015), as test beds for the proposed and baseline methods. The objective is to force the full state
to zero. Both MJSs contain unstable subsystems and the dynamics change abruptly and randomly
according to the switching signal, and thus are difficult to tackle for the model-free algorithms.
Moreover, MJS2 contains an unstable subsystem that is not controllable, which makes it even harder
to stabilize. More details on the examples could be found in Appendix E.

5.2 PERFORMANCE

We parameterize the policy and Lyapunov critic using deep neural networks. For each example,the
hyperparameters including time horizon N and DNN architectures selected to construct Lyapunov
functions and DNN training parameters can be found in Appendix J. For both algorithms, the
hyperparameters are tuned to reach their best performance. In each task, both LAC and SAC are
trained for 10 times with random initialization, average total cost and its variance during training are
demonstrated in Figure 1.

In the first three examples (see Figure 1(a)-(c)), SAC and LAC perform comparably in terms of the
total cost at convergence and speed of convergence, while SPPO could converge in Cartpole and
FetcheReach. In the Repressilator and MJS examples (see Figure 1(d,e,f)), SAC is not always able to
find a policy that is capable of completing control objective, resulting in the bad average performance.
On the contrary, LAC performs stably regardless of the random initialization.

0 100 200 300 400 500 600 700 800 900
0

100

200

300

400

500 SPPO
SAC
LAC

(a) CartPole

0 100 200 300 400 500 600 700 800 900

0

100

200

300

400 SPPO
SAC
LAC

(b) HalfCheetah

0 50 100 150 200 250 300

0

10

20

30

40

50

60 SPPO
SAC
LAC

(c) FetchReach

0 20 40 60 80 100

0

1000

2000

3000

4000 SPPO
SAC
LAC

(d) Repressilator
0 25 50 75 100 125 150 175 200

0

20000

40000

60000

80000

100000 SAC
LAC

(e) Markov Jump Sytem-1
0 25 50 75 100 125 150 175 200

0

20000

40000

60000

80000

100000

120000 SAC
LAC

(f) Markov Jump Sytem-2

Figure 1: Cumulative control performance comparison. The Y-axis indicates the total cost during
one episode and the X-axis indicates the total time steps in thousand. The shadowed region shows
the 1-SD confidence interval over 10 random seeds. Across all trials of training, LAC converges to
stabilizing solution with comparable or superior performance compared with SAC and SPPO. The
experiment on Complicated-Repressilator is deferred to Appendix F.

A distinguishing feature of stability assured policy is that it can force and sustain the state or tracking
error to zero. This could be intuitively demonstrated by the state trajectories of closed-loop system.
We evaluated this property of trained policies in the Repressilator, Complicated-Repressilator and
two MJS examples. In our experiments, we found that the LAC agents stabilize the systems well
in all tasks. All the state trajectories converge to the reference signal or equilibrium eventually
(see Figure 11 (a,c) and Figure 12 (a,c)). On the contrary, without stability guarantee, the state
trajectories either diverge (see Figure 11 b and Figure 12 d), or continuously oscillate around the
reference trajectory or equilibrium (see Figure 11 d and Figure 12 b). Empirical results are deferred
to Appendix F due to space limit.

5.3 CONVERGENCE

As shown in Figure 1, LAC converges stably in all experiments. Moreover, the convergence and
validation of stability guarantee could also be checked by observing the value of Lagrange multipliers.
When (2) is satisfied, λ will continuously decrease until it becomes zero. Thus by checking the value

7

Under review as a conference paper at ICLR 2020

0 200 400 600 800 1000
0.0

0.2

0.4

0.6

0.8

1.0

(a) Cartpole
0 200 400 600 800 1000

0.0

0.2

0.4

0.6

0.8

1.0

(b) HalfCheetah
0 50 100 150 200 250 300

0.0

0.2

0.4

0.6

0.8

1.0

(c) FetchReach
0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

(d) Repressilator
0 25 50 75 100 125 150 175 200

0.0

0.2

0.4

0.6

0.8

1.0

(e) MJS1
0 25 50 75 100 125 150 175 200

0.0

0.2

0.4

0.6

0.8

1.0

(f) MJS2

Figure 2: Value of Lagrange multiplier λ during the training of LAC policies. The Y-axis indicates
the value of λ and the X-axis indicates the total time steps in thousand. The shadowed region shows
the 1-SD confidence interval over 10 random seeds. The value of λ gradually drops and becomes
zero at convergence, which implies the satisfaction of stability condition.

and variation of λ, the satisfaction of stability condition during training and at convergence could be
validated. In Figure 2, the value of λ during training is demonstrated. Across all training trials in the
experiments, λ converges to zero eventually, which implies that the stability guarantee is valid. A
detailed discussion on this is referred to Appendix G.

5.4 EVALUATION ON ROBUSTNESS AND GENERALIZATION

It is well-known that over-parameterized policies are prone to become overfitted to a specific training
environment. The ability of generalization is the key to the successful implementation of the algorithm
in an uncertain real-world environment. In this part, we first evaluate the robustness of policies in
the presence of system parametric uncertainties and process noise. Then, we test the robustness of
controllers against external disturbances. Finally, we evaluate whether the policy is generalizable by
setting different reference signals. To make a fair comparison, we removed the policies that did not
converge in SAC and only evaluate the ones that perform well during training. During testing, we
found that SPPO appears to be prone to variation in the environment, thus the evaluation results are
referred to Appendix H.

5.4.1 ROBUSTNESS TO DYNAMIC UNCERTAINTY

In this part, during the inference, we vary the system parameters in the model/simulator to evaluate the
algorithm’s robustness against dynamic uncertainty. In the example of CartPole, we vary the length
of pole l. In the example of repressilator, we vary the promoter strength ai and dissociation rate Ki.
Due to stochastic nature in gene expression, we also introduce uniformly distributed noise ranging
from [−δ, δ] (we indicate the noise level by δ) to the dynamic of repressilator. The stabilization
performance of CartPole and tracking performance of Repressilator by LAC and SAC in the varied
environment is demonstrated in Figure 3.

0 50 100 150 200 250

0.15

0.10

0.05

0.00

0.05

0.10

length=2.0
length=1.0
length=1.5
original

(a) LAC-CartPole
0 50 100 150 200 250

6

4

2

0

2

4
length=2.0
length=1.0
length=1.5
original

(b) SAC-CartPole
0 200 400 600 800 1000 1200

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5 Ki=5
ai=4.8
noise level=0.5
ai=3.2
Ki=10
noise level=1
original

(c) LAC-Repressilator

Ki=5
ai=4.8
noise level=0.5
ai=3.2
Ki=10
noise level=1
original

(d) SAC-Repressilator

Figure 3: State trajectories over time under policies trained by LAC and SAC and tested in the
presence of parametric uncertainties and process noise, for CartPole and Repressilator. Solid line
indicates the average trajectory and shadowed region for the 1-SD confidence interval. In (a) and (b),
the pole length is varied during the inference. In (c) and (d), three parameters are selected to reflect
the uncertainties in gene expression. The X-axis indicates the time and Y-axis shows the angle of
pole in (a,b) and concentration of protein to be controlled in (c,d), respectively. Dashed line indicates
the reference signal. The line in orange indicates the dynamic in original environment. For each
curve, only the noted parameter is different with the original setting. We also show the curves in
separate zoom-in view in Appendix I.1.

As shown in Figure 3(a) and (c), the policies trained by LAC are very robust to parametric uncertainties
of different values and achieve high tracking precision in each case. On the other hand, though SAC
performs well in the original environment (Figure 3(b) and (d)), it fails to track the reference signal
in all of the varied environment.

8

Under review as a conference paper at ICLR 2020

5.4.2 ROBUSTNESS TO DISTURBANCES

An inherent property of a controller for stabilization is to enable the system to recover to the normal
status from perturbations such as external forces and wind. To show this, we introduce persistent
external disturbances with different magnitudes in each environment and observe the performance
difference between policies trained by LAC and SAC. We also include LQR as the model-based
baseline. In CartPole, the agent may fall over when interfered by an external force, ending the episode
in advance. Thus in this task, we measure the robustness of controller through the death-rate, i.e.,
the probability of falling over after being disturbed. For other tasks where the episodes are always
of the same length, we measure the robustness of controller by the variation in total cost. Under
each disturbance magnitude, the policies are tested for 100 trials and the performance are shown in
Figure 4.

80 90 100 110 120 130 140 150
magnitude

0

20

40

60

80

100

de
at

h_
ra

te

LQR
LAC
SAC
SPPO

(a) CartPole

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
magnitude

0

50

100

150

200

250

re
tu

rn

SAC
LAC
SPPO

(b) HalfCheetah

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
magnitude

0

5

10

15

20

25

re
tu

rn

SAC
LAC
SPPO

(c) FetchReach

0.2 0.4 0.6 0.8 1.0
magnitude

200000

0

200000

400000

600000

800000

1000000

re
tu

rn

SAC
LAC
SPPO

(d) Repressilator

Figure 4: Performance of policies trained by LAC, SAC and SPPO, along with controllers designed
by LQR in the presence of persistent disturbances with different magnitudes. X-axis indicates the
magnitude of the applied disturbance. For CartPole (a) the Y-axis indicates the probability of falling
over and in other three examples (b)-(d) it indicates the total cost. Both policies are evaluated for 100
trials in each setting.

As shown in the Figure 4, the controller trained by LAC outperforms SAC and LQR by great extent
when faced with external disturbances in CartPole and repressilator (lower death rate and total cost).
In the repressilator example, the policies trained by SAC are extremely vulnerable to disturbances, this
is potentially due to the existence of an unstable limit cycle in the uncontrolled dynamic (Strelkowa &
Barahona, 2010). In HalfCheetah, SAC and LAC are both robust to small external disturbances while
LAC is more reliable to larger ones. In FetchReach, SAC and LAC are comparable with maintaining
a low cost in a great range of external disturbances. This is perhaps due to the manipulator’s inherent
robust mechanical design.

5.4.3 GENERALIZATION OVER DIFFERENT TRACKING REFERENCES

In this part, we introduce four different reference signals that are unseen during training in the
repressilator example: sinusoids with periods of 150 (brown) and 400 (blue), and the constant
reference of 8 (red) and 16 (green). We also show the original reference signal used for training
(skyblue) as a benchmark. Reference signals are indicated in Figure 5 by the dashed line in respective
colors. Both trained policies are evaluated to track each reference signal for 10 times, and the average
dynamics of the target protein concentration are shown in Figure 5 with the solid line, while the
variance of dynamic is indicated by the shadowed area.

As shown in Figure 5, the policies trained by LAC could generalize well to follow previously unseen
reference signals with low deviation (dynamics are very close to the dashed lines), regardless of
whether they are in the same mathematical form with the one used for training or not. On the other
hand, though SAC tracks the original reference signal well after the unconverged training trials being
removed (see the skyblue lines), it is still unable to follow some of the reference signals (see the
brown line) and possesses larger variance than LAC when following others.

5.5 INFLUENCE OF DIFFERENT LYAPUNOV FUNCTION CANDIDATES AND STRUCTURES

In this part, we evaluate the influence of choosing different Lyapunov function candidates and
network structures. First, we adopt candidates of different time horizon N ∈ {5, 10, 15, 20,∞} to
train policies in the CartPole example, and compare their performance in terms of total cost and
robustness. Both of the Lyapunov critics are parameterized by L(s) = φ(s)Tφ(s) where φ(s) is a
neural network with m dimensional output. Here, N =∞ implies using value function as Lyapunov
candidate. For evaluation of robustness, we apply an impulsive force F at 100th instant and observe
the death-rate of trained policies. The results are demonstrated in Figure 6 (a,b). Then we fix the

9

Under review as a conference paper at ICLR 2020

(a) LAC (b) SAC

Figure 5: State trajectories under policies trained by LAC and SAC when tracking different reference
signals. Solid line indicates the average trajectory and shadowed region for the 1-SD confidence
interval. The X-axis indicates the time and Y-axis shows the concentration of protein to be controlled.
Dashed lines in different colors are the different reference signals: sinusoid with period of 150
(brown); sinusoid with period of 200 (skyblue);sinusoid with period of 400 (blue); constant reference
of 8 (red); constant reference of 16 (green). We also show the curves in separate zoom-in view in
Appendix I.2 .

horizon of candidates to be N = 5 but vary the structures of Lyapunov critic, and compare their
performance using the same metric as described above. More specifically, these different structures
are: L(s) =

∑m
j=1 φ

4
j (s) (LAC-biquad); L(s) =

∑m
j=1 |φ(s)| (LAC-abs); L(s) = φ(s)Tφ(s)(LAC-

quad).

(a) Candidates-Training (b) Candidates-Robustness

0 200 400 600 800 1000

0

50

100

150

200

250

300

350 SAC
LAC-quad
LAC-biquad
LAC-abs

(c) Structure-Training

80 90 100 110 120 130 140 150
magnitude

0

20

40

60

80

100

de
at

h_
ra

te

LAC-biquad
LAC-abs
LAC-quad
SAC

(d) Structure-Robustness

Figure 6: Influence of different Lyapunov function candidates and network structures. In (a) and (c),
the Y-axis indicates total cost of policies during training by LAC with Lyapunov function candidates
of different length of horizon N and structures, and the X-axis indicates the total time steps in
thousand. (b) and (d) shows the death-rate of policies in the presence of instant impulsive force F
ranging from 80 to 150 Newton.

As shown in Figure 6, in the CartPole environment, both choices of Lyapunov candidates converge
fast and achieve comparable total cost at convergence. However, in terms of robustness, the different
choices of N play an important role. As observed in Figure 6 (b), the robustness of controller
decreases as the time horizon N increases. On the other hand, LAC with different structures converge
well and possesses similar robustness to impulsive forces. This further proves that our framework
allows for a general class of Lyapunov functions, as long as the function is semi-positive definite.
Besides, it is interesting to observe that LQR is more robust than SAC when faced with instant
impulsive disturbance.

6 CONCLUSIONS

In this paper, we proposed a model-free approach for analyzing the stability of discrete-time nonlinear
stochastic systems modeled by Markov decision process, by employing the Lyapunov function from
control theory. Based on the theoretical result, a practical algorithm for designing stability assured
controllers for the stabilization and tracking problems. We evaluated the proposed method in various
examples and show that our method achieves not only comparable or superior performance compared
with the state-of-the-art RL algorithm but also outperforms impressively in terms of robustness to
uncertainties and disturbances.

10

Under review as a conference paper at ICLR 2020

REFERENCES

Karl J Åström and Björn Wittenmark. Adaptive control. Courier Corporation, 1989.

Andrew G Barto, Richard S Sutton, and Charles W Anderson. Neuronlike adaptive elements that can
solve difficult learning control problems. IEEE transactions on systems, man, and cybernetics, (5):
834–846, 1983.

Irwan Bello, Barret Zoph, Vijay Vasudevan, and Quoc V Le. Neural optimizer search with reinforce-
ment learning. In Proceedings of the 34th International Conference on Machine Learning-Volume
70, pp. 459–468. JMLR. org, 2017.

Yoshua Bengio, Nicolas Boulanger-Lewandowski, and Razvan Pascanu. Advances in optimizing
recurrent networks. In 2013 IEEE International Conference on Acoustics, Speech and Signal
Processing, pp. 8624–8628. IEEE, 2013.

Felix Berkenkamp, Matteo Turchetta, Angela Schoellig, and Andreas Krause. Safe model-based
reinforcement learning with stability guarantees. In Advances in neural information processing
systems, pp. 908–918, 2017.

Dimitri P Bertsekas and John N Tsitsiklis. Neuro-dynamic programming, volume 5. Athena Scientific
Belmont, MA, 1996.

EK Boukas and ZK Liu. Robust stability and h/sub/spl infin//control of discrete-time jump linear
systems with time-delay: an lmi approach. In Decision and Control, 2000. Proceedings of the 39th
IEEE Conference on, volume 2, pp. 1527–1532. IEEE, 2000.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Lucian Buşoniu, Tim de Bruin, Domagoj Tolić, Jens Kober, and Ivana Palunko. Reinforcement
learning for control: Performance, stability, and deep approximators. Annual Reviews in Control,
2018.

Yinlam Chow, Ofir Nachum, Edgar Duenez-Guzman, and Mohammad Ghavamzadeh. A lyapunov-
based approach to safe reinforcement learning. arXiv preprint arXiv:1805.07708, 2018.

Yinlam Chow, Ofir Nachum, Aleksandra Faust, Mohammad Ghavamzadeh, and Edgar Duenez-
Guzman. Lyapunov-based safe policy optimization for continuous control. arXiv preprint
arXiv:1901.10031, 2019.

Martin Corless and George Leitmann. Continuous state feedback guaranteeing uniform ultimate
boundedness for uncertain dynamic systems. IEEE Transactions on Automatic Control, 26(5):
1139–1144, 1981.

Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Benchmarking deep
reinforcement learning for continuous control. In International Conference on Machine Learning,
pp. 1329–1338, 2016.

Michael B Elowitz and Stanislas Leibler. A synthetic oscillatory network of transcriptional regulators.
Nature, 403(6767):335, 2000.

Daniel Gorges. Relations between model predictive control and reinforcement learning. IFAC-
PapersOnLine, 50(1):4920–4928, 2017.

Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey Levine. Deep reinforcement learning for
robotic manipulation with asynchronous off-policy updates. In 2017 IEEE international conference
on robotics and automation (ICRA), pp. 3389–3396. IEEE, 2017.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and
applications. arXiv preprint arXiv:1812.05905, 2018.

11

Under review as a conference paper at ICLR 2020

Chengming Huang. Exponential mean square stability of numerical methods for systems of stochastic
differential equations. Journal of Computational and Applied Mathematics, 236(16):4016–4026,
2012.

Jun Huang, Zhengzhi Han, Xiushan Cai, and Leipo Liu. Uniformly ultimately bounded tracking
control of linear differential inclusions with stochastic disturbance. Mathematics and Computers
in Simulation, 81(12):2662–2672, 2011.

Alberto Isidori. Nonlinear control systems. Springer Science & Business Media, 1995.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436, 2015.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015a.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015b.

Aleksandr Mikhailovich Lyapunov. The general problem of the stability of motion (in Russian). PhD
Dissertation, Univ. Kharkov, 1892.

David Q Mayne and Hannah Michalska. Receding horizon control of nonlinear systems. IEEE
Transactions on automatic control, 35(7):814–824, 1990.

David Q Mayne, James B Rawlings, Christopher V Rao, and Pierre OM Scokaert. Constrained model
predictive control: Stability and optimality. Automatica, 36(6):789–814, 2000.

Sean P Meyn and Richard L Tweedie. Markov chains and stochastic stability. Springer Science &
Business Media, 2012.

Navid Noroozi, Paknoosh Karimaghaee, Fatemeh Safaei, and Hamed Javadi. Generation of lyapunov
functions by neural networks. In Proceedings of the World Congress on Engineering, volume 2008,
2008.

Athanasios Papoulis and S Unnikrishna Pillai. Probability, random variables, and stochastic processes.
Tata McGraw-Hill Education, 2002.

Theodore J Perkins and Andrew G Barto. Lyapunov design for safe reinforcement learning. Journal
of Machine Learning Research, 3(Dec):803–832, 2002.

Vassilios Petridis and Stavros Petridis. Construction of neural network based lyapunov functions. In
The 2006 IEEE International Joint Conference on Neural Network Proceedings, pp. 5059–5065.
IEEE, 2006.

Romain Postoyan, Lucian Buşoniu, Dragan Nešić, and Jamal Daafouz. Stability analysis of discrete-
time infinite-horizon optimal control with discounted cost. IEEE Transactions on Automatic
Control, 62(6):2736–2749, 2017.

Danil V Prokhorov. A lyapunov machine for stability analysis of nonlinear systems. In Proceedings
of 1994 IEEE International Conference on Neural Networks (ICNN’94), volume 2, pp. 1028–1031.
IEEE, 1994.

Danil V Prokhorov and Lee A Feldkamp. Application of svm to lyapunov function approxima-
tion. In IJCNN’99. International Joint Conference on Neural Networks. Proceedings (Cat. No.
99CH36339), volume 1, pp. 383–387. IEEE, 1999.

Spencer M Richards, Felix Berkenkamp, and Andreas Krause. The lyapunov neural network:
Adaptive stability certification for safe learning of dynamical systems. In Conference on Robot
Learning, pp. 466–476, 2018.

Halsey Lawrence Royden. Real analysis. Krishna Prakashan Media, 1968.

12

Under review as a conference paper at ICLR 2020

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional
continuous control using generalized advantage estimation. arXiv preprint arXiv:1506.02438,
2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Gursel Serpen. Empirical approximation for lyapunov functions with artificial neural nets. In
Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005., volume 2, pp.
735–740. IEEE, 2005.

L Shaikhet. Necessary and sufficient conditions of asymptotic mean square stability for stochastic
linear difference equations. Applied Mathematics Letters, 10(3):111–115, 1997.

Peng Shi and Fanbiao Li. A survey on markovian jump systems: modeling and design. International
Journal of Control, Automation and Systems, 13(1):1–16, 2015.

Jean-Jacques E Slotine, Weiping Li, et al. Applied nonlinear control, volume 199. Prentice hall
Englewood Cliffs, NJ, 1991.

Aivar Sootla, Natalja Strelkowa, Damien Ernst, Mauricio Barahona, and Guy-Bart Stan. On periodic
reference tracking using batch-mode reinforcement learning with application to gene regulatory
network control. In 52nd IEEE conference on decision and control, pp. 4086–4091. IEEE, 2013.

Natalja Strelkowa and Mauricio Barahona. Switchable genetic oscillator operating in quasi-stable
mode. Journal of The Royal Society Interface, 7(48):1071–1082, 2010.

Richard S Sutton, Andrew G Barto, and Ronald J Williams. Reinforcement learning is direct adaptive
optimal control. IEEE Control Systems Magazine, 12(2):19–22, 1992.

Gerald Tesauro. Temporal difference learning and td-gammon. Communications of the ACM, 38(3):
58–68, 1995.

Arild Thowsen. Uniform ultimate boundedness of the solutions of uncertain dynamic delay systems
with state-dependent and memoryless feedback control. International Journal of control, 37(5):
1135–1143, 1983.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033.
IEEE, 2012.

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Van Hasselt, Marc Lanctot, and Nando De Freitas.
Dueling network architectures for deep reinforcement learning. arXiv preprint arXiv:1511.06581,
2015.

Tianhao Zhang, Gregory Kahn, Sergey Levine, and Pieter Abbeel. Learning deep control policies for
autonomous aerial vehicles with mpc-guided policy search. In 2016 IEEE international conference
on robotics and automation (ICRA), pp. 528–535. IEEE, 2016.

Yuke Zhu, Roozbeh Mottaghi, Eric Kolve, Joseph J Lim, Abhinav Gupta, Li Fei-Fei, and Ali Farhadi.
Target-driven visual navigation in indoor scenes using deep reinforcement learning. In 2017 IEEE
international conference on robotics and automation (ICRA), pp. 3357–3364. IEEE, 2017.

13

Under review as a conference paper at ICLR 2020

Appendix

A PROOF OF THEOREM 1

The existence of sampling distribution µπ(s) is guaranteed by the existence of qπ(s) (Assumption 1).
Since the sequence {P (s|ρ, π, t), t ∈ Z+} converges to qπ(s) as t approaches ∞, then by the
Abelian theorem, the sequence { 1

N

∑N
t=0 P (s|ρ, π, t), N ∈ Z+} also converges and µπ(s) = qπ(s).

Combined with the form of µπ , Eq.(2) infers that∫
S

lim
N→∞

1

N

N∑
t=0

P (s|ρ, π, t)(EPπ(s′|s)L(s′)− L(s))ds ≤ −α3Es∼qπcπ (s) (A.1)

First, on the left hand-side, according to Eq.(1), L(s) ≤ α2cπ(s) for all s ∈ S and consider that
P (s|ρ, π, t) ≤ 1,

P (s|ρ, π, t)L(s) ≤ α2cπ (s) ,∀s ∈ S,∀t ∈ Z+

On the other hand, the sequence { 1
N

∑N
t=0 P (s|ρ, π, t)L(s), N ∈ Z+} converges pointwise to the

function qπ(s)L(s). According to the Lebesgue’s Dominated convergence theorem(Royden, 1968), if
a sequence fn(s) converges pointwise to a function f and is dominated by some integrable function
g in the sense that,

|fn(s)| ≤ g(s),∀s ∈ S,∀n
Then

lim
n→∞

∫
S
fn(s)ds =

∫
S

lim
n→∞

fn(s)ds

Thus the left hand side of Eq.(A.1)∫
S

lim
N→∞

1

N

N∑
t=0

P (s|ρ, π, t)(
∫
S
Pπ(s′|s)L(s′)ds′ − L(s))ds

= lim
N→∞

1

N
(

N+1∑
t=1

EP (s|ρ,π,t)L(s)−
N∑
t=0

EP (s|ρ,π,t)L(s))

= lim
N→∞

1

N

(
EP (s|ρ,π,N+1)L(s)− Eρ(s)L(s)

)
Thus taking the relations above into consideration, Eq.(A.1) infers

lim
N→∞

1

N

(
EP (s|ρ,π,N+1)L(s)− Eρ(s)L(s)

)
≤ −α3 lim

t→∞
EP (s|ρ,π,t)cπ (s) (A.2)

Since Eρ(s)L(s) is a finite value and L is semi-positive definite, it follows that

lim
t→∞

EP (s|ρ,π,t)cπ (s) ≤ lim
N→∞

1

N
(

1

α3
Eρ(s)L(s)) = 0 (A.3)

Suppose that there exists a state s0 ∈ {s0|cπ(s0) ≤ b} such limt→∞ EP (s|s0,π,t)cπ (s) = c, c > 0 or
limt→∞ EP (s|s0,π,t)cπ (s) =∞. Consider that ρ(s0) > 0 for all starting states in {s0|cπ(s0) ≤ b}
(Assumption 2), then limt→∞ Est∼P (·|π,ρ)cπ (st) > 0, which is contradictory with Eq.(A.3). Thus
∀s0 ∈ {s0|cπ(s0) ≤ b}, limt→∞ EP (s|s0,π,t)cπ (s) = 0. Thus the system is stable in mean cost by
Definition 1.

14

Under review as a conference paper at ICLR 2020

B PSEUDO CODE OF ALGORITHM

Algorithm 1 Lyapunov-based Actor-Critic (LAC)
Initialize replay buffer D and Lagrange multiplier λ, β;
Randomly initialize Lyapunov critic network Lc(s, a), actor π(a|s) with parameters φLc , θ;
Initialize the parameters of target network with θ ← θ;
for each iteration do

Sample s0 according to ρ;
for each time step do

Sample at from π(s) and step forward;
Observe st+1, ct and store (st, at, ct, st+1) in D;

end for
for each update step do

Sample minibatches of transitions from D and update Lc, π, Lagrange multipliers with
gradients;
Update the target networks:

θ ← τθ + (1− τ)θ

end for
end for

15

Under review as a conference paper at ICLR 2020

C FURTHER EXPERIMENT SETUP

We setup the experiment using OpenAi Gym (Brockman et al., 2016). A snapshot of environments
can be found in Figure 7.

!"#$%"&'()*+ !,#$-"*.%/++'"/ !0#$1+'0/2+"0/

Figure 7: Snapshot of environments using OpenAI Gym.

C.1 CARTPOLE

In this experiment, the controller is to sustain the pole vertically at a target position x = 0. This is
modified version of CartPole in Brockman et al. (2016) with continuous action space. The action
is the horizontal force applied on the cart (a ∈ [−20, 20]). xthreshold and θthreshold represents the
maximum of position and angle, respectively, xthreshold = 10 and θthreshold = 20◦. The controller
dies if |x| > xthreshold or |θ| > θthreshold and the episodes end in advance. Cost function r =
(x
xthreshold

)2 + 20 ∗ (θ
θthreshold

)2. The episodes are of length 250. For robustness evaluation in Section 5.4,
we apply an impulsive disturbance force F on the cart every 20 seconds, of which the magnitude
ranges from 80 to 150 and the direction is opposite to the direction of control input. In Section 5.5,
the impulsive disturbance has the same magnitude range and direction with that in Section 5.4, but
only applied once at instant t = 100.

C.2 HALFCHEETAH

HalfCheetah is a modified version of that in Gym’s robotics environment (Brockman et al., 2016).
The task is to control a HalfCheetah (a 2-legged simulated robot) to run at the speed of 1 m/s. The
reward is r = (v − 1)2 where v is the forward speed of the HalfCheetah. The control input is the
torque applied on each joint, ranging from -1 to 1. The episodes are of length 200.

For robustness evaluation in Section 5.4, we apply an impulsive disturbance torque on each joint
every 20 seconds, of which the magnitude ranges from 0.2 to 2.0 and the direction is opposite to the
direction of control input.

C.3 FETCHREACH-V1

We modify the FetchReach in Gym’s robotics environment (Brockman et al., 2016) to a cost version,
where the controller is expected to control manipulator’s end effector to reach a random goal position.
The cost is designed as c = d, where d is the distance between goal and end-effector. The control
input is the torque applied on each joint, ranging from -1 to 1. The episodes are of length 200.

For robustness evaluation in Section 5.4, we apply an impulsive disturbance torque on each joint
every 20 seconds, of which the magnitude ranges from 0.2 to 2.0 and the direction is opposite to the
direction of control input.

16

Under review as a conference paper at ICLR 2020

D SYNTHETIC BIOLOGY GENE REGULATORY NETWORKS

Since this system considered here is in nano-scale whose physical property is different from the ones
considered in Section C and the system exhibit interesting oscillatory behavior, we illustrate this
example separately in this section.

D.1 MATHEMATICAL MODEL OF REPRESSILATOR

In this example, we consider a classical dynamical system in systems/synthetic biology, the repres-
silator, which we use to illustrate the reference tracking problem at hand. The repressilator is a
synthetic three-gene regulatory network where the dynamics of mRNAs and proteins follow an
oscillatory behavior (Elowitz & Leibler, 2000). A discrete-time mathematical description of the
repressilator, which includes both transcription and translation dynamics, is given by the following
set of discrete-time equations:

x1(t+ 1) = x1(t) + dt ·
[
−γ1x1(t) +

a1
K1 + x26(t)

+ u1(t)

]
+ ξ1(t),

x2(t+ 1) = x2(t) + dt ·
[
−γ2x2(t) +

a2
K2 + x24(t)

+ u2(t)

]
+ ξ2(t),

x3(t+ 1) = x3(t) + dt ·
[
−γ3x3(t) +

a3
K3 + x25(t)

+ u3(t)

]
+ ξ3(t),

x4(t+ 1) = x4(t) + dt · [−c1x4(t) + β1x1(t)] + ξ4(t),

x5(t+ 1) = x5(t) + dt · [−c2x5(k) + β2x2(t)] + ξ5(t),

x6(t+ 1) = x6(t) + dt · [−c3x6(t) + β3x3(t)] + ξ6(t).

(D.1)

Here, x1, x2, x3 (resp. x4, x5, x6) denote the concentrations of the mRNA transcripts (resp. proteins)
of genes 1, 2, and 3, respectively. ξi, ∀i are i.i.d. uniform noise ranging from [−δ, δ], i.e., ξi ∼
U(−δ, δ). During training, δ = 0 and for evaluation δ is set to 0.5 and 1 respectively in Section 5.4.
a1, a2, a3 denote the maximum promoter strength for their corresponding gene, γ1, γ2, γ3 denote the
mRNA degradation rates, c1, c2, c3 denote the protein degradation rates, β1, β2, β3 denote the protein
production rates, and K1,K2,K3 are the dissociation constants. The set of equations in Eq.(D.1)
corresponds to a topology where gene 1 is repressed by gene 2, gene 2 is repressed by gene 3, and
gene 3 is repressed by gene 1. dt is the discretization time step.

In practice, only the protein concentrations are observed and given as readouts,for instance via
fluorescent markers (e.g., green fluorescent protein, GFP or red fluorescent protein, mCherry). The
control scheme ui will be implemented by light control signals which can induce the expression of
genes through the activation of their photo-sensitive promoters. To simplify the system dynamics
and as it is usually done for the repressilator model (Elowitz & Leibler, 2000), we consider the
corresponding parameters of the mRNA and protein dynamics for different genes to be equal. More
background on mathematical modeling and control of synthetic biology gene regulatory networks
can be referred to Strelkowa & Barahona (2010); Sootla et al. (2013). In this example, the parameters
are as follows:

∀i : Ki = 1, ai = 1.6, γi = 0.16, βi = 0.16, ci = 0.06, dt = 1

In Fig8, a single snapshot of the state temporal evolution without ξ is depicted. We uniformly
initialized between 0 to 5, i.e., xi(0) ∼ U(0, 5), which is the range we train the policy in Section 5,
persistent oscillatory behavior are also exhibiting similar to the snapshot in Fig 8.

17

Under review as a conference paper at ICLR 2020

Figure 8: A snapshot of natural oscillatory behaviour of a repressilator system consisting of 3 genes.
The oscillations have a period of approximately 150 arbitrary time units. The X-axis denotes time
and Y-axis denotes value/concentration of each state.

D.2 COMPLICATED REPRESSILATOR

To further evaluate the performance of different algorithms, we additionally include a more compli-
cated gene regulatory network, which is composed of 4 genes instead of 3. Such a network with 4
genes would posses an unstable oscillatory behaviour, as shown in Figure 9, making it even harder to
stabilize. The discrete-time mathematical description of the complicated repressilator is given by the
following set of discrete-time equations:

x1(t+ 1) = x1(t) + dt ·
[
−γ1x1(t) +

a1
K1 + x28(t)

+ u1(t)

]
+ ξ1(t),

x2(t+ 1) = x2(t) + dt ·
[
−γ2x2(t) +

a2
K2 + x25(t)

+ u2(t)

]
+ ξ2(t),

x3(t+ 1) = x3(t) + dt ·
[
−γ3x3(t) +

a3
K3 + x26(t)

+ u3(t)

]
+ ξ3(t),

x4(t+ 1) = x4(t) + dt ·
[
−γ4x4(t) +

a4
K4 + x27(t)

+ u4(t)

]
+ ξ4(t),

x5(t+ 1) = x5(t) + dt · [−c1x5(t) + β1x1(t)] + ξ5(t),

x6(t+ 1) = x6(t) + dt · [−c2x6(k) + β2x2(t)] + ξ6(t),

x7(t+ 1) = x7(t) + dt · [−c3x7(t) + β3x3(t)] + ξ7(t).

x8(t+ 1) = x8(t) + dt · [−c4x8(t) + β4x4(t)] + ξ8(t).

(D.2)

Here, x1, x2, x3, x4 (resp. x5, x6, x7, x8) denote the concentrations of the mRNA transcripts (resp.
proteins) of genes 1, 2, 3 and 4, respectively.

The parameters are as follows,

∀i ∈ {1, 2, 3, 4} : Ki = 1, ai = 1.6, γi = 0.16, βi = 0.16, ci = 0.06, dt = 1

18

Under review as a conference paper at ICLR 2020

0 50 100 150 200 250 300 350 400

0

5

10

15

20

25 mRNA 1
mRNA 2
mRNA 3
mRNA 4
Protein 1
Protein 2
Protein 3
Protein 4

Figure 9: A snapshot of natural behaviour of a repressilator system consisting of 4 genes. The X-axis
denotes time and Y-axis denotes value/concentration of each state.

19

Under review as a conference paper at ICLR 2020

E MARKOVIAN JUMP SYSTEMS

In addition to the systems described in Section C and Section D, we introduce two Markovian jump
systems (MJS), which contain both discrete switchings (or jumps) and continuous dynamics (Shi &
Li, 2015), as test beds for the proposed and baseline methods. Specifically, we borrow two simple
examples from the linear case of MJS, i.e. Markovian jump linear systems (MJLS). The dynamic of
the MJLS could be described by the following state space model,

xk+1 = Aσkxk +Bσkuk (E.1)

where xk and uk are the state and control inputs respectively;Aσk andBσk are the parameter matrices.
σk is the switching signal governing the switching of subsystems, which takes value in a finite set
{1, . . . , N} where N is the number of subsystems. In MJS, the value of σ is governed by a Markov
process, σk+1 ∼ P (σk+1|σk). The task of the agent is to stabilize the system and cost function is
c(x) = ‖x‖2.

For the first MJS named MJS1, the parameter matrices are given as follow,

A1 = ρ

[
−0.3672 0.7038
−1.8462 2.0094

]
, B1 =

[
−1
1

]
,

A2 = ρ

[
0.3468 0.6324
−0.7774 1.1872

]
, B2 =

[
−1
1

]
,

A3 = ρ

[
−0.3468 0.6324
−0.7774 1.1872

]
, B3 =

[
0
1

] (E.2)

where ρ = 1.3 and the transition probability of switching signal at each instant is uniformly distributed
across all three modes. Among the three subsystems, subsystem 1 and 2 are unstable without control
input.

To further make the task more difficult, we include a second MJS system, MJS2, of which the
parameter is given as

A1 = ρ

[
−0.4227 0.7710
−1.1600 −0.6912

]
, B1 =

[
1
2

]
,

A2 = ρ

[
−0.5084 0.4536
1.0901 −0.7266

]
, B2 =

[
0
0

]
,

A3 = ρ

[
−0.4772 0.7313
1.3938 −0.7266

]
, B3 =

[
1
2

] (E.3)

where ρ = 0.859 and the switching signal is also uniformly distributed. Note that the subsystem 2
and 3 are unstable without control input. Moreover, subsystem 2 in uncontrollable, since the control
input cannot effect the system dynamic under this mode.

20

Under review as a conference paper at ICLR 2020

F FURTHER VALIDATION OF STABILITY GUARANTEE

In this part, a further comparison between the stability-assured method (LAC) and that without such
guarantee (SAC) is made, by demonstrating the closed-loop system dynamic with the trained policies
(in the two Repressilator and two MJS examples).

0 20 40 60 80 100
0

2500

5000

7500

10000

12500

15000

17500

20000
SAC
LAC

(a) Complicated-Repressilator

Figure 10: Cumulative control performance comparison. The Y-axis indicates the total cost during
one episode and the X-axis indicates the total time steps in thousand. The shadowed region shows the
1-SD confidence interval over 10 random seeds. Across all trials of training, LAC converges to stable
solution with comparable or superior performance compared with SAC.

0 50 100 150 200 250 300 350 400
0

2

4

6

8

10

12

14 Protein 1
Reference

(a) Repressilator-LAC

0 50 100 150 200 250 300 350 400

0

20

40

60

80 Protein 1
Reference

(b) Repressilator-SAC

0 50 100 150 200 250 300 350 400

0

2

4

6

8

10

12

14

16

Protein 1
Reference

(c) Complicated-Repressilator-LAC

0 50 100 150 200 250 300 350 400
0

5

10

15

20

Protein 1
Reference

(d) Complicated-Repressilator-SAC

Figure 11: State trajectories over time under policies trained by LAC and SAC in the Repressilator
and Complicated Repressilator. In each experiment, the policies are tested over 20 random initial
states and all the resulting trajectories are displayed above. The X-axis indicates the time and Y-axis
shows the concentration of Protein 1.

As shown in the figures, without stability guarantee, the state trajectories either diverge (see Figure 11
b and Figure 12 d), or continuously oscillate around the reference trajectory or equilibrium (see

21

Under review as a conference paper at ICLR 2020

Figure 11 d and Figure 12 b). In the MJS examples, the trajectories even diverge to or oscillate in
unacceptable magnitude (1e7 and 1e10). Contrarily, the stability assured method stabilizes the system
well in all tasks (i.e. the state trajectories converge to the reference signal or equilibrium). In the MJS
examples, though temporal oscillation occurs in some of the trials due to the existence of unstable
uncontrollable subsystems, eventually all of the trajectories are stabilized.

0 50 100 150 200 250 300 350 400

200

0

200

400

600 s 1
s 2

(a) MJS1-LAC

0 50 100 150 200 250 300 350 400

0.5

0.0

0.5

1.0

1.5

2.0

2.5
1e10

s 1
s 2

(b) MJS1-SAC

0 50 100 150 200 250 300 350 400

1500

1000

500

0

500

1000

1500

2000

s 1
s 2

(c) MJS2-LAC

0 50 100 150 200 250 300 350 400

4

2

0

2

4

6

1e7

s 1
s 2

(d) MJS2-SAC

Figure 12: State trajectories over time under policies trained by LAC and SAC in the two Markovian
jump systems. In each experiment, the policies are tested over 20 random initial states and all the
resulting trajectories are displayed above. The X-axis indicates the time and Y-axis shows the value
of states.

22

Under review as a conference paper at ICLR 2020

G FURTHER VALIDATION OF STABILITY GUARANTEE

In addition to the evaluation of stability in terms of system dynamic in previous sections, this
part presents a more direct approach for validating the satisfaction of stability condition (2). The
Algorithm 1 aims to solve the dual problem of the original policy optimization problem, i.e. solving
the following min-max problem,

max
λ,β

min
θ
J(π) (G.1)

where λ and β are positive Lagrange multipliers and updated by gradient ascent. When (2) is satisfied,
λ will continuously decrease until it becomes zero. Thus by checking the value and variation of λ,
the satisfaction of stability condition during training and at convergence could be validated. More
specifically, the decline of λ implies the satisfaction of stability condition at that update; λ only
converges to zero if the stability condition is assured.

Clipping the maximum value of λ is necessary, in case that λ grows too much due to the violation
of stability condition during the early training stage, resulting in the inappropriate step length for
the policy update. Clipping is a useful technique to prevent instability of optimization, especially
in gradient-based methods, see Schulman et al. (2017); Bengio et al. (2013); Bello et al. (2017);
Wang et al. (2015). Conversely, when the stability condition is satisfied, λ quickly drops and helps
convergence of the algorithm, which inherently prevents overfitting and enhances robustness and
generalization.

23

Under review as a conference paper at ICLR 2020

H ROBUSTNESS AND GENERALIZATION EVALUATION OF SPPO

In this part, we evaluate the robustness and generalization ability of policies trained by SPPO in the
same. First, the robustness of the policies is tested by perturbing the parameters and adding noise
in the Cartpole and Repressilator environment, as described in Section 5.4.1. Generalization of the
policies is evaluated by setting reference signals that are unseen during training. State trajectories of
the above experiments are demonstrated in Figure 13 and Figure 14, respectively. As demonstrated
in the figures, the SPPO policies could hardly deal with previously unseen uncertainty or reference
signals, and failed in all of the Repressilator experiments.

The SPPO algorithm is originally developed for the control tasks with safety constraints, i.e. keeping
the expectation of discounted cumulative safety cost below a certain threshold. Though Lyapunov
method is exploited, the approach is not aimed at providing stability guarantee.

0 50 100 150 200 250

3

2

1

0

1

length=2.0
length=1.0
length=1.5
original

(a) Cartpole

0 50 100 150 200 250 300 350 400

0

10

20

30

40

50

60

70

80

K_i=5
noise level=0.5
a_i=4.8
a_i=3.2
K_i=10
noise level=1
original

(b) Repressilator

Figure 13: State trajectories over time under policies trained by SPPO and tested in the presence
of parametric uncertainties and process noise, for CartPole and Repressilator. The setting of the
uncertainty is the same as in Section 5.4.1.

0 50 100 150 200 250 300 350 400

0

20

40

60

80

(a) Repressilator

Figure 14: State trajectories under policies trained by SPPO when tracking different reference signals.
The setting of the uncertainty is the same as in Section 5.4.3.

24

Under review as a conference paper at ICLR 2020

I ZOOM-IN VIEWS

I.1 ZOOM-IN VIEW OF FIGURE 3

0 50 100 150 200 250
0.175

0.150

0.125

0.100

0.075

0.050

0.025

0.000

0.025 original

0 50 100 150 200 250

0.050

0.025

0.000

0.025

0.050

0.075

0.100 length=1.0

0 50 100 150 200 250

0.050

0.025

0.000

0.025

0.050

0.075

0.100 length=1.5

0 50 100 150 200 250

0.15

0.10

0.05

0.00

0.05

0.10 length=2.0

Figure 15: Zoom-in view of Figure 3 (a)

Figure 16: Zoom-in view of Figure 3 (b)

25

Under review as a conference paper at ICLR 2020

0 200 400 600 800 1000 1200

2

4

6

8

10

12

14 original

0 200 400 600 800 1000 120
0

2

4

6

8

10

12

14
Ki=5

0 200 400 600 800 1000 1200

2

4

6

8

10

12

14 Ki=10

0 200 400 600 800 1000 1200

2

4

6

8

10

12

14 ai=3.2

0 200 400 600 800 1000 1200

2

4

6

8

10

12

14 ai=4.8

0 200 400 600 800 1000 1200
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5 noise level=1

0 200 400 600 800 1000 1200
0

2

4

6

8

10

12

14

16 noise level=0.5

Figure 17: Zoom-in view of Figure 3 (c)

26

Under review as a conference paper at ICLR 2020

original Ki=5

ai=3.2

ai=4.8 noise level=0.5

noise level=1

Figure 18: Zoom-in view of Figure 3 (d)

27

Under review as a conference paper at ICLR 2020

I.2 ZOOM-IN VIEW OF FIGURE 5

Figure 19: Zoom-in view of Figure 5 (a)

28

Under review as a conference paper at ICLR 2020

Figure 20: Zoom-in view of Figure 5 (b)

29

Under review as a conference paper at ICLR 2020

J HYPERPARAMETERS

Table 1: Hyperparameters of LAC

Hyperparameters Repressilator CartPole FetchReach HalfCheetah
Time horizon N 5 5 5 ∞
Minibatch size 256 256 256 256
Actor learning rate 1e-4 1e-4 1e-4 1e-4
Critic learning rate 3e-4 3e-4 3e-4 3e-4
Lyapunov learning rate 3e-4 3e-4 3e-4 3e-4
Target entropy -3 -1 -5 -6
Soft replacement(τ) 0.005 0.005 0.005 0.005
Discount(γ) 0.75 1.0 1.0 0.995
α3 1.0 1.0 1.0 1.0
Lyapunov critic network structure (256,256,16) (64,64,16) (64,64,16) (256,256,16)

For LAC, there are two networks: the policy network and the Lyapunov critic network. For the
policy network, we use a fully-connected MLP with two hidden layers of 256 units, outputting the
mean and standard deviations of a Gaussian distribution. As mentioned in section 4, it should be
noted that the output of the Lyapunov critic network is a square term, which is always non-negative.
More specifically, we use a fully-connected MLP with two hidden layers and one output layer with
different units as in Table 1, outputting the feature vector φ(s, a). The Lyapunov value is obtained
by Lc(s, a) = φT (s, a)φ(s, a). All the hidden layers use Relu activation function and we adopt the
same invertible squashing function technique as Haarnoja et al. (2018) to the output layer of the
policy network.

30

	INTRODUCTION
	Related Works

	PROBLEM STATEMENT
	MAIN RESULTS
	ALGORITHM
	EXPERIMENT
	Background and Problem Description
	CartPole
	HalfCheetah
	FetchReach
	Repressilator
	Markovian Jump Systems

	Performance
	Convergence
	Evaluation on Robustness and Generalization
	Robustness to dynamic uncertainty
	Robustness to disturbances
	Generalization over different tracking references

	Influence of Different Lyapunov Function Candidates and Structures

	CONCLUSIONS
	Proof of Theorem 1
	Pseudo Code of Algorithm
	Further Experiment Setup
	CartPole
	HalfCheetah
	FetchReach-v1

	Synthetic Biology Gene Regulatory Networks
	Mathematical model of repressilator
	Complicated Repressilator

	Markovian Jump Systems
	Further Validation of Stability Guarantee
	Further validation of Stability Guarantee
	Robustness and Generalization Evaluation of SPPO
	Zoom-in Views
	Zoom-in View of Figure 3
	Zoom-in View of Figure 5

	Hyperparameters
	Reply

