
Under review as a conference paper at ICLR 2019

GRAPH2SEQ: GRAPH TO SEQUENCE LEARNING
WITH ATTENTION-BASED NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

The celebrated Sequence to Sequence learning (Seq2Seq) technique and its numer-
ous variants achieve excellent performance on many tasks. However, many ma-
chine learning tasks have inputs naturally represented as graphs; existing Seq2Seq
models face a significant challenge in achieving accurate conversion from graph
form to the appropriate sequence. To address this challenge, we introduce a gen-
eral end-to-end graph-to-sequence neural encoder-decoder architecture that maps
an input graph to a sequence of vectors and uses an attention-based LSTM method
to decode the target sequence from these vectors. Our method first generates the
node and graph embeddings using an improved graph-based neural network with
a novel aggregation strategy to incorporate edge direction information in the node
embeddings. We further introduce an attention mechanism that aligns node em-
beddings and the decoding sequence to better cope with large graphs. Experimen-
tal results on bAbI, Shortest Path, and Natural Language Generation tasks demon-
strate that our model achieves state-of-the-art performance and significantly out-
performs existing graph neural networks, Seq2Seq, and Tree2Seq models; using
the proposed bi-directional node embedding aggregation strategy, the model can
converge rapidly to the optimal performance.

1 INTRODUCTION

The celebrated Sequence to Sequence learning (Seq2Seq) technique and its numerous variants
achieve excellent performance on many tasks such as Neural Machine Translation (Bahdanau et al.,
2014; Gehring et al., 2017), Natural Language Generation (NLG) (Song et al., 2017) and Speech
Recognition(Zhang et al., 2017). Most of the proposed Seq2Seq models can be viewed as a family of
encoder-decoders (Sutskever et al., 2014; Cho et al., 2014; Bahdanau et al., 2014), where an encoder
reads and encodes a source input in the form of sequences into a continuous vector representation of
fixed dimension, and a decoder takes the encoded vectors and outputs a target sequence. Many other
enhancements including Bidirectional Recurrent Neural Networks (Bi-RNN) (Schuster & Paliwal,
1997) or Bidirectional Long Short-Term Memory Networks (Bi-LSTM) (Graves & Schmidhuber,
2005) as encoder, and attention mechanism (Bahdanau et al., 2014; Luong et al., 2015), have been
proposed to further improve its practical performance for general or domain-specific applications.

Despite their flexibility and expressive power, a significant limitation with the Seq2Seq models is
that they can only be applied to problems whose inputs are represented as sequences. However,
the sequences are probably the simplest structured data, and many important problems are best
expressed with a more complex structure such as graphs that have more capacity to encode compli-
cated pair-wise relationships in the data. For example, one task in NLG applications is to translate
a graph-structured semantic representation such as Abstract Meaning Representation to a text ex-
pressing its meaning (Banarescu et al., 2013). In addition, path planning for a mobile robot (Hu &
Yang, 2004) and path finding for question answering in bAbI task (Li et al., 2015) can also be cast
as graph-to-sequence problems.

On the other hand, even if the raw inputs are originally expressed in a sequence form, it can still ben-
efit from the enhanced inputs with additional information (to formulate graph inputs). For example,
for semantic parsing tasks (text-to-AMR or text-to-SQL), they have been shown better performance
by augmenting the original sentence sequences with other structural information such as dependency
parsing trees (Pust et al., 2015). Intuitively, the ideal solution for graph-to-sequence tasks is to build

1

Under review as a conference paper at ICLR 2019

a more powerful encoder which is able to learn the input representation regardless of its inherent
structure.

To cope with graph-to-sequence problems, a simple and straightforward approach is to directly
convert more complex structured graph data into sequences (Iyer et al., 2016; Gómez-Bombarelli
et al., 2016; Liu et al., 2017), and apply sequence models to the resulting sequences. However,
the Seq2Seq model often fails to perform as well as hoped on these problems, in part because
it inevitably suffers significant information loss due to the conversion of complex structured data
into a sequence, especially when the input data is naturally represented as graphs. Recently, a line
of research efforts have been devoted to incorporate additional information by extracting syntactic
information such as the phrase structure of a source sentence (Tree2seq) (Eriguchi et al., 2016),
by utilizing attention mechanisms for input sets (Set2seq)(Vinyals et al., 2015a), and by encoding
sentences recursively as trees (Socher et al., 2010; Tai et al., 2015). Although these methods achieve
promising results on certain classes of problems, most of the presented techniques largely depend
on the underlying application and may not be able to generalize to a broad class of problems in a
general way.

To address this issue, we propose Graph2Seq, a novel attention-based neural network architecture
for graph-to-sequence learning. The Graph2Seq model follows the conventional encoder-decoder
approach with two main components, a graph encoder and a sequence decoder. The proposed graph
encoder aims to learn expressive node embeddings and then to reassemble them into the corre-
sponding graph embeddings. To this end, inspired by a recent graph representation learning method
(Hamilton et al., 2017a), we propose an inductive graph-based neural network to learn node em-
beddings from node attributes through aggregation of neighborhood information for directed and
undirected graphs, which explores two distinct aggregators on each node to yield two representa-
tions that are concatenated to form the final node embedding. In addition, we further design an
attention-based RNN sequence decoder that takes the graph embedding as its initial hidden state and
outputs a target prediction by learning to align and translate jointly based on the context vectors as-
sociated with the corresponding nodes and all previous predictions. Our code and data are available
at https://github.com/anonymous/Graph2Seq.

Graph2Seq is simple yet general and is highly extensible where its two building blocks, graph en-
coder and sequence decoder, can be replaced by other models such as Graph Convolutional (Atten-
tion) Networks (Kipf & Welling, 2016; Velickovic et al., 2017) or their extensions (Schlichtkrull
et al., 2017), and LSTM (Hochreiter & Schmidhuber, 1997). We highlight three main contributions
of this paper as follows:

• We propose a new attention-based neural networks paradigm to elegantly address graph-
to-sequence learning problems that learns a mapping between graph-structured inputs to
sequence outputs, which current Seq2Seq and Tree2Seq may be inadequate to handle.

• We propose a novel graph encoder to learn a bi-directional node embeddings for directed
and undirected graphs with node attributes by employing various aggregation strategies,
and to learn graph-level embedding by exploiting two different graph embedding tech-
niques. Equally importantly, we present an attention mechanism to learn the alignments
between nodes and sequence elements to better cope with large graphs.

• Experimental results show that our model achieves state-of-the-art performance on three
recently introduced graph-to-sequence tasks and significantly outperforms existing graph
neural networks, Seq2Seq, and Tree2Seq models.

2 RELATED WORK

Our model draws inspiration from the research fields of graph representation learning, neural net-
works on graphs, and neural encoder-decoder models.

Graph Representation Learning. Graph representation learning has been proven extremely useful
for a broad range of the graph-based analysis and prediction tasks (Hamilton et al., 2017b; Goyal
& Ferrara, 2017). The main goal for graph representation learning is to learn a mapping that em-
beds nodes as points in a low-dimensional vector space. These representation learning approaches
can be roughly categorized into two classes including matrix factorization-based algorithms and

2

https://github.com/anonymous/Graph2Seq

Under review as a conference paper at ICLR 2019

random-walk based methods. A line of research learn the embeddings of graph nodes through ma-
trix factorization (Roweis & Saul, 2000; Belkin & Niyogi, 2002; Ahmed et al., 2013; Cao et al.,
2015; Ou et al., 2016). These methods directly train embeddings for individual nodes of training
and testing data jointly and thus inherently transductive. Another family of work is the use of random
walk-based methods to learn low-dimensional embeddings of nodes by exploring neighborhood in-
formation for a single large-scale graph (Duran & Niepert, 2017; Hamilton et al., 2017a; Tang et al.,
2015; Grover & Leskovec, 2016; Perozzi et al., 2014; Velickovic et al., 2017).

GraphSAGE (Hamilton et al., 2017a) is such a technique that learns node embeddings through ag-
gregation from a node local neighborhood using node attributes or degrees for inductive learning,
which has better capability to generate node embeddings for previously unseen data. Our graph en-
coder is an extension to GraphSAGE with two major distinctions. First, we non-trivially generalize
it to cope with both directed and undirected graphs by splitting original node into forward nodes (a
node directs to) and backward nodes (direct to a node) according to edge direction and applying two
distinct aggregation functions to these types of nodes. Second, we exploit two different schemes
(pooling-based and supernode-based) to reassemble the learned node embeddings to generate graph
embedding, which is not studied in GraphSAGE. We show the advantages of our graph encoder over
GraphSAGE in our experiments.

Neural Networks on Graphs. Over the past few years, there has been a surge of approaches that
seek to learn the representations of graph nodes, or entire (sub)graphs, based on Graph Neural Net-
works (GNN) that extend well-known network architectures including RNN and CNN to graph data
(Gori et al., 2005; Scarselli et al., 2009; Li et al., 2015; Bruna et al., 2013; Duvenaud et al., 2015;
Niepert et al., 2016; Defferrard et al., 2016; Yang et al., 2016; Kipf & Welling, 2016; Chen et al.,
2018). A line of research is the neural networks that operate on graphs as a form of RNN (Gori
et al., 2005; Scarselli et al., 2009), and recently extended by Li et al. (Li et al., 2015) by introduc-
ing modern practices of RNN (using of GRU updates) in the original GNN framework. Another
important stream of work that has recently drawn fast increasing interest is graph convolutional net-
works (GCN) built on spectral graph theory, introduced by Bruna et al. (2013) and then extended
by Defferrard et al. (2016) with fast localized convolution. Most of these approaches cannot scale
to large graphs, which is improved by using a localized first-order approximation of spectral graph
convolution (Kipf & Welling, 2016) and further equipping with important sampling for deriving a
fast GCN (Chen et al., 2018).

The closely relevant work to our graph encoder is GCN (Kipf & Welling, 2016), which is designed
for semi-supervised learning in transductive setting that requires full graph Laplacian to be given
during training and is typically applicable to a single large undirected graph. An extension of GCN
can be shown to be mathematically related to one variant of our graph encoder on undirected graphs.
We compare the difference between our graph encoder and GCN in our experiments. Another rel-
evant work is gated graph sequence neural networks (GGS-NNs) (Li et al., 2015). Although it is
also designed for outputting a sequence, it is essentially a prediction model that learns to predict a
sequence embedded in graph while our approach is a generative model that learns a mapping be-
tween graph inputs and sequence outputs. A good analogy that can be drawn between our proposed
Graph2Seq and GGS-NNs is the relationship between convolutional Seq2Seq and RNN.

Neural Encoder-Decoder Models. One of the most successful encoder-decoder architectures is
the sequence to sequence learning (Sutskever et al., 2014; Cho et al., 2014; Bahdanau et al., 2014;
Luong et al., 2015; Gehring et al., 2017), which are originally proposed for machine translation.
Recently, the classical Seq2Seq model and its variants have been applied to several applications in
which these models can perform mappings from objects to sequences, including mapping from an
image to a sentence (Vinyals et al., 2015c), models for computation map from problem statements of
a python program to their solutions (the answers to the program) (Zaremba & Sutskever, 2014), the
traveling salesman problem for the set of points (Vinyals et al., 2015b) and deep generative model
for molecules generation from existing known molecules in drug discovery. It is easy to see that the
objects that are mapped to sequences in the listed examples are often naturally represented in graphs
rather than sequences.

Recently, many research efforts and the key contributions have been made to address the limitations
of Seq2Seq when dealing with more complex data, that leverage external information using special-
ized neural models attached to underlying targeted applications, including Tree2Seq (Eriguchi et al.,
2016), Set2Seq (Vinyals et al., 2015a), Recursive Neural Networks (Socher et al., 2010), and Tree-

3

Under review as a conference paper at ICLR 2019

X0
X1
.
.
.
.
.

Xn

X0
X1
.
.
.
.
.

Xn

X0
X1
.
.
.
.
.

Xn

X0
X1
.
.
.
.
.

Xn .. .

znz0 z1

max(·)

<EOS>

X0
X1
.
.
.
.
.

Xn

X0
X1
.
.
.
.
.

Xn

X0
X1
.
.
.
.
.

Xn

X0
X1
.
.
.
.
.

Xn

X0
X1
.
.
.
.
.

Xn

X0
X1
.
.
.
.
.

Xn

X0
X1
.
.
.
.
.

Xn

X0
X1
.
.
.
.
.

Xn

Fully Connected
Layer

⊕

z0 z1 zn

..z2

W

W

X

X

<EOS>

⊕

X0
X1
.
.
.
.
.

Xn

X0
X1
.
.
.
.
.

Xn

Node
Embedding

Graph
Embedding

⊕

Graph Encoder Node Attention

Sequence
Decoder

Figure 1: The framework of Graph2Seq model.

Structured LSTM (Tai et al., 2015). Due to more recent advances in graph representations and graph
convolutional networks, a number of research has investigated to utilize various GNN to improve
the performance over the Seq2Seq models in the domains of machine translation and graph gener-
ation (Bastings et al., 2017; Simonovsky & Komodakis, 2018; Li et al., 2018). There are several
distinctions between these work and ours. First, our model is the first general-purpose encoder-
decoder architecture for graph-to-sequence learning that is applicable to different applications while
the aforementioned research has to utilize domain-specific information. Second, we design our own
graph embedding techniques for our graph decoder while most of other work directly apply existing
GNN to their problems.

3 GRAPH-TO-SEQUENCE MODEL

As shown in Figure 1, our graph-to-sequence model includes a graph encoder, a sequence decoder,
and a node attention mechanism. Following the conventional encoder-decoder architecture, the
graph encoder first generates node embeddings, and then constructs graph embeddings based on
the learned node embeddings. Finally, the sequence decoder takes both the graph embeddings and
node embeddings as input and employs attention over the node embeddings whilst generating se-
quences. In this section, we first introduce the node-embedding generation algorithm which derives
the bi-directional node embeddings by aggregating information from both forward and backward
neighborhoods of a node in a graph. Upon these node embeddings, we propose two methods for
generating graph embeddings capturing the whole-graph information.

3.1 NODE EMBEDDING GENERATION

Inspired by Hamilton et al. (2017a), we design a new inductive node embedding algorithm that
generates bi-directional node embeddings by aggregating information from a node local forward
and backward neighborhood within K hops for both directed and undirected graphs. In order to
make it more clear, we take the embedding generation process for node v ∈ V as an example to
explain our node embedding generation algorithm:1

1) We first transform node v’s text attribute to a feature vector, av , by looking up the embedding
matrix We. Note that for some tasks where v’s text attribute may be a word sequence, one neural
network layer, such as an LSTM layer, could be additionally used to generate av .

2) We categorize the neighbors of v into forward neighbors, N`(v), and backward neighbors,
Na(v), according to the edge direction. In particular, N`(v) returns the nodes that v directs
to and Na(v) returns the nodes that direct to v;

3) We aggregate the forward representations of v’s forward neighbors {hk−1
u` , ∀u ∈ N`(v)} into

a single vector, hk
N`(v)

, where k∈{1, ...,K} is the iteration index. In our experiments, we find
that the aggregator choice, AGGREGATE`k , may heavily affect the overall performance and we will
discuss it later. Notice that at iteration k, this aggregator only uses the representations generated

1The pseudo-code of this algorithm can be found in the Appendix A.

4

Under review as a conference paper at ICLR 2019

at k − 1. The initial forward representation of each node is its feature vector calculated in step
(1);

4) We concatenate v’s current forward representation, hk−1
v` , with the newly generated neighbor-

hood vector, hk
N`(v)

. This concatenated vector is fed into a fully connected layer with nonlinear
activation function σ, which updates the forward representation of v, hk

v`, to be used at the next
iteration;

5) We update the backward representation of v, hk
va, using the similar procedure as introduced

in step (3) and (4) except that operating on the backward representations instead of the forward
representations;

6) We repeat steps (3)∼(5) K times, and the concatenation of the final forward and backward rep-
resentation is used as the final bi-directional representation of v. Since the neighbor information
from different hops may have different impact on the node embedding, we learn a distinct aggre-
gator at each iteration.

Aggregator Architectures. Since a node neighbors have no natural ordering, the aggregator
function should be invariant to permutations of its inputs, ensuring that our neural network model
can be trained and applied to arbitrarily ordered node-neighborhood feature sets. In practice, we
examined the following three aggregator functions:
Mean aggregator: This aggregator function takes the element-wise mean of the vectors in {hk−1

u` ,
∀u ∈ N`(v)} and {hk−1

ua , ∀u ∈ Na(v)}.
LSTM aggregator: Similar to (Hamilton et al., 2017a), we also examined a more complex
aggregator based on an Long Short Term Memory (LSTM) architecture. Note that LSTMs are not
inherently symmetric since they process their inputs sequentially. We use LSTMs to operate on
unordered sets by simply applying them to a single random permutation of the node neighbors.
Pooling aggregator: In this aggregator, each neighbor’s vector is fed through a fully-connected
neural network, and an element-wise max-pooling operation is applied:

AGGREGATE`k = max({σ(Wpoolhk
u` + b), u ∈ N`(v)})

AGGREGATEak = max({σ(Wpoolhk
ua + b), u ∈ Na(v)})

(1)

where max denotes the element-wise max operator, and σ is a nonlinear activation function. By
applying max-pooling, the model can capture different information across the neighborhood set.

3.2 GRAPH EMBEDDING GENERATION

Most existing works of graph convolution neural networks focus more on node embeddings rather
than graph embeddings since their focus is on the node-wise classification task. However, graph
embeddings that convey the entire graph information are essential to the downstream decoder. In
this work, we introduce two approaches (i.e., Pooling-based and Node-based) to generate these
graph embeddings from the node embeddings.
Pooling-based Graph Embedding. In this approach, we investigated three pooling techniques:
max-pooling, min-pooling and average-pooling. In our experiments, we fed the node embeddings
to a fully-connected neural network and applied each pooling method element-wise. We found no
significant performance difference across the three different pooling approaches; we thus adopt the
max-pooling method as our default pooling approach.
Node-based Graph Embedding. In this approach, we add one super node, vs, into the input graph,
and all other nodes in the graph direct to vs. We use the aforementioned node embedding generation
algorithm to generate the embedding of vs by aggregating the embeddings of the neighbor nodes.
The embedding of vs that captures the information of all nodes is regarded as the graph embedding.

3.3 ATTENTION BASED DECODER

The sequence decoder is a Recurrent Neural Network (RNN) that predicts the next token yi, given
all the previous words y<i = y1, ..., yi−1, the RNN hidden state si for time i, and a context vector ci
that directs attention to the encoder side. In particular, the context vector ci depends on a set of node
representations (z1,...,zV) which the graph encoder maps the input graph to. Each node representa-
tion zi contains information about the whole graph with a strong focus on the parts surrounding the

5

Under review as a conference paper at ICLR 2019

i-th node of the input graph. The context vector ci is computed as a weighted sum of these node
representations and the weight αij of each node representation is computed by:

ci =

V∑
j=1

αijhj , where αij =
exp(eij)∑V
k=1 exp(eik)

, eij = a(si−1, hj) (2)

where a is an alignment model which scores how well the input node around position j and the
output at position i match. The score is based on the RNN hidden state si−1 and the j-th node
representation of the input graph. We parameterize the alignment model a as a feed-forward neural
network which is jointly trained with other components of the proposed system. Our model is jointly
trained to maximize the conditional log-probability of the correct description given a source graph.
In the inference phase, we use the beam search to generate a sequence with the beam size = 5.

4 EXPERIMENTS

We conduct experiments to demonstrate the effectiveness and efficiency of the proposed method.
Following the experimental settings in (Li et al., 2015), we firstly compare its performance with
classical LSTM, GGS-NN, and GCN based methods on two selected tasks including bAbI Task 19
and the Shortest Path Task. We then compare Graph2Seq against other Seq2Seq based methods on a
real-world application - Natural Language Generation Task. Note that the parameters of all baselines
are set based on performance on the development set.

Experimental Settings. Our proposed model is trained using the Adam optimizer (Kingma & Ba,
2014), with mini-batch size 30. The learning rate is set to 0.001. We apply the dropout strategy
(Srivastava et al., 2014) with a ratio of 0.5 at the decoder layer to avoid overfitting. Gradients are
clipped when their norm is bigger than 20. For the graph encoder, the default hop size K is set to
6, the size of node initial feature vector is set to 40, the non-linearity function σ is ReLU (Glorot
et al., 2011), the parameters of aggregators are randomly initialized. The decoder has 1 layer and
hidden state size is 80. Since Graph2Seq with mean aggregator and pooling-based graph embeddings
generally performs better than other configurations (we defer this discussion to Sec. 4.4), we use
this setting as our default model in the following sections.

4.1 BABI TASK 19

Setup. The bAbI artificial intelligence (AI) tasks (Weston et al., 2015) are designed to test reasoning
capabilities that an AI system possesses. Among these tasks, Task 19 (Path Finding) is arguably the
most challenging task (see, e.g., (Sukhbaatar et al., 2015) which reports an accuracy of less than
20% for all methods that do not use strong supervision). We apply the transformation procedure
introduced in (Li et al., 2015) to transform the description as a graph as shown in Figure 2. The left
part shows an instance of bAbI task 19: given a set of sentences describing the relative geographical
positions for a pair of objects o1 and o2, we aim to find the geographical path between o1 and o2.
The question is then treated as finding the shortest path between two nodes, No1 and No2 , which
represent o1 and o2 in the graph. To tackle this problem with Graph2Seq, we annotate No1 with text
attribute START and No2 with text attribute END. For other nodes, we assign their IDs in the graph
as their text attributes. It is worth noting that, in our model, the START and END tokens are node
features whose vector representations are first randomly initialized and then learned by the model
later. In contrast, in GGS-NN, the vector representations of staring and end nodes are set as one-hot
vectors, which is specially designed for the shortest path task.

To aggregate the edge information into the node embedding, for each edge, we additionally add a
node representing this edge into the graph and assign the edge’s text as its text attribute. We generate
1000 training examples, 1000 development examples and 1000 test examples where each example
is a graph-path pair. We use a standard LSTM model (Hochreiter & Schmidhuber, 1997) and GGS-
NN (Li et al., 2015) as our baselines. Since GCN (Kipf & Welling, 2016) itself cannot output a
sequence, we also create a baseline that combines GCN with our sequence decoder.

Results. From Table 1, we can see that the LSTM model fails on this task while our model makes
perfect predictions, which underlines the importance of the use of graph encoder to directly encode

6

Under review as a conference paper at ICLR 2019

1 The garden is west of the bathroom.
2 The bedroom is north of the hallway.
3 The office is south of the hallway.
4 The bathroom is north of the bedroom.
5 The kitchen is east of the bedroom.

garden (A) bathroom (B) bedroom (C)
hallway (D) office (E) kitchen (F)

A west B
B north D
E south D
B north C
F east C

Transform

Q: How do you go from the bathroom to
the hallway

Q:path(B, D)Transform

Figure 2: Path Finding Example.

bAbI T19 SP-S SP-L
LSTM 25.2% 8.1% 2.2%

GGS-NN 98.1% 100.0% 95.2%
GCN 97.4% 100.0% 96.5%

Graph2Seq 99.9% 100.0% 99.3%

Table 1: Results of our model and baselines on
bAbI and Shortest Directed Path tasks.

a graph instead of using sequence model on the converted inputs from a graph. Comparing to GGS-
NN that uses carefully designed initial embeddings for different types of nodes such as START and
END, our model uses a purely end-to-end approach which generates the initial node feature vectors
based on random initialization of the embeddings for words in text attributes. However, we still
significantly outperform GGS-NN, demonstrating the expressive power of our graph encoder that
considers information flows in both forward and backward directions. We observe similar results
when comparing our whole Graph2Seq model to GCN with our decoder, which mainly because the
current form of GCN (Kipf & Welling, 2016) is designed for undirected graph and thus may have
information loss when converting directed graph to undirected one as suggested in (Kipf & Welling,
2016).

4.2 SHORTEST PATH TASK

Setup. We further evaluate our model on the Shortest Path (SP) Task whose goal is to find the
shortest directed path between two nodes in a graph, introduced in (Li et al., 2015). For this task, we
created datasets by generating random graphs, and choosing pairs random nodes A and B which are
connected by a unique shortest directed path. Since we can control the size of generated graphs, we
can easily test the performance changes of each model when increasing the size of graphs as well.
Two such datasets, SP-S and SP-L, were created, containing Small (node size=5) and Large graphs
(node size=100), respectively. We restricted the length of the generated shortest paths for SP-S to
be at least 2 and at least 4 for SP-L. For each dataset, we used 1000 training examples and 1000
development examples for parameter tuning, and evaluated on 1000 test examples. We choose the
same baselines as introduced in the previous section.

Results. Table 1 shows that the LSTM model still fails on both of these two datasets. Our Graph2Seq
model achieves comparable performance with GGS-NN that both models could achieve 100% ac-
curacy on the SP-S dataset while achieves much better on larger graphs on the SP-L dataset. This
is because our graph encoder is more expressive in learning the graph structural information with
our dual-direction aggregators, which is the key to maintaining good performance when the graph
size grows larger, while the performance of GGS-NN significantly degrades due to hardness of cap-
turing the long-range dependence in a graph with large size. Compared to GCN, it achieves better
performance than GGS-NN but still much lower than our Graph2Seq, in part because of both the
poor effectiveness of graph encoder and incapability of handling with directed graph.

4.3 NATURAL LANGUAGE GENERATION TASK

Setup. We finally evaluate our model on a real-world application - Natural Language Generation
(NLG) task where we translate a structured semantic representation—in this case a structured query
language (SQL) query—to a natural language description expressing its meaning. As indicated
in (Spiliopoulou & Hatzopoulos, 1992), the structure of SQL query is essentially a graph. Thus
we naturally cast this task as an application of the graph-to-sequence model which takes a graph
representing the semantic structure as input and outputs a sequence. Figure 3 illustrates the process
of translation of an SQL query to a corresponding natural language description via our Graph2Seq
model.2

We use the BLEU-4 score to evaluate our model on the WikiSQL dataset (Zhong et al., 2017), a
corpus of 87,726 hand-annotated instances of natural language questions, SQL queries, and SQL

2The details of converting an SQL query into a graph is discussed in the Appendix B.

7

Under review as a conference paper at ICLR 2019

Transform
company

assets

sales

industry

> val0

�= val2 profits = val3

ANDSELECT

which company has both the market value
and assets higher than val0, ranking in top
val2 and revenue of val3

Graph-to-Sequence Model

SELECT company WHERE assets > val0
AND sales > val0 AND industry_rank <= val2
AND profits = val3

SQL query

Interpretation

Generation

Figure 3: A running example of the NLG task.

BLEU-4
Seq2Seq 20.91

Seq2Seq + Copy 24.12
Tree2Seq 26.67

Graph2Seq-NGE 34.28
Graph2Seq-PGE 38.97

Table 2: Results on WikiSQL.

tables. WikiSQL was created as the benchmark dataset for the table-based question answering task
(for which the state-of-the-art performance is 82.6% execution accuracy (Yu et al., 2018)); here we
reverse the use of the dataset, treating the SQL query as the input and having the goal of generating
the correct English question. These WikiSQL SQL queries are split into training, development and
test sets, which contain 61297 queries, 9145 queries and 17284 queries, respectively.

Since the SQL-to-Text task can be cast as ”machine translation” type of problems, we implemented
several baselines to address this task. The first one is an attention-based sequence-to-sequence
(Seq2Seq) model proposed by (Bahdanau et al., 2014); the second one additionally introduces the
copy mechanism in the decoder side (Gu et al., 2016); the third one is a tree-to-sequence (Tree2Seq)
model proposed by (Eriguchi et al., 2016) as our baseline. To apply these baselines, we convert an
SQL query to a sequence or a tree using some templates which we discuss in detail in the Appendix.

Results. From Table 2, we can see that our Graph2Seq model performs significantly better than the
Seq2Seq and Tree2Seq baselines. This result is expected since the structure of SQL query is essen-
tially a graph despite its expressions in sequence and a graph encoder is able to capture much more
information directly in graph. Tree2Seq achieves better performance compared to Seq2Seq since its
tree-based encoder explicitly takes the syntactic structure of a SQL query into consideration. Two
variants of the Graph2Seq models can substantially outperform Tree2Seq, which demonstrates that
a general graph to sequence model that is independent of different structural information in com-
plex data is very useful. Interestingly, we also observe that Graph2Seq-PGE (pooling-based graph
embedding) performs better than Graph2Seq-NGE (node-based graph embedding). One potential
reason is that the node-based graph embedding method artificially added a super node in graph
which changes the original graph topology and brings unnecessary noise into the graph.

4.4 IMPACTS OF AGGREGATOR, HOP SIZE AND ATTENTION MECHANISM ON GARPH2SEQ
MODEL

Setup. We now investigate the impact of the aggregator and the hop size on the Graph2Seq model.
Following the previous SP task, we further create three synthetic datasets3 : i) SDPDAG whose
graphs are directed acyclic graphs (DAGs); ii) SDPDCG whose graphs are directed cyclic graphs
(DCGs) that always contain cycles; iii) SDPSEQ whose graphs are essentially sequential lines.
For each dataset, we randomly generated 10000 graphs with the graph size 100 and split them as
8000/1000/1000 for the training/development/test set. For each graph, we generated an SDP query
by choosing two random nodes with the constraints that there should be a unique shortest path
connecting these two nodes, and that its length should be at least 4.

We create six variants of the Graph2Seq model coupling with different aggregation strategies in the
node embedding generation. The first three (Graph2Seq-MA, -LA, -PA) use the Mean Aggregator,
LSTM Aggregator and Pooling Aggregator to aggregate node neighbor information, respectively.
Unlike these three models that aggregate the information of both forward and backward nodes, the
other two models (Graph2Seq-MA-F, -MA-B) only consider one-way information aggregating the
information from the forward nodes or the information from the backward nodes with the mean
aggregator, respectively. We use the path accuracy to evaluate these models. The hop size is set to
10.

Impacts of the Aggregator. Table 3 shows that on the SDPSEQ dataset, both Graph2Seq-MA
and Graph2Seq-PA achieve the best performance. On more complicated structured data, such as

3These datasets is valuable for other graph-based learning to test their performance regarding graph encoder
and we will release them with our codes.

8

Under review as a conference paper at ICLR 2019

Method SDPDAG SDPDCG SDPSEQ

G2S-MA 99.8% 99.2% 100%
G2S-LA 91.7% 90.9% 99.9%
G2S-PA 96.7% 98.4% 100%

G2S-MA-F 78.8% 98.7% 70.2%
G2S-MA-B 80.1% 99.1% 68.6%

Table 3: Shortest path accuracy on three synthetic
SDP datasets.

0 20 40 60 80 100
Hop Size #

30

40

50

60

70

80

90

100

A
cc

ur
ac

y
%

Graph2Seq-MA

Graph2Seq-MA-F

Graph2Seq-MA-B

GCN + our decoder

Figure 4: Test Results on SDP1000.
SDPDAG and SDPDCG, Graph2Seq-MA (our default model) also performs better than other vari-
ants. We can also see that Graph2Seq-MA performs better than Graph2Seq-MA-F and Graph2Seq-
MA-B on SDPDAG and SDPSEQ since it captures more information from both directions to learn
better node embeddings. However, Graph2Seq-MA-F and Graph2Seq-MA-B achieve comparable
performance to Graph2Seq-MA on SDPDCG. This is because in almost 95% of the graphs, 90% of
the nodes could reach each other by traversing the graph for a given hop size, which dramatically
restores its information loss.

Impact of Hop Size. To study the impact of the hop size, we create a SDPDCG dataset, SDP1000 and
results are shown in Figure 4. We see that the performance of all variants of Graph2Seq converges
to its optimal performance when increasing the number of hop size. Specifically, Graph2Seq-MA
achieves significantly better performance than its counterparts considering only one direction propa-
gation, especially when the hop size is small. As the hop size increases, the performance differences
diminish. This is the desired property since Graph2Seq-MA can use much smaller hop size (about
the half) to achieve the same performance of Graph2Seq-MA-F or Graph2Seq-MA-B with a larger
size. This is particularly useful for large graphs where increasing hop size may need consider-
able computing resources and long run-time. We also compare Graph2Seq with GCN, where the
hop size means the number of layers in the settings of GCN. Surprisingly, even Graph2Seq-MA-F
or Graph2Seq-MA-B can significantly outperform GCN with the same hope size despite its rough
equivalence between these two architectures. It again illustrates the importance of the methods that
could take into account both directed and undirected graphs. For additional experimental results on
the impact of hop size for graphs of different sizes, please refer to the Table 4 in Appendix C.

Impact of Attention Mechanism. To investigate the impact of attention mechanism to the
Graph2Seq model, we still evaluate our model on SDPDAG, SDPDCG and SDPSEQ datasets but
without considering the attention strategy. As shown in Table 4, we find that the attention strategy
significantly improves the performance of all variants of Graph2Seq by at least 14.9%. This result
is expected since for larger graphs it is more difficult for the encoder to compress all necessary
information into a fixed-length vector; as intended, applying the attention mechanism in decoding
enabled our proposed Graph2Seq model to successfully handle large graphs.

5 CONCLUSION

In this paper, we study the graph-to-sequence problem, introducing a new general and flexible
Graph2Seq model that follows the encoder-decoder architecture. We showed that, using our pro-
posed bi-directional node embedding aggregation strategy, the graph encoder could successfully
learn representations for three representative classes of directed graph, i.e., directed acyclic graphs,
directed cyclic graphs and sequence-styled graphs. Experimental results on three tasks demonstrate
that our model significantly outperforms existing graph neural networks, Seq2Seq, and Tree2Seq
baselines on both synthetic and real application datasets. We also showed that introducing an atten-
tion mechanism over node representation into the decoding substantially enhances the ability of our
model to produce correct target sequences from large graphs. Since much symbolic data is repre-
sented as graphs and many tasks express their desired outputs as sequences, we expect Graph2Seq
to be broadly applicable to unify symbolic AI and beyond.

9

Under review as a conference paper at ICLR 2019

REFERENCES

Amr Ahmed, Nino Shervashidze, Shravan Narayanamurthy, Vanja Josifovski, and Alexander J
Smola. Distributed large-scale natural graph factorization. In Proceedings of the 22nd inter-
national conference on World Wide Web, pp. 37–48. ACM, 2013.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan Schneider. Abstract meaning representation
for sembanking. In Proceedings of the 7th Linguistic Annotation Workshop and Interoperability
with Discourse, pp. 178–186, 2013.

Joost Bastings, Ivan Titov, Wilker Aziz, Diego Marcheggiani, and Khalil Sima’an. Graph convolu-
tional encoders for syntax-aware neural machine translation. arXiv preprint arXiv:1704.04675,
2017.

Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps and spectral techniques for embedding and
clustering. In Advances in neural information processing systems, pp. 585–591, 2002.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally
connected networks on graphs. arXiv preprint arXiv:1312.6203, 2013.

Shaosheng Cao, Wei Lu, and Qiongkai Xu. Grarep: Learning graph representations with global
structural information. In Proceedings of the 24th ACM International on Conference on Informa-
tion and Knowledge Management, pp. 891–900. ACM, 2015.

Jie Chen, Tengfei Ma, and Cao Xiao. Fastgcn: Fast learning with graph convolutional networks via
importance sampling. arXiv preprint arXiv:1801.10247, 2018.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint arXiv:1406.1078, 2014.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks
on graphs with fast localized spectral filtering. In Advances in Neural Information Processing
Systems, pp. 3844–3852, 2016.

Alberto G Duran and Mathias Niepert. Learning graph representations with embedding propagation.
arXiv preprint arXiv:1710.03059, 2017.

David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel, Alán
Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning molecular
fingerprints. In Advances in neural information processing systems, pp. 2224–2232, 2015.

Akiko Eriguchi, Kazuma Hashimoto, and Yoshimasa Tsuruoka. Tree-to-sequence attentional neural
machine translation. arXiv preprint arXiv:1603.06075, 2016.

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin. Convolutional
sequence to sequence learning. arXiv preprint arXiv:1705.03122, 2017.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks. In
Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics,
AISTATS 2011, Fort Lauderdale, USA, April 11-13, 2011, pp. 315–323, 2011.

Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernández-Lobato,
Benjamı́n Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel,
Ryan P Adams, and Alán Aspuru-Guzik. Automatic chemical design using a data-driven contin-
uous representation of molecules. ACS Central Science, 2016.

Marco Gori, Gabriele Monfardini, and Franco Scarselli. A new model for learning in graph domains.
In Neural Networks, 2005. IJCNN’05. Proceedings. 2005 IEEE International Joint Conference
on, volume 2, pp. 729–734. IEEE, 2005.

10

Under review as a conference paper at ICLR 2019

Palash Goyal and Emilio Ferrara. Graph embedding techniques, applications, and performance: A
survey. arXiv preprint arXiv:1705.02801, 2017.

Alex Graves and Jürgen Schmidhuber. Framewise phoneme classification with bidirectional lstm
and other neural network architectures. Neural Networks, 18(5-6):602–610, 2005.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings
of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining,
pp. 855–864. ACM, 2016.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor OK Li. Incorporating copying mechanism in
sequence-to-sequence learning. arXiv preprint arXiv:1603.06393, 2016.

William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. arXiv preprint arXiv:1706.02216, 2017a.

William L Hamilton, Rex Ying, and Jure Leskovec. Representation learning on graphs: Methods
and applications. arXiv preprint arXiv:1709.05584, 2017b.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Yanrong Hu and Simon X Yang. A knowledge based genetic algorithm for path planning of a
mobile robot. In Robotics and Automation, 2004. Proceedings. ICRA’04. 2004 IEEE International
Conference on, volume 5, pp. 4350–4355. IEEE, 2004.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. Summarizing source code
using a neural attention model. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), volume 1, pp. 2073–2083, 2016.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2014.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural
networks. arXiv preprint arXiv:1511.05493, 2015.

Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and Peter Battaglia. Learning deep generative
models of graphs. arXiv preprint arXiv:1803.03324, 2018.

Bowen Liu, Bharath Ramsundar, Prasad Kawthekar, Jade Shi, Joseph Gomes, Quang Luu Nguyen,
Stephen Ho, Jack Sloane, Paul Wender, and Vijay Pande. Retrosynthetic reaction prediction using
neural sequence-to-sequence models. ACS central science, 3(10):1103–1113, 2017.

Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective approaches to attention-
based neural machine translation. arXiv preprint arXiv:1508.04025, 2015.

Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning convolutional neural net-
works for graphs. In International Conference on Machine Learning, pp. 2014–2023, 2016.

Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. Asymmetric transitivity preserv-
ing graph embedding. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 1105–1114. ACM, 2016.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social repre-
sentations. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 701–710. ACM, 2014.

Michael Pust, Ulf Hermjakob, Kevin Knight, Daniel Marcu, and Jonathan May. Parsing english into
abstract meaning representation using syntax-based machine translation. In Proceedings of the
2015 Conference on Empirical Methods in Natural Language Processing, pp. 1143–1154, 2015.

11

Under review as a conference paper at ICLR 2019

Sam T Roweis and Lawrence K Saul. Nonlinear dimensionality reduction by locally linear embed-
ding. science, 290(5500):2323–2326, 2000.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2009.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, and
Max Welling. Modeling relational data with graph convolutional networks. arXiv preprint
arXiv:1703.06103, 2017.

Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural networks. IEEE Transactions
on Signal Processing, 45(11):2673–2681, 1997.

Martin Simonovsky and Nikos Komodakis. Graphvae: Towards generation of small graphs using
variational autoencoders. arXiv preprint arXiv:1802.03480, 2018.

Richard Socher, Christopher D Manning, and Andrew Y Ng. Learning continuous phrase represen-
tations and syntactic parsing with recursive neural networks. In Proceedings of the NIPS-2010
Deep Learning and Unsupervised Feature Learning Workshop, volume 2010, pp. 1–9, 2010.

Linfeng Song, Xiaochang Peng, Yue Zhang, Zhiguo Wang, and Daniel Gildea. Amr-to-text genera-
tion with synchronous node replacement grammar. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics, ACL 2017, Vancouver, Canada, July 30 - August
4, Volume 2: Short Papers, pp. 7–13, 2017.

Myra Spiliopoulou and Michael Hatzopoulos. Translation of SQL queries into a graph structure:
query transformations and pre-optimization issues in a pipeline multiprocessor environment. Inf.
Syst., 17(2):161–170, 1992. doi: 10.1016/0306-4379(92)90010-K. URL https://doi.org/
10.1016/0306-4379(92)90010-K.

Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. Journal of Machine Learning
Research, 15(1):1929–1958, 2014.

Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston, and Rob Fergus. End-to-end memory net-
works. In Advances in Neural Information Processing Systems 28: Annual Conference on Neural
Information Processing Systems 2015, December 7-12, 2015, Montreal, Quebec, Canada, pp.
2440–2448, 2015.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with neural net-
works. In Advances in Neural Information Processing Systems 27: Annual Conference on Neural
Information Processing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada, pp.
3104–3112, 2014.

Kai Sheng Tai, Richard Socher, and Christopher D Manning. Improved semantic representations
from tree-structured long short-term memory networks. arXiv preprint arXiv:1503.00075, 2015.

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. Line: Large-
scale information network embedding. In Proceedings of the 24th International Conference on
World Wide Web, pp. 1067–1077. International World Wide Web Conferences Steering Commit-
tee, 2015.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 1(2), 2017.

Oriol Vinyals, Samy Bengio, and Manjunath Kudlur. Order matters: Sequence to sequence for sets.
arXiv preprint arXiv:1511.06391, 2015a.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In Advances in Neural
Information Processing Systems, pp. 2692–2700, 2015b.

Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and tell: A neural image
caption generator. In Computer Vision and Pattern Recognition (CVPR), 2015 IEEE Conference
on, pp. 3156–3164. IEEE, 2015c.

12

https://doi.org/10.1016/0306-4379(92)90010-K
https://doi.org/10.1016/0306-4379(92)90010-K

Under review as a conference paper at ICLR 2019

Jason Weston, Antoine Bordes, Sumit Chopra, and Tomas Mikolov. Towards ai-complete ques-
tion answering: A set of prerequisite toy tasks. CoRR, abs/1502.05698, 2015. URL http:
//arxiv.org/abs/1502.05698.

Zhilin Yang, William W Cohen, and Ruslan Salakhutdinov. Revisiting semi-supervised learning
with graph embeddings. arXiv preprint arXiv:1603.08861, 2016.

Tao Yu, Zifan Li, Zilin Zhang, Rui Zhang, and Dragomir Radev. Typesql: Knowledge-based type-
aware neural text-to-sql generation. arXiv preprint arXiv:1804.09769, 2018.

Wojciech Zaremba and Ilya Sutskever. Learning to execute. arXiv preprint arXiv:1410.4615, 2014.

Yu Zhang, William Chan, and Navdeep Jaitly. Very deep convolutional networks for end-to-end
speech recognition. In Acoustics, Speech and Signal Processing (ICASSP), 2017 IEEE Interna-
tional Conference on, pp. 4845–4849. IEEE, 2017.

Victor Zhong, Caiming Xiong, and Richard Socher. Seq2sql: Generating structured queries from
natural language using reinforcement learning. CoRR, abs/1709.00103, 2017.

13

http://arxiv.org/abs/1502.05698
http://arxiv.org/abs/1502.05698

Under review as a conference paper at ICLR 2019

A PSEUDO-CODE OF THE GRAPH-TO-SEQUENCE ALGORITHM

Algorithm 1 Node embedding generation algorithm

Input: Graph G(V, E); node initial feature vector av , ∀v ∈ V; hops K; weight matrices Wk, ∀k ∈
{1, ...,K}; non-linearity σ; aggregator functions AGGREGATE`k , AGGREGATEak , ∀k ∈ {1, ...,K}; neigh-
borhood functionsN`,Na
Output: Vector representations zv for all v ∈ V

1: h0
v`← av , ∀v ∈ V

2: h0
va← av , ∀v ∈ V

3: for all k = 1...K do
4: for all v ∈ V do
5: hk

N`(v)← AGGREGATE`k ({hk−1
u` , ∀u ∈ N`(v)})

6: hk
v`← σ (Wk· CONCAT(hk−1

v` , hk
N`(v)))

7: hk
Na(v)← AGGREGATEak ({hk−1

ua , ∀u ∈ Na(v)})
8: hk

va← σ (Wk· CONCAT(hk−1
va , hk

Na(v)))
9: end for

10: end for
11: zv ← CONCAT(hK

v`, hK
va), ∀v ∈ V

Algorithm 1 describes the embedding generation process where the entire graph G = (V, E) and
initial feature vectors for all nodes av , ∀v ∈ V , are provided as input. Here k denotes the current hop
in the outer loop. The hk

v` denotes node v’s forward representation which aggregates the information
of nodes inN`(v). Similarly, the hk

va denotes node v’s backward representation which is generated
by aggregating the information of nodes in Na(v). Each step in the outer loop of Algorithm 1
proceeds as follows. First, each node v ∈ V in a graph aggregates the forward representations of the
nodes in its immediate neighborhood, {hk−1

u` , ∀u ∈ N`(v)}, into a single vector, hk
N`(v)

(line 5).
Note that this aggregation step depends on the representations generated at the previous iteration of
the outer loop, k − 1, and the k = 0 forward representations are defined as the input node feature
vector. After aggregating the neighboring feature vectors, we concatenate the node current forward
representation, hk−1

v` , with the aggregated neighborhood vector, hk
N`(v)

. Then this concatenated
vector is fed through a fully connected layer with nonlinear activation function σ, which updates the
forward representation of the current node to be used at the next step of the algorithm (line 6). We
apply similar process to generate the backward representations of the nodes (line 7, 8). Finally, the
representation of each node zv is the concatenation of the forward representation (i.e., hK

v`) and the
backward representation (i.e., hK

va) at the last iteration K.

B STRUCTURED REPRESENTATION OF THE SQL QUERY

To apply Graph2Seq, Seq2Seq and Tree2Seq models on the natural language generation task, we
need to convert the SQL query to a graph, sequence and tree, respectively. In this section, we
describe these representations of the SQL query.

B.1 SEQUENCE REPRESENTATION

We apply a simple template to construct the SQL query sequence: “SELECT + <aggregation
function> +<Split Symbol> +<selected column> + WHERE +<condition0> +<Split Symbol>
+ <condition1> + ...”.

B.2 TREE REPRESENTATION

We apply the SQL Parser tool4 to convert an SQL query to a tree which is illustrated in Figure 5.
Specifically, the root of this tree has two child nodes, namely SELECT LIST and WHERE CLAUSE.
The child nodes of SELECT LIST node are the selected columns in the SQL query. The WHERE
CLAUSE node has all occurred logical operators in the SQL query as its children. The children of a
logical operator node are the columns on which this operator works.

4http://www.sqlparser.com

14

http://www.sqlparser.com

Under review as a conference paper at ICLR 2019

Root

Select List Where Clause

ANDColumn_0 Column_n…

Column_m…Column_0

OR

Figure 5: Tree representation of the SQL query.

Transform

company

assets

sales

industry

> val0

�= val2 profits = val3

ANDSELECT

SELECT company WHERE assets > val0
AND sales > val0 AND industry_rank <= val2
AND profits = val3

SQL query

Figure 6: Graph representation of the SQL query.

B.3 GRAPH REPRESENTATION

We use the following method to transform the SQL query to a graph:

SELECT Clause. For the SELECT clause such as “SELECT company”, we first create a node
assigned with text attribute select. This SELECT node connects with column nodes whose text
attributes are the selected column names such as company. For the SQL queries that contain aggre-
gation functions such as count or max, we add one aggregation node which is connected with the
column node—their text attributes are the aggregation function names.

WHERE Clause. The WHERE clause usually contains more than one condition. For each condi-
tion, we use the same process as for the SELECT clause to create nodes. For example, in Figure 6,
we create node assets and >val0 for the first condition, the node sales and >val0 for the second
condition. We then integrate the constraint nodes that have the same text attribute (e.g., >val0 in
Figure 6). For a logical operator such as AND, OR and NOT, we create a node that connects with
all column nodes that the operator works on (e.g., AND in Figure 6). These logical operator nodes
then connect with SELECT node.

C MORE RESULTS ON THE IMPACT OF HOP SIZE

In Algorithm 1, we can see that there are three key factors in the node embedding generation. The
first factor is the aggregator choice which determines how information from neighborhood nodes

15

Under review as a conference paper at ICLR 2019

SDP100

Hop Size Graph2Seq-MA-F Graph2Seq-MA-B Graph2Seq-MA GCN (Kipf & Welling, 2016) + our decoder
1 50.1% 52.0% 76.3% 70.2%
3 73.2% 76.7% 95.4% 90.1%
4 84.7% 85.2% 99.2% 94.7%
5 93.2% 94.5% 99.4% 94.9%
7 98.9% 99.1% 99.4% 94.3%

10 98.9% 99.1% 99.4% 94.3%

10 w/o attention w/o attention w/o attention w/o attention
85.8% 86.3% 89.6% 83.1%

SDP1000

Hop Size Graph2Seq-MA-F Graph2Seq-MA-B Graph2Seq-MA GCN (Kipf & Welling, 2016) + our decoder
10 34.7% 33.2% 50.4% 45.7%
35 68.2% 70.6% 82.5% 66.3%
45 79.0% 82.1% 96.5% 89.0%
75 88.3% 89.9% 96.4% 89.2%
85 95.9% 96.0% 96.5% 88.8%
100 95.8% 96.0% 96.5% 88.6%

100 w/o attention w/o attention w/o attention w/o attention
78.3% 78.2% 81.6% 72.4%

Table 4: Test Results on SDP100 and SDP1000.

is combined. The other two are the hop size (K) and the neighborhood function (N`(v), Na(v)),
which together determine which neighbor nodes should be aggregated to generate each node embed-
ding. To study the impact of the hop size in our model, we create two SDPDCG datasets, SDP100 and
SDP1000, where each graph has 100 nodes or 1000 nodes, respectively. Both of these two datasets
contain 8000 training examples, 1000 dev examples and 1000 test examples. We evaluated three
models, Graph2Seq-MA-F, Graph2Seq-MA-B and Graph2Seq-MA, on these two datasets; results
are listed in Table 4.

We see that Graph2Seq-MA-F and Graph2Seq-MA-B could show significant performance improve-
ments with increasing the hop size. Specifically, on the SDP100 dataset, Graph2Seq-MA-F and
Graph2Seq-MA-B achieve their best performance when the hop size reaches 7; further increases do
not improve the overall performance. A similar situation is also observed on the SDP1000 dataset;
performance converges at the hop size of 85. Interestingly, the average diameters of the graphs in the
two datasets are 6.8 and 80.2, respectively, suggesting that the ideal hop size for best Graph2Seq-
MA-F performance should be the graph diameter. This should not be surprising; if the hop size
equals the graph diameter, each node is guaranteed to aggregate the information of all reachable
nodes on the graph within its embedding. Note that in the experiments on SDP1000, in theX (X¿10)
hop, we always use the aggregator in the 10-th hop, because introducing too many aggregators (i.e.,
parameters) may make the model over-fitting.

Like Graph2Seq-MA-F, Graph2Seq-MA also benefited from increasing the hop size. However, on
both datasets, Graph2Seq-MA could reach peak performance at a smaller hop size than Graph2Seq-
MA-F. For example, on the SDP100 dataset, Graph2Seq-MA achieves 99.2% accuracy once the hop
size is greater than 4 while Graph2Seq-MA-F requires a hop size greater than 7 to achieve compara-
ble accuracy; similar observations hold for the SDP1000 dataset. Moreover, we can see that the min-
imum required hop size that Graph2Seq-MA could achieve its best performance is approximately
the average radii (c.f. diameter) of the graphs, which are 3.4 and 40.1, respectively. Recall that
the main difference between Graph2Seq-MA and Graph2Seq-MA-F (or Graph2Seq-MA-B) lies in
whether the system aggregates information propagated from backward nodes; the performance dif-
ference indicates that by incorporating forward and backward nodes’ information, it is possible for
the model to achieve the best performance by traversing less of the graph. This is useful in prac-
tice, especially for large graphs where increasing hop size may consume considerable computing
resources and run-time.

Table 4 also makes clear the utility of the attention strategy; the performance of both Graph2Seq-
MA-F and Graph2Seq-MA decreases by at least 9.8% on SDP100 and 14.9% on SDP1000. This
result is expected, since for larger graphs it is more difficult for the encoder to compress all necessary
information into a fixed-length vector; as intended, applying the attention mechanism in decoding
enabled our proposed Graph2Seq model to handle large graphs successfully.

16

Under review as a conference paper at ICLR 2019

As shown in Algorithm 1, the neighborhood function takes a given node as input and returns its
directly connected neighbor nodes, which are then fed to the node embedding generator. Intuitively,
to obtain a better representation of a node, this function should return all its neighbor nodes in the
graph. However, this may result in high training times on large graphs. To address this, (Hamilton
et al., 2017a) proposes a sampling method which randomly selects a fixed number of neighbor
nodes from which to aggregate information at each hop. We use this sampling method to manage
the neighbor node size at each aggregation step.

17

	Introduction
	Related Work
	Graph-to-Sequence Model
	Node Embedding Generation
	Graph Embedding Generation
	Attention Based Decoder

	Experiments
	bAbI Task 19
	Shortest Path Task
	Natural Language Generation Task
	Impacts of Aggregator, Hop Size and Attention Mechanism on Garph2Seq Model

	Conclusion
	Pseudo-code of the Graph-to-sequence Algorithm
	Structured Representation of the SQL Query
	Sequence Representation
	Tree Representation
	Graph Representation

	More Results on the Impact of Hop Size

