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ABSTRACT

The goal of lifetime clustering is to develop an inductive model that maps subjects
into K clusters according to their underlying (unobserved) lifetime distribution.
We introduce a neural-network based lifetime clustering model that can find cluster
assignments by directly maximizing the divergence between the empirical lifetime
distributions of the clusters. Accordingly, we define a novel clustering loss function
over the lifetime distributions (of entire clusters) based on a tight upper bound of
the two-sample Kuiper test p-value. The resultant model is robust to the modeling
issues associated with the unobservability of termination signals, and does not
assume proportional hazards. Our results in real and synthetic datasets show
significantly better lifetime clusters (as evaluated by C-index, Brier Score, Logrank
score and adjusted Rand index) as compared to competing approaches.

1 INTRODUCTION

Survival analysis is widely used to model the relationship between subject covariates and the time
until a particular ferminal event of interest (e.g., death, or quitting of social media) that marks the end
of all activities (or measurements) of that subject (known as the lifetime of the subject). For instance,
a subject’s logins to a social network are her activities and the time until she quits the social network
permanently is her lifetime.

The lifetime of a subject can be unobserved for two possible reasons: (a) the terminal event was
right-censored, i.e., the subject did not have a terminal event within the finite data-collection period,
or (b) the terminal events are inherently unobservable. Right-censoring happens for instance when
a patient is still alive at the time of data-collection. Unobservability happens for instance, in social
networks, when a subject simply stops using the service but does not provide a clear termination
signal by deleting her account. In such a scenario, the terminal events remain unobserved for most if
not all subjects, even if the subjects quit the service within the data-collection period.

Numerous survival methods have been proposed (Witten and Tibshirani, 2010a; Hothorn et al.|
2006} [[shwaran et al., [2008)) to predict the lifetime of a subject given her covariates and her activi-
ties/measurements for a brief initial period of time, while also accounting for right-censoring. More
recent deep learning models for lifetime prediction (Lee et al.,[2018}; Ren et al.| 2018}; Chapfuwa
et al., 2018]) have achieved much success due to their flexibility to model complex relationships,
and by avoiding limiting assumptions like parametric lifetime distributions (Ranganath et al., 2016))
and proportional hazards (Katzman et al., 2018)). In scenarios where terminal events are never
observed (unobservability), it is a standard practice to introduce artificial termination signals through
a predefined “timeout” for the period of inactivity, i.e., a social network user inactive for m months
has her last observed activity declared a terminal event. Such a specification is typically arbitrary and
can adversely affect the analysis depending on the “timeout” value used.

Notwithstanding the fact that lifetimes are hard to predict without termination signals in the training
data, we are generally interested in clustering subjects based on their underlying lifetime distribution
to improve decision-making. Applications include identifying disease subtypes (Gan et al., [2018]),
understanding the implications of distinct manufacturing processes on machine parts, and qualitatively
analyzing different survival groups in a social network. Although accurately predicting time-to-
terminal-event for an individual is important in a variety of applications, lifetime clustering plays a
complementary role and provides a more holistic picture.

Lifetime clustering remains a relatively unexplored topic despite being an important tool. Although
traditional unsupervised clustering methods such as k-means and hierarchical clustering are popular
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for this task (Bhattacharjee et al., 2001} [Sgrlie et al.l 2001} Bullinger et al.| |2004), they may produce
clusters that are entirely uncorrelated with lifetimes (Gaynor and Bair, [2013). Semi-supervised
clustering (Bair and Tibshirani, 2004)) and supervised sparse clustering (Witten and Tibshirani, 2010b)
employ a two-stage lifetime clustering process: (i) identify covariates associated with lifetime using
Cox scores (Coxl|[1992), and (ii) treat these covariates differently while performing k-means clustering.
They assume proportional hazards (i.e., constant hazard ratios over time) and require the presence of
termination signals. Furthermore, a decoupled two-stage process such as the above is not guaranteed
to obtain clusters with maximally distinct lifetime distributions; rather, we require an end-to-end
learning framework that prescribes a loss function specifically over the lifetime distributions of
different clusters.

In this work we tackle the important task of inductive lifetime clustering without assuming propor-
tional hazards, while also smoothly handling the unobservability of termination signals.

Contributions. (i) We introduce DeepCLife, an inductive neural-network based lifetime cluster-
ing model that finds cluster assignments by maximizing the divergence between empirical (non-
parametric) lifetime distributions of different clusters. Whereas the subjects of different clusters
have distinct lifetime distributions, within a cluster all subjects share the same lifetime distribution
even if they have different lifetimes. Our model is robust to the modeling issues associated with the
unobservability of termination signals and does not assume proportional hazards.

(ii) We define a novel clustering loss function over empirical lifetime distributions (of entire clusters)
based on the Kuiper two-sample test. We provide a tight upper bound of the Kuiper p-value with
easy-to-compute gradients facilitating its use as a loss function, which until now was prohibitively
expensive due to the test’s infinite sum.

(iii) Finally, our results on real and synthetic datasets show that the proposed lifetime clustering
approach produces significantly better clusters with distinct lifetime distributions (as evaluated by
Logrank score, C-index, Brier Score and Rand index) as compared to competing approaches.

2 FORMAL FRAMEWORK

In this section, we formally define the statistical framework underlying the clustering approach
introduced later in the paper. Notation remark: We use superscript (u) to refer to variables indexed
by a subject v and use subscript £ to refer to random variables indexed by a random subject of cluster
k. See Table[I]for a complete list of all the variables and their meanings.

We assume that there are distinct underlying clusters with different event processes describing the
activity events of a random subject (e.g., logins to a social network, measurements of a patient) in the
respective clusters. To make these notions more formal, we introduce our event process.

Definition 1 (Abstract Event Process). Consider the k-th cluster. The Random Marked Point
Process (RMPP) for the activity events is @, = { Xy, {(Ak.is Myi, Yi.i) bien, Or } over discrete
timest = 0,1,..., where Xy is the random variable representing the covariates of a random subject
in cluster k, ©y, is the time to the zeroth activity event (joining), My, ; represent covariates of event
i, Yy.i is the inter-event time between the i-th and the (i — 1)-st activity events (e.g., logins), and
Ay,i = Lindicates an event with a termination signal (death), otherwise Ay, ; = 0. All these variables
may be arbitrarily dependent. This definition is model-free, i.e., we will not prescribe a model for ®y.

We observe the RMPP over a time window [0, ¢,]. Using the above formalism, we define the true
lifetime of a subject in cluster k as the sum of all inter-event times until termination signal Ay ; = 1
is observed.

Definition 2 (True lifetime). The random variable that defines the true lifetime until the terminal
event of a subject in cluster k is T}, = max; (qu Y Iline,(1— A;m-u)) .

The true lifetime T}, is unobserved if: (a) the terminal event A ; = 1 does not occur within the
observation time period [0, ], or (b) the termination signals are inherently unobservable. Now,
the true lifetime distribution of a subject in cluster % is defined as the probability that the subject
has at least one more activity event after time ¢, and is given by S (¢) := P[T > t] = 1 — Fi(t),
t € NU {0}, where FJ,(t) is the underlying cumulative distribution function (CDF) of T}. Note again
that all the subjects of a cluster share the same lifetime distribution.
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Table 1: Table of notations.

Notation Description Notation Description

m[ Variables indexed by a subject u T True lifetime of the subject (unobserved)

O Random variables indexed by a random H Observed lifetime of the subject
subject of cluster k

(C] Joining time of the subject X Time elapsed since the last observed ac-

tivity event before ¢y,

X Covariates of the subject F CDF of the true lifetime 7'

Y; Inter-event time between ¢-th and (7 —1)- S True lifetime distribution (= CCDF of
st activity events true lifetime 77)

M; Covariates of event ¢ S Empirical lifetime distribution

A; A; = 1 denotes whether i-th activity S[t] Sindexed by t € {0,1,2...}

event is terminal

Training data. Our training data D consists of subjects from K underlying (hidden) clusters with
distinct lifetime distributions Sy, for k € {1,..., K}. For a subject u € D, we observe the following

()
quantities {X @, {(M™), v} ) 01 where X V") M*) and ©) are analogously

defined as in Definition , but for a given subject u. Q(*)(t) is the number of observed activity events
of u after her joining and before time ¢. The training data may or may not contain the termination

signals, {AE“)}?:(?@“‘), where Al(-u) = 1 indicates that event ¢ was a terminal event for subject u
(e.g., death). Termination signals are typically available in healthcare applications, whereas in the
case of social networks, we usually do not observe the termination signal (i.e., account deletion) for
any subject.

We define the observed lifetime of a subject u as HW .= Z?:(:)(t"‘) Yi(“), i.e., the sum of all the
inter-event times within the observation period [0, t,]. In the absence of termination signals, we
additionally define inactive period as the time elapsed since the last observed event of subject w,
given by ) :=t,, — 0 — H®) We use H™ and x(*) only during training. Figureshows the
true lifetime, the observed lifetime, and the inactive period for four users of two different clusters in
the training data. The events are observed (denoted by solid circles) only till the time of measurement
tm, Whereas the rest of the events are right-censored (denoted by solid diamonds). The termination
signal (denoted by dotted diamonds) may be unobserved even if it occurs before %, (eg., us).

Test data. For a new test subject, we can only observe her covariates and her activity events for

a brief initial period of time 7 since her joining. Formally, we observe the following quantities
() (W

(X (M, v W)L O F) 9 The goal of inductive lifetime clustering is to be able to

assign a cluster for a new unseen subject within 7 time of her joining. Note that since H(*) and y(*)

are tied to t,,,, they cannot be computed for test subjects.

Lastly, we formally define our clustering problem.

Definition 3 (Clustering problem). Consider a dataset D with N subjects. Our goal is to find a
u u WO 4r . . .

mapping k : (X(“)7 {(Mz( ),XQ( ))}?:1 (e™+ )) — {1,..., K}, that inductively maps subject

covariates and observed activity events for a brief initial period of time T into clusters, such that the
divergence A between the empirical lifetime distributions of these clusters is maximized, i.e.,

k* =argmax min _ A(S(k),S;(k)), |
B sl (Si(r), 55(x) O
i#j

where K is a set of all mappings, Sk (k) is the empirical lifetime distribution of subjects in D mapped
to cluster k through k, and A is an empirical distribution divergence measure.

k* optimized in this fashion guarantees that subjects in different clusters have different lifetime
distributions 1]

ISee Appendix for why we wish to maximize the minimum divergence across all pairs instead of the sum
of divergences across all pairs.
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Figure 1: Depicting two clusters (low-risk and high-risk; as shown by the true lifetime distributions) following
different RMPPs, each with two subjects. T is the true lifetime of subject u (may be unobserved due to right
censoring or due to unobservability of termination signals). H () is her observed lifetime, the period between
the first and the last observed event. X<“> is the time between the last observed event and ¢, and Q(“) (tm) is the
number of events of w after her joining and before ¢r,.

3 THE DEEPCLIFE MODEL

In this section, we propose a practical lifetime clustering approach using neural networks that
optimizes Equation (T). Let D be the training data as defined in Section[2] Since we want to maximize
divergence between empirical lifetime distributions, we assume discrete times (relative to subject
joining), t € {0,1, ..., tmax }» Where tmax = maxyep H (4) is the maximum observed lifetime of any
subject u € D. Note that it is sufficient to define the empirical distribution till ¢,,,«, Since we have not
observed any subject with lifetime greater than ¢p,x.

3.1 CLUSTER ASSIGNMENTS : a,(cu)(Wl)

We define a neural network g that takes user covariates and the event data for a subject u during
a brief initial period 7 after her joining as input, and outputs her cluster assignment probabilities,

ol (Wy) forall k € {1,... K},

—(u “ “ W) 0 () 4y
at )(Wl) :9<X( )’{Mi( )7Yi( )}?:1 @ )§W1) ) 2

where W are the weights of the neural network. The final layer of g is a softmax layer with K units.
Figure[2a] depicts g as a feedforward neural network with L — 1 hidden layers, although our model is
not restricted to a feedforward architecture. In our experiments, we compute summary statistics over

the observed events {Mi(“), Yi(“) }: in order to make it compatible with the feedforward architecture.

3.2 PROBABILITY OF TERMINATION: (") (TV3)

During the training of our model, we require termination signals or a probabilistic estimation of the
termination signals in order to write the likelihood of the model. Given the model parameter W5, we
define 3 (w) (W53) as the probability that the last observed event of u was terminal, i.e., u will have no
future activity events after the last observed event.

If the termination signals Agu) are observed in the training data D (e.g., healthcare), clearly
B (W) = Ag&)(t ) (i.e., Wy is ignored).

When such termination signals are unobservable (e.g., social network), existing survival methods
commonly use a timeout window of predefined size Wiyeq over the inactive period x(*) to specify
the probability of termination as (3 (u)(Wﬁxed) = l[X(u)>Wﬁxed]. However, such specification is
arbitrary and precludes any learning of the window size parameter Wyyeq. Instead, we model the
latent termination probabilities 3(*) (175 using a smooth non-decreasing function of x(*), i.e., higher
the period of inactivity, higher the probability that the last observed event was terminal.
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Figure 2: (a) Feedforward neural network g(; W1) outputs the cluster assignments for a batch of users. The
cluster assignments along with the probability of termination is used to obtain lifetime distributions of each
cluster using Kaplan-Meier estimator. Finally, logarithm of Kuiper p-value upper bound is used as the divergence
loss A. (b) Lifetime distributions can have different shapes and can cross each other, violating proportional
hazards assumptions. (c) Divergence metric must account for the uncertainty in the distributions, otherwise
divergence maximization leads to imbalanced clusters. (d-e) Upper and lower bounds of the logarithm of Kuiper
p-value when varying the Kuiper statistic DT +D ™.

If the termination signals A(u) are unobservable in the training data D (e.g., social network), we use
B(Wy) i=1— e Wer X" \where Wy > 0.

3.3 EMPIRICAL LIFETIME DISTRIBUTION OF CLUSTER k : Sk(Wl, Wo; D)

Given the training data D and model parameters W; and W5, we can obtain the soft cluster assign-

ments a( )(Wl) and the probability of termination 5(*)(TW,) for all subjects u € D and clusters
k € {1...K} as shown in Section n and Section n In this subsection, we obtain the empirical
lifetime distribution of all the clusters £ = 1. .. K, using the Kaplan-Meier estimates (Kaplan and
Meier, |1958). We do not assume a parametric forrn for the lifetime distribution, and rather use empir-
ical distributions in our optimization to allow lifetime curves of any shape (Figure 2b). Kaplan-Meier
estimates are a maximum likelihood estimate of the lifetime distribution of a set of subjects assuming
(a) hard memberships (each subject entirely belongs to the set) and (b) the presence of termination
signals. We modify the estimates to account for partial memberships and probability of termination
instead.

Proposition 1. Given the training data D, a cluster k, the cluster assignment probabilities

{a (Wl)}uep, and the probabilities of termination {B(“)(Wg)}uep, the maximum likelihood
estimate of the empirical lifetime distribution of cluster k is given by,

Sy (W1, Wa; D

H (W1 D Sk](— di (W1, Wa; D)l 3)

W1;D)lj] ’

forallt € {0,1,..., ta}, where, sg(Wi; D)[j] = Xuep LLH™ > j] - al™ (W1), is the expected
number of subjects in cluster k who are at risk (of termination) at time j, and, dy, (W1, Wa; D)[j] =

> ueD 1[H® = j] - (W) - a](cu) (W), is the expected number of subjects that are predicted to
have had a terminal event at time j.

The proof is presented in the supplementary material.

5
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3.4 EMPIRICAL DISTRIBUTION DIVERGENCE LOSS : A(S,, Sj)

We rewrite the objective function of lifetime clustering from Definition 3] with respect to the model
parameters W1 and W5 as follows,

Wi, W5 =argmax min A (5‘1, SJ) , (4)
Wy, W2 iJE{;.{.K},
i#j

where Si is the empirical distribution, a shorthand for the vector S'Z»(Wl, Wa; D), and A is a diver-
gence measure between two empirical distributions.

We note the following essential requirements for the divergence measure A: (a) A defined over
empirical distributions must take into account sample sizes, (b) A should have easy-to-compute
gradients since it is used as an objective function to train neural networks, and (c) A should not
assume proportional hazards, and should allow for crossing lifetime curves (see Figure [2b).

Divergence measures such as Kullback-Leibler (Kullback and Leibler, [1951)) and MMD (Gretton
et al.,2012) fulfill (b, ¢) but not (a), and will result in sample anomalies as depicted in Figure (also
seen in our experiments: Figure[3d). Logrank test (Mantel, [1966), commonly used for comparing
lifetime distributions, fulfills (a, b), but has low statistical power when the proportional hazards
assumption is not met (Peto and Petol [1972; Bland and Altman| 2004) (e.g., Figure 2b). Finally,
p-value from two-sample tests such as the Kolmogorov-Smirnov (K-S) test (Massey Jr, |1951)) fulfill
(a, c), but not (b) as they require the computation of an infinite sum, resulting in an impractical
objective function unless heuristic approximations are made.

We propose to use the Kuiper test (Kuiper, [1960), a two-sample test closely related to the K-S test
with increased statistical power in distinguishing distribution tails (Tygert, 2010). Specifically, we
define A(S,, Sp):= — log(KD(S,, Sp)), where KD is the p-value from the Kuiper test between S,

and Sy. Our choice of the Kuiper test is because it is amenable to upper and lower bounds as shown
next, thus avoiding the prohibitive heuristic approximations of infinite sums.

Proposition 2. (Bounds for Kuiper p-value.) Given two empirical lifetime distributions S, and S,
with discrete support and sample sizes n, and ny respectively, define the maximum positive and
negative separations between them,
Df,= sup (Suft] = Splt]), D,y=sup (Sp[t] = Salt]) -
t€{0,  tmar } t€{0, . tmar }
The Kuiper test p-value [Kuiper (1960) gives the probability that A, the empirical deviation for n, and
ny, observations under the null hypothesis S, = Sb exceeds the observed value V = ﬁ:b + b;b:
o0

KD(Sq,8) = PA > V] =2 (45202, — 1)e 2" Nen, (5)
i=1

Aap = (/Mg + 0.155 + \/O%)V and My, = n""fnbb is the effective sample size. Then, the
a,b a

upper bound ﬂfor the Kuiper p-value is,
KD(S., Sp) §min<1, 21" > 1] () Aap) — w(L Aap) + 0, Aab))

a, a,b?
o) o) —w(ry. Aa,b)>, ©)
where v(r, \)=(4r2X2—1)e=2"** w(r, A):—re‘27'2A2,r§l;)) = Lﬁiwj, and, rg‘fi) = (\/Ef\u,zj :

The proof is presented in the supplementary material.

Figures [2d| and [2¢] show empirical results of the upper and lower bounds as a function of V' =
D% + D~ against the expensive heuristic computation where the infinite sum in Equation is
approximated with 10* terms (Press et al.l [1996). We optimize Equation with A(S”a, Sy) =
—log(KD™(S,, S;)) where KD denotes the Kuiper p-value upper bound in Equation @ﬁ A
defined this way satisfies all three requirements we described in the beginning of Section 3.4} takes
sample sizes into account, has closed form expression with easy-to-compute gradients, and does not
assume proportional hazards.

2The test is typically defined using CDFs but it is equivalent to use lifetime distributions (CCDFs) instead.
3Lower bound is presented in the supplementary material.
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Implementation. We implement our clustering procedure as a feedforward neural network in
Pytorch (Paszke et al.l 2017) and use ADAM (Kingma and Bal 2014) to optimize Equation @])
Each iteration of the optimization takes as input a batch of subjects, generates a single value for
the set loss, calculates the gradients, and updates the parameters W; and Ws. We show in the
supplementary material that the time and space complexity per iteration of the proposed approach are
O(K B + K?tpax) and O( Kty ) respectively, where K is the number of clusters and B is the batch
size. For large values of K, we achieve tractability by sampling K random pairs of clusters every
iteration instead of all (12( ) possible pairs.

4 RELATED WORK

Majority of the work in survival analysis has dealt with the task of predicting the time to an observable
terminal event (e.g., death), especially when the number of features is much larger than the number of
subjects (Witten and Tibshiranil 2010aj} jpre; |Hothorn et al., 2006; [Shivaswamy et al., [2007). Recently,
many deep learning approaches (Luck et al.| 2017; Katzman et al.| | 2018; [Lee et al., 2018}, |Ren et al.,
2018) have been proposed for predicting the lifetime distribution of a subject given her covariates,
while effectively handling censored data that typically arise in survival tasks. DeepHit (Lee et al.,
2018)) introduced a novel architecture and a ranking loss function in addition to the log-likelihood loss
for lifetime prediction in the presence of multiple competing risks. Using a log-likelihood loss similar
to DeepHit, Ren et al.| (2018)) propose a recurrent architecture to predict the survival distribution
that captures sequential dependencies between neighbouring time points. Finally, Chapfuwa et al.
(2018)) introduce an adversarial learning framework to model the lifetime given the subject covariates.
In contrast to these works on predicting lifetimes, our task is to cluster the subjects based on their
underlying lifetime distributions.

There are relatively fewer works that perform lifetime clustering. Many unsupervised approaches have
been proposed to identify cancer subtypes in gene expression data but do not consider the lifetime
(Eisen et al., |1998} |Alizadeh et al.| 2000; Bhattacharjee et al., 2001 [Sgrlie et al.l [2001; Bullinger
et al.|[2004), and may produce clusters that are entirely independent of the lifetimes. Semi-supervised
clustering (Bair and Tibshirani, 2004) and supervised sparse clustering (Witten and Tibshiranil [2010b)
use Cox scores (Cox, [1992) to identify features associated with the lifetime and treat these features
differently while using k-means to perform the final clustering. Unlike these lifetime clustering
methods, DeepCLife does not assume proportional hazards, and can smoothly handle the absence of
termination signals. Our supplementary material has a more in-depth discussion of related work.

5 RESULTS

Baselines. We perform experiments on one synthetic dataset and two real-world datasets — Friend-
ster social network and MIMIC III healthcare dataset (Johnson et al.,[2016).

We compare the following lifetime clustering approaches: (a) SSC-Bair, a semi-supervised clustering
method (Bair and Tibshiranil 2004) that performs k-means clustering on selected covariates that have
high Cox scores (Cox} [1992); (b) SSC-Gaynor or supervised sparse clustering (Gaynor and Bair,
2013)), a modification of sparse clustering (Witten and Tibshiranil |2010b)) that weights the covariates
based on their Cox scores; (c) DeepHit+GMM, a Gaussian mixture model applied over last layer
embeddings learnt by DeepHit (Lee et al.l 2018); (d) DeepCLife-MMD, the DeepCLife model
with Maximum Mean Discrepancy (Gretton et al.,[2012) as the divergence measure; (e) DeepCLife-
KuiperUB, the DeepCLife model with the proposed divergence measure based on the Kuiper p-value
upper bound (Equation (6)).

Termination signals for evaluation and baselines. (Timeout.) The competing methods and most
evaluation metrics for survival applications require clear termination signals. In scenarios where we
do not observe termination signals (e.g., Friendster experiments), we specify termination signals
artificially when training the baselines using a pre-defined “timeout”, i.e., 3*) (Wixea) = 1[x(*) >
Wixeda)- During evaluation, we use the same Wiyq to specify the termination signals and compute the
metrics. This helps the competing methods since they are trained and evaluated using termination
signals with the same W4, Whereas our approach is not trained with these termination signals.
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Table 2: (Synthetic) C-index (%) and Adjusted Rand index (%) for clusters with standard errors in parentheses
for different methods

Dioy,00) Dioy,os) Dio1,c2.05)
. Adj. Rand . Adj. Rand . Adj. Rand
Method C-index 1 (%) Index 1 (%) C-index 1 (%) Index 1 (%) C-index 1 (%) Index 1 (%)
SSC-Bair 62.75(0.35)  74.66 (0.48) 62.99 (0.26)  56.86 (0.63) 63.77 (0.24)  47.67 (0.24)
SSC-Gaynor 56.34 (0.50) 19.88 (0.51) 57.21 (0.43) 16.60 (0.56) 56.75 (0.32) 5.84 (0.11)
DeepHit+GMM 63.31 (0.32) 85.05 (1.01) 65.23 (0.21) 78.47 (0.94) 59.59 (1.98) 38.77 (7.16)
DeepCLife-MMD 64.35 (0.33)  98.47 (0.28) 67.25 (0.26)  99.68 (0.16) 62.17 (0.71)  36.75 (1.10)

DeepCLife-KuiperUB 64.37 (0.32)  99.02 (0.14) 67.24 (0.26)  99.94 (0.06) 68.96 (0.38)  73.61 (0.62)

Table 3: (Friendster) C-index (%), Integrated Brier Score (%) and Logrank score with standard errors in
parentheses for different methods* and K'=2, 4 clusters with number of training examples N =10°.

K=2 K=4

Method C-index 1T (%) LB.S | (%) Logrank Score 1 C-index 1T (%) 1B.S. ] (%) Logrank Score 1

SSC-Bair 64.42 (0.15) 22.18(0.02)  5479.27( 38.06) 67.18 (0.13)  21.55(0.03) 13013.86 ( 182.07)

SSC-Gaynor 64.42 (0.18) 22.17(0.02)  5557.41( 38.43) 69.99 (0.28) 21.62(0.01) 15204.81 ( 41.29)

DeepHit+GMM 64.33 (1.80) 22.04 (0.23)  9207.46 (5031.48) 76.55(0.12)  20.64 (0.02) 40703.01 ( 477.25)

DeepCLife-MMD 67.49 (0.11)  22.07 (0.02) 27642.60 (1301.85) 70.93 (1.80) 22.40 (0.07) 33030.93 (4277.24)

gs?;)gbge- 7558 (0.15)  20.13 (0.02) 47837.25 ( 297.63) 77.04 (0.88) 18.99 (0.20)  59236.36 (2126.55)
Metrics. Given the cluster assignments «(u’) € {1,..., K} and the termination signals (possibly
using a “timeout” window) for all the users «’ in the test data, we can obtain the empirical lifetime
distribution of all the clusters Sy, Vk € {1, ..., K} using the Kaplan-Meier estimates (over the test

data alone). Then, the empirical lifetime distribution of a user v’ is given by that of her assigned
cluster, i.e., S := Sy (u)- We use the following metricﬂ for evaluating the clusters obtained from
the methods.

e Logrank Score 1. Logrank test (Mantel, |1960) statistic is a non-parametric test that outputs high
values when it is unlikely for the K groups to have the same lifetime distribution.

o Adjusted Rand index 1. The Adjusted Rand index (Hubert and Arabiel [1985)) is a measurement
of cluster agreement, compared to the ground truth clustering (if available). ARI is 0.0 for random
cluster assignments and 1.0 for perfect assignments.

e C-Index 1. Concordance index (Harrell et al.,|1982) is a commonly used metric that calculates
the fraction of pairs of subjects for which the model predicts the correct order of survival while also
incorporating censoring. We use the expected lifetime obtained from the lifetime distribution S() g5
the predicted lifetime of user u'. C-index is 1.0 for perfect predictions and 0.5 for random predictions.

o Integrated Brier Score |. Integrated Brier score (Brier, |1950; |Graf et al.,|{1999) computes mean
squared difference between the survival probabilities and the actual outcome over [0, tyax]. It ranges
from 0.25 for random predictions to 0 for perfect predictions.

Although cluster evaluation metrics like Logrank score are more suitable for the lifetime clustering
task, we also use predictive measures like C-index and Brier Score to further validate the clusters.

Evaluation. We evaluate the models using 5-fold cross validation. We use the ¢th fold for testing
and sample N™ subjects from the remaining 4 folds for training. We use 20% of the N™ subjects
as validation for early stopping and hyperparameter tuning for the different approaches.

5.1 EXPERIMENTS

Synthetic experiment. We test our method with a synthetic dataselE] for which we have the true
clusters as ground truth. We generate 3 clusters C7, Cs and C3 with different lifetime distributions
such that C'5 and C3 have proportional hazards, but lifetime distribution of Cy crosses the other two
curves (shown in Figure @]} We choose an arbitrary time of measurement, ¢,,=150, to imitate right
censoring. We sample 10 subjects for each cluster, their features drawn from mixture of Gaussians.
The lifetime 7(*) of a subject u is randomly sampled from the lifetime distribution of her ground truth
cluster. Table shows performance of the methods on three synthetic datasets: D¢, ¢,y Dcy,cs}

4 indicates higher is better, | indicates lower is better. Detailed description in the supplementary material.
*The values in bold are statistically significant with p-value < 0.01 using paired t-test over validation folds.
>More details about all the datasets and preprocessing steps can be found in the supplementary material.
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Figure 3: (Friendster) Empirical lifetime distributions of clusters obtained from different methods for K =3
(legend shows cluster sizes n1,n2,n3). Baseline methods (a-c) employ a two-stage clustering process and
do not guarantee clusters with maximally different lifetime distributions. (d) DeepCLife-MMD suffers from
sample anomalies (n2 = 0). (e) DeepCLife-KuiperUB obtains clusters with significantly different lifetime
distributions (best Logrank scores).

& LOYrrien K=2
0.8
S 0.6 \\\\ Method C-index 1 (%) 1.B.S.| (%) Logrank Score T
2 . SSC-Bair 5278 (0.76)  15.89 (0.20) 11.77 ( 4.20)
2047 & (n,=2957) \ SSC-Gaynor 5232(0.96) 15.87(0.15)  120.71 (59.33)
202 . ' DeepHit+GMM 64.93 (0.54) 15.70(0.15)  171.93 (11.15)
& 52 (n2 = 3955) DeepCLife-MMD 58.85(0.60) 15.03(0.35)  157.84(11.01)

0.0 =70 15 20 25 30 DeepCLife-KuiperUB  66.30 (1.09)  15.50 (0.23)  205.25 (11.45)

Time (in days)
(b)

(a) DeepCLife-KuiperUB

Figure 4: (MIMIC III) (a) Empirical lifetime distributions obtained by DeepCLife-KuiperUB for K = 2.
(b) C-index (%), Brier Score (%) and Logrank score with standard errors for different methods on healthcare
data for K=2.

D¢c,,c,,c53- DeepCLife-KuiperUB and DeepCLife-MMD were able to recover perfect ground truth
cluster assignments on D¢, ¢,y and Dy, c,}, Whereas the baseline methods performed invariably
worse. On the harder dataset D¢, ¢,,c,}, DeepCLife-KuiperUB recovered the ground truth clusters
almost twice as better than any other method.

Friendster experiment. Friendster dataset® consists of 15 million users in the Friendster online
social network along with the comments sent and received by the users. We consider a subset with 1.1
million users who had participated in at least one comment. We use each user’s profile information
(like age, gender, location, etc.) as covariates, and define activity events as the comments sent or
received by the user. We compute summary statistics of the activity events within 7 = 5 months
from joining such as number of comments sent/received, number of people interacted with, mean
inter-event times, etc. The task is to cluster new test users using their covariates and the summary
statistics computed over initial 7 = 5 months of activity. Note that we do not observe termination
signals (i.e., account deletion) for any subject in the data. We use an arbitrary window of Wixeq = 10
months over the inactivity period to obtain termination signals (=~ 65% assumed to have quit) for
the competing methods and for computing the evaluation metrics; DeepCLife does not require such
arbitrary specification but learns a smooth timeout window during training.

Table 3] shows results for K'=2, 4 clusters. We note that the proposed method obtains higher C-index
values and Brier scores compared to the baselines even without termination signals. DeepCLife-
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KuiperUB achieves a significant improvement in Logrank scores compared to the baselines because
its loss specifically maximizes for differences in empirical distributions, while also taking sample
sizes into account. DeepCLife-MMD on the other hand does not account for sample sizes, and
hence performs worse. The empirical lifetime distributions of the clusters obtained from different
methods for K'=3 are shown in Figure [3| The clusters obtained from the baselines (a-c) are not
substantially different from each other. Although DeepCLife-MMD obtains clusters with distinct
lifetime distributions, it suffers from sample anomalies i.e., outputs clusters with very few or no
subjects (e.g., Sy in Figure . DeepCLife-KuiperUB outputs clusters that have significantly
different lifetime distributions with the best Logrank scores. Corresponding plots of empirical
lifetime distributions for K=2,4, 5 are presented in the supplementary material. For K=4, we
observe that DeepCLife-KuiperUB finds crossing yet distinct lifetime distributions (see Figure
in the supplementary material). We present a heuristic to select optimal K based on the validation
performance of the clusters in Appendix [A.4]

Qualitative Analysis: In the clusters found by DeepCLife-KuiperUB in Friendster, we see that a user
in a low-risk cluster has on average 7.76 friends, sends 5.06 comments with an average response time
of 20 days. On the other hand, a user in a high-risk cluster has just 1.56 friends on average and sends
far fewer comments, around 1.07, but with a fast response time of 1.32 days. Interestingly, users that
stayed longer in the system had lower activity rate in the beginning.

MIMIC III experiment. MIMIC III dataset® (Johnson et al [2016) consists of around 46500
patients admitted to the Intensive Care Unit (ICU). The task is to cluster the patients based on their
mortality within 30 days of admission to the ICU (Purushotham et al., 2017). Unlike Friendster
experiments, we can observe terminal events. Lifetime of a patient is right-censored if she was
discharged within the 30-day period (~ 84% right-censored). We use only the initial 7=24 hours of
patient measurements (e.g. heart rate, respiratory rate, etc.) to perform the clustering. We compute
summary statistics for each type of measurement, for example, number of heart rate measurements
taken, mean heart rate, etc. to make the inputs compatible with the feedforward architecture in
Figure[2a] Results for K =2 in Table db]show that DeepCLife-KuiperUB achieves significantly better
C-index and Logrank scores, followed by DeepHit+GMM. The corresponding empirical lifetime
distributions of the clusters are shown in Figure 4a]

6 CONCLUSION

In this work we introduced Kuiper-based nonparametric loss function to maximize the divergence
between empirical distributions, and a corresponding upper bound with easy-to-compute gradients.
The loss function is then used to train a feedforward neural network to inductively map subjects
into K lifetime-based clusters without requiring termination signals. We show that this approach
produces clusters with better C-index values and Logrank scores than competing methods.
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A APPENDIX

A.1 PROOF OF PROPOSITION[I]

Proposition (Proposition[I). Given the training data D, a cluster k, the cluster assignment probabil-
ities {aku) (W1) }uep, and the probabilities of termination {/3(“ (W2) }uep, the maximum likelihood
estimate of the empirical lifetime distribution of cluster k is given by,
Sk(Wl,WQ, )H:H (lep)[]] dk(WhW?v )[ } 7
o sk(W1; D)j]

forallt € {0,1,. .. tya}, where, sg(Wi;D)[j] = >, cp HH™ > j] - a,(cu)(Wl), is the expected
number of subjects in cluster k who are at risk (of termination) at time j, and, d,(W1, Wa; D)[j] =

> ueD 1[H™ = j]- (W) - a,(cu) (W) , is the expected number of subjects that are predicted to
have had a termination event at time j.

Proof. For a subject u, let e*) ~ Bernoulli(3(*)(T/3)) be the sampled termination signal, i.e.,
e = 1 indicates that the subject’s observed lifetime is her true lifetime, H (W) = 7@ Let

R ~ Categorical(agu) (Wh),..., a%) (W7)) be the sampled cluster assignment of the subject.
Finally, let the empirical lifetime PMF of a cluster k € {1,2,... K} be defined as P(T}, = t) := Ap 4
fort € {0,1,...¢max}, where Ty, is the true lifetime of a random subject in cluster k.

The likelihood of the training data D for a particular cluster £ given the sampled termination signal

{e")},cp and the sampled cluster assignments {7(*)},cp can be written using Kaplan and Meier

(1958)) as,
()

R
Ly=|[[ P H®)"” p(13, > H(">)1—e<“)]
ueD
Next, we take expectation over the cluster assignments and termination signals to get,
(u)
Rk
w) e w1 —e(®)
Ly =Egzy, Egewy, H P(Ty, = H")*" P(Ty, > HW)! : 7)

LueD
Using mean-field approximation and proceeding asKaplan and Meier| (1958) to write Equation (7) as

a product over time instead of subjects, we get,

tmax

L= | TN 1= Ay b=l ®)

where, we have used P(T, = j) = Mij, sk[j] is a shorthand for s,(Wy, Wa;D)[j] =
> ueD 1[H(“) > j]- a,(cu)(Wl), the expected number of subjects at risk at time j, and, d[j] is
a shorthand for di(Wy, Wo; D)[j] = >, cp HH™ = j] - B (Wa) - (“)(Wl) the expected
number of subjects that are predicted to have had a termination event at time j.

Finally, maximizing the likelihood in Equation (8)) with respect to \j ¢ forall k € {1,... K} and

t € {0,1,...tnax}, and computing the lifetime distributions (CCDF) Sy from the corresponding
lifetime PMFs finishes the proof. O

A.2 PROOF OF PROPOSITION 2]

Proposition (Proposition . Given two empirical lifetime distributions S, and Sy with discrete sup-
port and sample sizes ng and ny, respectively, define the maximum positive and negative separations
between them as,

Di, = sup  (Su[t] - Sult]),

s

t€{0,...tmar }
ﬁ;b = sup (Splt] — Salt])-
te{0,...tmax }
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The Kuiper test p-value Kuiper (1960) gives the probability that A, the empirical deviation for Na and
ny, observations under the null hypothesis S, = Sy , exceeds the observed value V = Da p T+ Da b

KD(S,,S,) = P[A > V] =2 § (45202, — 1)~ Nan, 9)
=1
where \gp = (w/ a,p +0.155 + \/M7> Vand M, = n"a:;b is the effective sample size.
a,b a

Then, the lower and upper bounds for the Kuiper p-value are,

KD(S,, S , .
%>1[(1)>1](((1 lAab)
lo u, u,
+o(ry Aap)) 00 Aap) + (i + 1 M) |
and o
KD(S,, 8 1w .
(5 %) < min<2a1[7"¢(zl,b) > 1] ( (r <(zlb)7)‘a7b)
w1, Aap) +0(r5 Aas)
+ v(ri‘,‘iﬂa,b) - w(ri‘,‘iﬂa,b)) (10)
where v(r, A) = (47222 — 1)e=2"Y with w(r,\) = —re2"* and r([" = Lf/\ bJ r((l'fg) =
1
|—\/§>\a,b-| ’

Proof. To prove these bounds, we first regard that the indefinite integral w(r, \) = [ v(r, \)dr =

—re=2r"A" | C. Then, for a given A, v(r, /\) is monotomcally increasing w.r.t  in the interval
(0, f)\) and monotonically decreasing w.r.t r in the interval (—& NGTX 00).

Let r(l0) = L\/%AJ r(up) = [f/\l and Jjg ) (A) = Y0, v(r, A). Here, we assume that r(1) 2

r(“p), ie., f is not an integer. The bounds can be easily modified for when r(o) — p(up), Now,

v(r, \) is decreasing w.r.t 7 in (7(“?) 00), and we have,
o0

v(r, A)dr < Jp ) 41,00 (A) < / v(r, A)dr,

r(up) 41 r(up)

and adding v(r(*?), \) throughout we get,
[ee]
v(r(P) | X) —l—/ v(r, N)dr

r(up) 41
o0

< Jpptm oo (A) S 0(r™P) X) + / o(r, N)dr . (11)

r(up)
Similarly, since v(r, \) is increasing in (0, 7)), we have,

P10 _q #(10)
/0

v(r, A)dr < Jp pao—q7(A) < / v(r, A)dr,
and adding v(r(*°), \) throughout we get,

1
rto) 1
/ v(r, A)dr + v(r(l"), A)
0
(10

< Ty (V) < / o(r A)dr + o(r9), 3 | (12)
1

where we assume that (/) > 1, otherwise, I o)) () is trivially zero.
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Combining equations equation[TT]and equation [I2} we get,

rlto) _q
1[r(l°) >1]- (/ v(r, N)dr + v(r(lo),)\)>
0

—&—v(r(“”), A+ / v(r, \)dr
r(up) 41

< 1[T(lo) > 1] I 0] (A) + T o) (A) - <

1) >1]. (/
1

#10)

v(r, N)dr + v(r(lo), A))

+o(rP) \) 4 / v(r, N)dr . (13)

r(up)
We use the fact that KD(SQ,Sb) =2 J[l,oo]()\a,b)s J[l,oo]O‘) = l[r(lo) > 1] . J[l,r(l">]()‘) +
Jipan) o] (A), and w(r, A) = [ v(r, \)dr, and that KD(S,, S,) < 1 to complete the proof. O

A.3 ADDITIONAL RESULTS
A.3.1 FRIENDSTER EXPERIMENT

Results on the Friendster experiments for K = 3, 5 are shown in Table[d] We observe that DeepCLife
outperforms all baselines by large margins, particularly in the Logrank score. Figures 3] to 8] show
empirical lifetime distributions of the clusters found by the methods on the Friendster dataset for
K =2,3,4, 5 respectively. Baseline methods SSC-Bair, SSC-Gaynor and DeepHit+GMM employ
a two-stage clustering process and do not guarantee clusters with maximally different lifetime
distributions. DeepCLife-MMD does not account for sample sizes of empirical distributions and
suffers from sample anomalies, i.e., outputs clusters containing almost no subjects. DeepCLife-
KuiperUB obtains clusters with the best Logrank scores. Interestingly, DeepCLife finds clusters with
crossing yet distinct lifetime distributions for K = 4 (see Figure[7e).
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Figure 5: (Friendster) Empirical lifetime distributions of clusters obtained from different methods for K =2
(legend shows cluster sizes ni, n2).
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Figure 6: (Friendster) Empirical lifetime distributions of clusters obtained from different methods for K =3
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Figure 7: (Friendster) Empirical lifetime distributions of clusters obtained from different methods for K =4
(legend shows cluster sizes).

A.3.2 MIMIC III EXPERIMENT

Figure [0 shows the empirical lifetime distributions of the clusters found by DeepCLife-KuiperUB in
MIMIC III dataset for K = 2...6.

A.4 OPTIMAL NUMBER OF CLUSTERS : K

Similar to standard clustering algorithms, choice of K is subjective and depends on the downstream
application of the clusters. Here we discuss a heuristic to use Logrank scores as a useful guide to
choose the optimal number of clusters. For the Friendster experiments, Figure [10{shows the Logrank

17

Sy (ny =36153)
S5 (n; = 49279)
S5 (n3=95780)
S4 (ng = 45650)



Under review as a conference paper at ICLR 2020

Table 4: (Friendster) C-index (%), Integrated Brier Score (%) and Logrank score with standard errors in
parentheses for different methods® and K'=3, 5 clusters with number of training examples N®=10°.

K=3 K=5
Method C-index T (%) LB.S | (%) Logrank Score © C-index (%) LB.S. | (%) Logrank Score 1
SSC-Bair 64.23(0.24)  22.19 (0.02) 5277.82( 43.63) 75.80 (0.16)  20.26 (0.02)  43605.16 (  91.39)
SSC-Gaynor 64.13 (0.21)  22.18 (0.02) 5400.75 ( 39.59) 75.66 (0.20)  20.48 (0.01) 41824.28 ( 151.85)
DeepHit+GMM 74.81 (0.11)  20.97 (0.06)  33880.55 ( 426.74) 76.17 (0.27)  20.54 (0.11)  39254.67 (1721.56)
DeepCLife-MMD 7275 (1.24)  18.94 (0.65) 50173.94 (4809.80) 63.08 (2.69) 21.55(0.54) 14308.90 (9149.41)
Eziﬁ’gtg& 78.48 (0.32) 19.70 (0.55) 54191.28 ( 436.72) 76.51 (1.25) 18.99 (0.16) 56130.21 (4036.02)
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Figure 8: (Friendster) Empirical lifetime distributions of clusters obtained from different methods for K=5
(legend shows cluster sizes).

scores on a held-out validation set for clusters obtained from DeepCLife-KuiperUB with K =2...7.
We observe that K = 4 gives the best mean Logrank score and K = 5 is close behind. However,
for K > 5, the Logrank scores drop drastically indicating that there are no more clusters that have
distinct lifetime distributions from the ones already found.

Similarly for the MIMIC III experiments, Figure[TT]shows the Logrank scores on a held-out validation
set for clusters obtained from DeepCLife-KuiperUB with K = 2...8. We see that choosing K = 6
gives the highest Logrank score. However, we also observe that from K = 2 to K = 5 the scores do
not increase significantly; a practitioner might decide to use K = 2 for this reason.

A.5 CHOICE OF MINIMUM VS SUM IN EQUATIONS (T)) AND (@)

We define the clustering problem in Definition 3| as finding a mapping « such that,

A(Si(r), 85(r))

K* =argmax min
rek  Hi€{l..K},
1#]

where K is a set of all mappings, S (k) is the empirical lifetime distribution of subjects in the training
data D mapped to cluster k through x, and A is an empirical distribution divergence measure.

In this section, we discuss the issues that arise when one chooses to optimize the sum of divergences
over all pairs of clusters rather than the minimum.
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Figure 9: (MIMIC III) Empirical lifetime distributions of clusters obtained from DeepCLife-KuiperUB with
K=2...6 (legend shows cluster sizes).
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Figure 10: (Friendster) Logrank scores (error bars denote standard errors) on a held-out validation
set for the clusters obtained from DeepCLife-KuiperUB with different values of K. K = 4 seems
to give the best mean performance, while K = 5 is close behind; increasing K further drastically
reduces the Logrank score.

Let K = 4 and consider balanced clusters with lifetime distributions S; = Sy # S5 = Sy.
Note that such a clustering is not desirable since there are virtually only 2 clusters found (as S
and S, are the same, etc). But for such an assignment, the sum of divergences is relatively high
Dot A(S;,8;) = 4 - A(S1,S3). The sum could be further maximized by simply increasing
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Figure 11: (MIMIC III) Logrank scores (error bars denote standard errors) on a held-out validation
set for the clusters obtained from DeepCLife-KuiperUB with different values of K. K = 6 gives
the best Logrank performance. However, Logrank scores for K = 2 to K = 5 do not increase
significantly; suggesting K = 2 could be a good choice as well.
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Figure 12: (Friendster) Clusters found by the proposed approach with K = 4 when maximizing the
minimum divergence (left) vs maximizing the sum of divergences (right).

divergence between 51 and Sg while keeping 52 = 5’1 and 5’3 = 5'4. On the other hand, since
min;«; A(S;, ) = 0, the model should maximize the divergence between Sy and S, first.

Figure [T2] shows the clusters found by the proposed approach while maximizing the minimum
divergence vs maximizing the sum of divergences in the Friendster dataset with X = 4. We observe
that the clusters obtained using the sum of divergences as the loss exhibit the property discussed
above (i.e., clusters 2 and 3 in Figure@are almost the same).

A.6 ALGORITHM

For ease of use, we present Algorithm [I] to compute the proposed divergence measure
log(KD®P(S,, Sp)).

A.7 TIME/SPACE COMPLEXITY OF DEEPCLIFE-KUIPERUB

Here we discuss the time and space complexity of the proposed algorithm. We only discuss the
complexity of computation of the proposed loss function for one iteration assuming a minibatch of size
B, number of clusters K and discrete times with 0, 1, . . . t.«. First, we can compute the empirical
lifetime distributions of all the K clusters in O(K B) time using O(Kt.x) space. Computing upper
bound of the Kuiper p-value for two lifetime distributions using Algorithm requires O (tmax) time
and O(tmax) space. Since we compute the upper bound for all (12< ) pairs, the time complexity then
becomes O(K thax) whereas the space complexity remains O(#ma). The total time and space
complexity of the proposed algorithm are O (K B + K?t.x) and O(Ktnpay) respectively.
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Algorithm 1 Kuiper Divergence Upper Bound (Log)

Require: Two empirical lifetime distributions S”a and S’b with sample sizes n, and n; respectively

1: function KUIPERUB(S’a7 S’b, Ng, Np)
2 DT « max(S, — Sp) > Sg, Sp are vectors of length ¢, +1
3 D~ <+ max(Sy, — S,)
4: V<« D"+ D~ > Kuiper statistic
5: M« i > Effective sample size
Vv 0.24
lo 1
u 1
8 T P < [ﬁ]
9: if 719 > 1 then
10: KD-UB + W (71 \) — W(1,A) + V(719 X) + V(r ) — W(r® ))
11: else
12: KD-UB < V(" \) — W(r® X))

13: return log KD-UB

14: function V(r, \)
15 return (4r2)\2 — 1) 2"

16: function W(r, \)
242
17: return —re 2" A

A.7.1 TRACTABILITY THROUGH SAMPLING

Each iteration of optimization involves computing the Kuiper upper bound for all (12{ ) pairs of clusters,
hence can be prohibitively expensive for large values of K. Rather, we propose to sample randomly
p = O(K) pairs without replacement from the (g{ ) possible pairs of clusters. The time and space
complexity reduces to O(K B + Kty ) and O (Kt ) respectively.

A.8 ADDITIONAL DETAILS ABOUT DATASETS

Figure 13: (Toy) True lifetime distributions of simulated clusters (with ¢,, = 150).

Synthetic dataset. We also test our method with a synthetic dataset for which we have the true
clustering as ground truth. We generate 3 clusters C, C5 and C3 with different lifetime distributions,
as depicted in Figure Note that while the lifetime distributions C, and C5 follow proportional
hazards assumption, the lifetime distribution of C violates this assumption by crossing the other
survival curves.

We simulate 10* subjects for each cluster k, and generate 20 random features for each sampled
subject. The lifetime 7*) of a subject  in a cluster was randomly sampled from the corresponding
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lifetime distribution of the cluster. We also choose an arbitrary time of measurement, ¢,,, = 150, to
imitate right censoring.

We generate covariates X () of each subject u as two sets of 10 attributes. Each attribute is simulated

from a mixture of three Gaussians with means ,u,(f?), ﬂg, and ﬂg, forti=1...20and k =1,2,3.

For the first set of 10 features, these means are uniformly selected from the range [0, 30] and a
variance of 1 is used. For the second set of features, the three means are uniformly selected from the
range [0, 30] and a variance of 10 is used. Now that the modes of each Gaussian of each feature are
defined, we generate the features as follows: for each feature ¢ of user u of cluster k, we uniformly
choose one of the three modes m € {1,2,3} . Once the mode is selected, we generate a value from

N(u,&?, 0?) (where 0% is 1 for i € [1,10] and 10 for i € [11,20]). We decided to have these two
sets of features as the first one (with lower variance) represents more relevant features which can help
identify the clusters, while the second set (with higher variance) represents less meaningful features
that may be similar for all clusters.

We create three separate datasets D¢, c,1> DPic,,c5) and D¢, ¢,,c,} such that De is a union of all
the clusters in the set C. We report the C-index and Adjusted Rand index for the proposed method
and the baselines on these 3 simulated datasets in Table 2l

Friendster dataset. Friendster dataset consists of around 15 million users with 335 million friend-
ship links in the Friendster online social network. Each user has profile information such as age,
gender, marital status, occupation, and interests. Additionally, there are user comments on each
other’s profile pages with timestamps that indicate activity in the site.

In our experiments, we only use data from March 2002 to March 2008, as after March 2008
Friendster’s monthly active users have been significantly affected with the introduction of “new
Facebook wall” (Ribeiro and Faloutsos, [2015). From this, we only consider a subset of 1.1 million
users who had participated in at least one comment, and had specified their basic profile information
like age and gender. We will make our processed data available to the public at location (anonymized).
We use each user’s profile information (like age, gender, relationship status, occupation and location)
as features. We convert the nominal attributes to one-hot encoded features. We compute the summary
statistics of the user’s activity over the initial 7=5 months such as the number of comments sent and
received, number of individuals interacted with, etc. In total, we construct 60 numeric features that
are used for each of the models in our experiments.

MIMIC III dataset. MIMIC III dataset consists of patients compiled from two ICU databases:
CareVue and Metavision. The dataset consist of 50,000 patients with a total of 330 million different
measurements recorded. We mainly use three tables in the dataset: PATIENTS, ADMISSIONS,
CHART_EVENTS. PATIENTS table consists of demographic information about every patient such
as gender, date of birth, and ethnicity. ADMISSIONS table consists of the admission and discharge
times of the patients. A patient can have multiple admissions; in our experiments, we only consider
their longest stay. Finally, CHART_EVENTS table records all the measurements of the patients taken
during their stay such as daily weight, heart rate and respiratory rate. The measurements of the
patients are shifted by an unknown offset (consistent across measurements for a single patient) for
anonymity, hence all times are relative to the patient.

Each entry in the CHART_EVENTS table has a column for item identifier that specifies the measured
item (like heart rate). Since the dataset is compiled from different databases, same item can have
multiple identifiers. We use the following time series for features: ‘Peak Insp. Pressure’, ‘Plateau
Pressure’, ‘Respiratory Rate’, ‘Heart Rate’, ‘Mean Airway Pressure’, ‘Arterial Base Excess’, ‘BUN’,
‘Creatinine’, ‘Magnesium’, “‘WBC’ and ‘Hemoglobin’. We observe each of these time series for
7 = 24 hours from the patient’s admission to the ICU, and compute summary statistics such as
number of observations, mean, variance, mean inter-arrival times, etc. Complete processing script is
provided in the supplementary material.

A.9 METRICS

Here we describe the metrics used for evaluating the clusters obtained from the methods.
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Concordance Index. Concordance index or C-index (Harrell et al., |{1982) is a commonly used
metric in survival applications (Alaa and van der Schaar, [2017; |[Luck et al.l 2017) to quantify a
model’s ability to discriminate between subjects with different lifetimes. It calculates the fraction of
pairs of subjects for which the model predicts the correct order of survival while also incorporating
censoring. Concordance index can be seen as a generalization of AUROC (Area Under ROC curve)
and can be interpreted in a similar fashion, i.e., a C-index score of 1 denotes perfect predictions as
compared to a C-index score of 0.5 for random predictions.

Integrated Brier Score. Brier score (Brier, [1950; |Graf et al., [1999) is a quadratic scoring rule,
computed as follows for survival applications,

tmax

7 2 (AT >4 = 8t (14)
max t=0

where for a given subject u, T(*) is her true lifetime and S is her empirical lifetime CCDF. Brier
score is 0 for perfect predictions and 0.25 for random predictions.

B(u) =

Logrank Test Score. Logrank test Mantel| (1966) is a non-parametric hypothesis test that is used
to compare survival distributions. The null hypothesis for the test is defined as Hy : f1(t) =
... = fk(t), i.e., the K groups have the same survival distribution. It is most appropriate when the
observations are censored and the censoring is independent of the events. High values of the logrank
statistic denote that it is unlikely that the /K groups have the same survival distribution.

Adjusted Rand index. The Rand index (Rand, [1971) is a measurement of cluster agreement,
compared to the ground truth clustering (if available). The adjusted version (Hubert and Arabiel
1983) is a corrected-for-chance version of the Rand index, which assigns a score of 0 for the expected
Rand index, obtained by random cluster assignment. The maximum value of the Adjusted Rand index
is 1. We use this metric only for the toy dataset where we have the ground truth cluster assignments
available.

A.10 NEURAL NETWORK HYPERPARAMETERS

Parameter Values
nHiddenLayers [1,2,3]
nHiddenUnits [128, 256]
Minibatch Size [128, 256, 1024]
Learning Rate [1073,1072]
Activation [Tanh, ReLU]
Batch normalization [True, False]
L2 Regularization (1072, 0]

Table 5: Different neural network hyperparameters for the proposed approach used in our experiments.
The best set of hyperparameters was chosen based on validation performance.

B RELATED WORK

Traditional survival analysis models. The Cox regression model (Coxl [1992)) is a widely used

method in survival analysis to estimate the hazard function A(*) (¢) = d;ii:)(g) , where dF (") is the

probability density of F'(*), The hazard function is then estimated using the covariates, X (), of a
subject u. The hazard function has the form, A(¢|X (")) = \o(t) - 87X} Where Ao(t) is a base
hazard function common for all subjects, and g are the regression coefficients. The model assumes
that the ratio of hazard functions of any two subjects is constant over time. This assumption is violated
frequently in real-world datasets (L1 et al.,|2015a). A near-extreme case when this assumption does
not hold is shown in Figure 2b] where the survival curves of two groups of subjects cross each other.

Majority of the work in survival analysis has dealt with the task of predicting the survival outcome
especially when the number of features is much higher than the number of subjects (Witten and
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Tibshirani, [2010aj |pre; [Hothorn et al., 2006; [Shivaswamy et al., 2007). A number of approaches
have also been proposed to perform feature selection in survival data (Ishwaran et al.,[2010; |Lagani
and Tsamardinos, [2010). In the social network scenario, |Sun et al.|(2012) predicts the relationship
building time, that is, the time until a particular link is formed in the network. |Alaa and van der
Schaar| (2017) proposed a nonparametric Bayesian approach for survival analysis in the case of more
than one competing events (multiple diseases). They not only assume the presence of termination
signals but also the type of event that caused the termination.

Survival (or lifetime) clustering. There have been relatively fewer works that perform lifetime
clustering. Many unsupervised approaches have been proposed to identify cancer subtypes in gene
expression data without considering the survival outcome (Eisen et al., 1998} |Alizadeh et al.,|2000).
Traditional semi-supervised clustering methods (Aggarwal et al.l 2004} Basu et al., [2002; 2004}
Nigam et al.| [1998) do not perform well in this scenario since they do not provide a way to handle
the issues with right censoring. [Bair and Tibshirani| (2004) proposed a semi-supervised method
for clustering survival data in which they assign Cox scores (Coxl |1992) for each feature in their
dataset and considered only the features with scores above a predetermined threshold. Then, an
unsupervised clustering algorithm, like k-means, is used to group the individuals using only the
selected features. Such an approach can miss out on clusters when the features are weakly associated
with the survival outcome since such features are discarded immediately after the initial screening.
In order to overcome this issue, |(Gaynor and Bair| (2013) proposes supervised sparse clustering
as a modification to the sparse clustering algorithm of |Witten and Tibshirani| (2010b). The sparse
clustering algorithm has a modified k-means score that uses distinct weights in the feature set; it
initializes these feature weights using Cox scores (Cox}|1992)) and optimizes the same objective.

Bair and Tibshirani| (2004) and |Gaynor and Bair (2013)) assume the presence of termination signals.
Additionally, there is a disconnect between the use of survival outcomes and the clustering step in
these algorithms. In this paper, we provide a loss function that quantifies the divergence between
lifetime distributions of the clusters, and we minimize said loss function using a neural network in
order to obtain the optimal clusters.

Divergence measures. Since we need to optimize the divergence between two distributions using
a finite sample of training data, this problem is related to two-sample tests in statistics. Recently,
there is growing interest in loss functions for comparing two distributions, including the Wasserstein
distance (Dudleyl, 2002, p. 420) and the Maximum Mean Discrepancy (MMD) (Gretton et al.,
2009} [Fukumizu et al.l 2008), specifically in the context of training generative adversarial networks
(GANSs) (Arjovsky et al., 2017 [Li et al.,[2015b).

Traditional two-sample tests, such as the Kolmogorov-Smirnov (KS) test, are generally disregarded in
learning tasks due to their alternating infinite series that makes gradient computations computationally
expensive. The alternative state-of-the-art divergence approach that seems most suited to our problem
is MMD |Gretton et al.| (2009)), unfortunately, as seeing in our results, they can be less resilient to
small sample sizes in empirical distributions.

Deep survival methods. Many deep learning approaches [Luck et al.|(2017); [ Katzman et al.| (2018));
Lee et al.| (2018)); Ren et al.| (2018) have been proposed for predicting the lifetime distribution of a
subject given her covariates, while effectively handling censored data that typically arise in survival
tasks. DeepHit [Lee et al.| (2018)) introduced a novel architecture and a ranking loss function in
addition to the log-likelihood loss for lifetime prediction in the presence of multiple competing risks.
Using a log-likelihood loss similar to DeepHit, Ren et al.|(2018]) propose a recurrent architecture to
predict the survival distribution that captures sequential dependencies between neighbouring time
points. To the best of our knowledge, there hasn’t been a work on using neural networks for a lifetime
clustering task.

Frailty analysis. Extensive research has been done on what is known as frailty analysis, for predicting
survival outcomes in the presence of clustered observations (Hougaard, 1995} |Chuang et al., [2005;
Huang and Wolfe| 2002). Although frailty models provide more flexibility in the presence of clustered
observations, they do not provide a mechanism for obtaining the clusters themselves, which is our
primary goal.
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