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ABSTRACT

We propose a novel end-to-end trainable framework for the graph decomposition
problem. The minimum cost multicut problem is first converted to an uncon-
strained binary cubic formulation where cycle consistency constraints are incor-
porated into the objective function. The new optimization problem can be viewed
as a Conditional Random Field (CRF) in which the random variables are associ-
ated with the binary edge labels of the initial graph and the hard constraints are
introduced in the CRF as high-order potentials. The parameters of a standard Neu-
ral Network and the fully differentiable CRF can be optimized in an end-to-end
manner. We demonstrate the proposed learning algorithm in the context of clus-
tering of hand written digits, particularly in a setting where no direct supervision
for the graph decomposition task is available, and multiple person pose estima-
tion from images in the wild. The experiments validate the effectiveness of our
approach both for the feature learning and for the final clustering task.

1 INTRODUCTION

Many computer vision problems, e.g. multi-person pose estimation (Pishchulin et al., 2016), in-
stance segmentation (Kirillov et al., 2017), and multi-target tracking (Tang et al., 2015), can be
viewed as optimization problems, where decompositions of a graph are the feasible solutions. For
example, in multi-person pose estimation, a graph G = (V,E) can be constructed where the nodes
V correspond to body joint detections and the edges E connect the detections that hypothetically
indicate the same person (Pishchulin et al., 2016). Partitioning the detections that describe the same
person into the same connected component with respect to the graph G is a Minimum Cost Multicut
Problem (Chopra & Rao, 1993; Bansal et al., 2004), with respect to a linear objective function. It
has several appealing properties: First, in contrast to other balanced cut problems (Shi & Malik,
2000), it does not favor one decomposition over another. Instead of relying on a fixed number of
graph components or biasing them by the problem definition, in this formulation the number of de-
compositions is determined by the solution in an unbiased fashion. Second, it is straightforward to
utilize this optimization problem in practice: for many vision tasks, an input graph can be easily
constructed and the cost of cutting edges connecting incident nodes can be obtained robustly from
some Deep Neural Network, e.g. Insafutdinov et al. (2017); Kirillov et al. (2017).

By far, the most common way of applying the minimum cost multicut problem to vision tasks is
to employ a multi-stage pipeline (Kirillov et al., 2017; Pishchulin et al., 2016; Tang et al., 2015;
Keuper et al., 2015b;a; Insafutdinov et al., 2016; Tang et al., 2017; Insafutdinov et al., 2017). In
case of multi-person pose estimation: First, the joint detections and the affinity measures between
the detections are obtained by two separately trained networks. Second, the coefficients of the
objective function are constructed based on the output of the networks and third, the optimization
is performed independently on top of the detection graph by either branch and bound algorithms
(Pishchulin et al., 2016) or heuristic greedy search algorithms (Cao et al., 2017).

While this approach is straightforward, it is noteworthy that the deep networks are learned inde-
pendently without utilizing the knowledge of how to perform the graph decomposition globally and
dependencies among the optimization variables are not considered during learning of the deep fea-
ture representations. Furthermore, because many datasets are relatively small, such networks often
do not generalize well to different test datasets. This in turn implies that the optimization-based
graph decomposition itself is not leveraged to its full potential due to the already accurate unary
estimates. Thus the question arises whether a more tightly linked interplay between representa-
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tion learning and graph decomposition can improve robustness and generalization of deep learning
approaches in tasks that rely on clustering.

Motivated by this question, we propose a novel end-to-end trainable framework for the joint learning
of feature representation and graph decomposition problem. Since discrete optimization problems
are generally not differentiable we first convert the minimum cost multicut problem to an uncon-
strained binary cubic problem. The appealing property of this new optimization problem is that it
can be viewed as a conditional random field (CRF) with hardconstraints being represented by high-
order potentials. Furthermore, the CRF is fully differentiable and can be integrated with a CNN
based front-end for feature learning into an end-to-end trainable network.

The advantages of the proposed framework are: 1) the proposed CRF model facilitates a learnable
balance between the unary potentials and high-order potentials that enforce the validity of the edge
labeling, which leads to a better decomposition. 2) the cycle inequalities, encoded by the high-order
potentials, enforce global consistency constraints during learning of the deep feature representations.
Importantly, these constraints are complementary to the direct local supervision (standard CNN
training) in the sense that it explicitly teaches the network to learn correlations between the output
random variables. 3) in case of the absence of the direct local supervision, the validity of the cycle
inequalities serves as supervisory signals to train the parameters of the CRF model, providing a
weakly-supervised learning mechanism for the graph decomposition problem.

We demonstrate the proposed model on the tasks of clustering images of hand-written digits, in par-
ticular in a meta-supervised setting, and multi-person pose estimation from images. Our experimen-
tal results suggest the effectiveness of the end-to-end learning framework in terms of cycle constrain
validity, tighter confidence of the marginal estimates and for feature representation learning.

Related Work. The minimum cost multicut problem has been explored for diverse set of computer
vision tasks (Pishchulin et al. (2016); Insafutdinov et al. (2017); Tang et al. (2015); Kirillov et al.
(2017); Keuper et al. (2015b); Levinkov et al. (2017)). Keuper et al. (2015b) applies it to the motion
segmentation task, where pixel-wise motion trajectories are clustered into individual moving objects.
In Pishchulin et al. (2016); Insafutdinov et al. (2016), a joint node and edge labeling problem is
proposed to model the multi-person pose estimation task. In Tang et al. (2015; 2017), the multi-
target tracking task is formulated as a graph decomposition problem. To the best of our knowledge,
ours is the first work that introduces an end-to-end learning framework for the multicut formulation.

Several works have been proposed to jointly learn the feature representations and the structural
dependency between the variables of interest (Chen et al., 2015; Arnab et al., 2016; Newell et al.,
2017; Chu et al., 2016). Chen et al. (2015) proposes a learning framework to jointly estimate the
deep representations and the parameters of their Markov random field model. Zheng et al. (2015)
proposes to formulate the mean field iterations as recurrent neural network layers, and Arnab et al.
(2016) further extends Zheng et al. (2015) to include their object detection and superpixel potentials
for the task of semantic segmentation. Chu et al. (2016) proposes a CRF-CNN model to incorporate
the structural information into the hidden feature layers of their CNN.

Recent deep neural network based methods have made great progress on human pose estimation in
natural images in particular for the single person case (Tompson et al., 2014; Newell et al., 2016;
Wei et al., 2016). As for a more general case where multiple people are present in images, previous
work can mainly be grouped into either top-down or bottom-up categories. Top-down approaches
first detect individual people and then predict each persons pose (Fang et al., 2017; Papandreou et al.,
2017; He et al., 2017). One of the challenges for top-down approaches is that they make detection
decisions at a very early stage, which is fragile and prone to false negatives. Bottom-up approaches
directly detect individual body joints and then associate them with individual people (Cao et al.,
2017; Insafutdinov et al., 2016; 2017; Newell et al., 2017). In Pishchulin et al. (2016); Cao et al.
(2017), the body joint detections and the affinity measures between the detections are first trained
by deep networks, then the association is performed independently either by branch and bound al-
gorithms (Pishchulin et al., 2016) or by heuristic greedy search algorithms (Cao et al., 2017). One
potential advantage over top-down approaches is that the decision making of detections (typically
non-maximum suppression is deployed) is performed at lower levels (joints) rather than at the high-
est level (person).
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Figure 1: We illustrate a graph G in (a); a feasible solution and an infeasible solution are shown in
(b) and (c) respectively; the corresponding factor graph of the CRF model of the graph G is in (d).

2 OPTIMIZATION PROBLEM

2.1 MINIMUM COST MULTICUT PROBLEM

The minimum cost multicut problem (Chopra & Rao, 1993; Bansal et al., 2004) is a constrained
binary linear program w.r.t. a graph G = (V,E) and a cost funciton c : E → R:

min
y∈{0,1}E

∑
e∈E

ce ye (1)

subject to ∀C ∈ cc(G)∀e ∈ C : ye ≤
∑

e′∈C\{e}

ye′ . (2)

Here, the optimization variables y ∈ {0, 1}E correspond to a binary labeling of the edges E. ye = 1
indicates that the edge e is cut. In other words, the nodes v and w connected by edge e are in distinct
components ofG. cc(G) denotes the set of all chord-less cycles ofG. The cycle constraints in Eq. 2
define the feasible edge labellings, which relate one-to-one to the decompositions of the graph G. A
toy example is illustrated in Fig. 1: (a) shows an example graph G; (b) is a valid decomposition of
G; and (c) shows an invalid solution that violates the cycle inequalities (Eq. 2). The cost function
c : E → R is characterized by model parameters θ. In previous work (Pishchulin et al., 2016;
Insafutdinov et al., 2016; 2017), the cost function is defined as log 1−pe

pe
, where pe denotes the

probability of ye being cut. Given a feature fe on the edge e, pe takes a logistic form: 1
1+exp(−〈θ,fe〉) .

The maximal probable model parameters θ are then obtained by maximum likelihood estimation on
training data. fe can be attained via some deep feature representations extracted from a separately
trained deep network. For example, in (Insafutdinov et al., 2017) and (Tang et al., 2017), fe is
obtained from a convolutional neural network and a Siamese network respectively.

At the heart of this work lie the following research questions: first, how to jointly optimize the
parameters θ and the weights of the underlying deep neural network for the graph decomposition
problem? Second, how to utilize the cycle consistency constraints as supervision signal and to cap-
ture the dependencies between the output random variables during training? In the following, we
present our end-to-end learnable framework which provides solutions to the these research ques-
tions.

2.2 UNCONSTRAINED BINARY CUBIC PROBLEM

Our first observation is that the minimum cost multicut problem can be equivalently stated as an
unconstrained binary multilinear program with a large enough constant C ∈ N

min
y∈{0,1}E

∑
e∈E

ce ye + C
∑

C∈cc(G)

∑
e∈C

ye
∏

e′∈C\{e}

(1− ye′) . (3)

In the special case where G is complete, every 3-cycle is chordless. Thus, Eq. 3 specializes to the
binary cubic problem as described in Eq. 4 where ȳvw := 1− yvw.

min
y∈{0,1}E

∑
e∈E

ce ye + C
∑

{u,v,w}∈
(
V
3

) (yuv ȳvwȳuw + ȳuvyvwȳuw + ȳuv ȳvwyuw) . (4)
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2.3 MULTICUT AS CONDITIONAL RANDOM FIELDS

Our second observation is that the unconstrained binary cubic problem (Eq. 4) can be expressed by
a Conditional Random Field with unary potentials that are defined on each edge variable and high-
order potentials that are defined on every three edge variables. More specifically, we define a random
field over the variables X = (X1, X2 · · · , X|E|) that we want to predict. I is the observation, e.g.
an image. We associate each random variable xi with an edge variable ye in Eq. 4, and the random
variable xi takes a value from a label set {0, 1}. Then the optimization problem 4 can be expressed
as the following CRF model:

E(x|I) =
∑
i

ψUi (xi) +
∑
c

ψCyclec (xc) (5)

where E(x|I) is the energy associated with a configuration x conditioned on the observation I. Our
goal is to obtain a labeling with minimal energy, namely x̂ ∈ argminxE(x|I). Such a labeling is the
maximum a posteriori (MAP) solution of the Gibbs distribution P (X = x|I) = 1

Z(I) exp−E(x|I)
defined by the energy E(x|I), where Z(I) is the partition function.

The unary potentials ψUi (xi) measure the inverse likelihood of an edge being cut. It can take ar-
bitrary forms. As shown in Sec. 3.2, in case of multi-person pose estimation, ψUi (xi) utilizes the
output of a state-of-the-art CNN (Cao et al., 2017).

The high-order terms ψCyclec (xc) are one of the key contributions of this work. They are introduced
to model the cycle inequalities (Eq. 2) in the minimum cost multicut problem. Each high-order
potential associates a cost to a cycle in the initial graph. The primary idea is that, for every cycle
in the graph, a high cost will incur if the current edge labellings in the cycle violate the cycle
consistency constraint.

Pattern-based Potentials. There is a finite set of valid edge labellings for 3-cycles in the graph.
Fig. 1 illustrates a simple graph and examples of valid (1-1-0) and invalid (1-0-0) edge labellings.
To assign high/low cost for the invalid/valid cycles, we utilize the pattern-based potentials proposed
in Komodakis & Paragios (2009).

ψCyclec (xc) =

{
γxc

if xc ∈ Pc
γmax otherwise,

(6)

where Pc is the set of recognized label configurations for the clique, namely, valid cycles in the
initial graph. We assign a cost γxc to each of them. γmax is then assigned to all the invalid label
configurations for the clique, namely, invalid cycles in the initial graph.

Given the proposed potentials, minimizing the energy of the proposed CRF model (5) is then equiv-
alent to minimizing the optimization problem defined in Eq. 4.

Inference. We resort to mean field inference to minimize the energy defined in Eq. 5, which
has been formulated as a Recurrent Neural Network and integrated into a CNN framework Zheng
et al. (2015). For the mean field inference, an alternative distribution Q(x) defined over the random
variables is introduced to minimize the KL-divergence betweenQ(x) and the true distribution P (x).
The general mean field update follows Koller & Friedman (2009):

Qi(xi = l) =
1

Zi
exp{−

∑
c∈C

∑
{xc|xi=l}

Qc−i(xc−i)ψc(xc)}. (7)

Here xc is a configuration of all the variables in the clique c and xc−i is a configuration of all the
variables in the clique c except xi. Given the definition of the pattern-based potential in Eq. 6, The
mean field updates for our CRF model can be derived from the work of Vineet et al. (2014) as:

Qti(xi = l) =
1

Zi
exp{−

∑
c∈C

(
∑

p∈Pc|xi=l

(
∏

j∈c,j 6=i

Qt−1j (xj = pj))γp

+ γmax(1−
∑

p∈Pc|xi=l

(
∏

j∈c,j 6=i

Qt−1j (xj = pj)))))} (8)
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where xj represents a random variable in the clique c apart from xi, Pc|i=l is the subset of Pc
where xi = l. t denotes the tth iteration of the mean field inference. Assume L is the value of a loss
function defined on the result obtained by the mean filed inference, Eq. 8 allows us to backpropagate
the error ∂L

∂Q to the input x as well as the parameters γxc
and γmax. Note that after the mean field

inferences, it is not guaranteed to obtain a valid graph decomposition, as the mean field inference
enforces the validity of the cycle consistency but does not guarantee that all the hard constraints
(E.g. 2) are fulfilled. Therefore in practice, we resort to some fast heuristics (E.g. Keuper et al.
(2015b)) to return a feasible graph decomposition after the mean field inferences.

Learning. Although the mean field update (Eq. 8) does not guarantee that all the hard constraints
(E.g. 2) are fulfilled, it allows us to backpropagate the error signals, which facilitates an end-to-
end learning mechanism. More specifically, we are now able to jointly optimize the deep feature
representation and the parameters for performing the partitioning of the graph, by reformulating
the original optimization problem to the CRF model. Concretely, the following parameters can be
jointly learned by the proposed model via backpropagation:

– W which are the weights of the front-end deep neural network
– θ which characterizes the cost function c : E → R in the minimum cost multicut problem
– γxc and γmax that are introduced by the high-order potentials of the CRF model.

By the joint training, the dependencies between the optimization variables are incorporated into
the learning for a better deep feature representation via the proposed high-order potentials. In case
that the ground truth labels on the edges are available, e.g. the nodes connected by the edge are
in the same/distinct components, we employ the standard cross entropy loss on top of the mean
field inferences. Furthermore, in case of the absence of the direct local supervision on the edges,
the validity of the cycle inequalities serve as supervision signal to train the parameters of the CRF
model, providing a weakly-supervised learning mechanism for the graph decomposition problem.

3 APPLICATION

We show applications of the proposed learning algorithm to two tasks: clustering images of hand-
written digit (MNIST) (LeCun et al., 1998) and estimation of multi-person poses from images in
the wild. In the experiment of clustering MNIST, we illustrate the effectiveness of the learned CRF
model for the graph decomposition problem. Particularly in the case of the absence of ground
truth labels, we are able to train the CRF by leveraging the validity of cycle inequalities. In the pose
estimation experiment, we illustrate the effectiveness of the full end-to-end learning framework with
extensive experiments. Our results show that the proposed framework is capable of learning better
feature representations, reducing significantly the amount of invalid cycles and of obtaining better
final pose estimates.

3.1 CLUSTERING IMAGES OF HAND-WRITTEN DIGIT (MNIST)

To validate that the proposed model is an effective approach for the graph decomposition problem,
we conduct the following experiment: we partition the MNIST test set into distinct digits, without
specifying the number of clusters. This problem can be formulated as a minimum cost multicut
problem that is defined on a fully connected graph. The nodes indicate the digit images and edges
connect the images that contain the same digit.

Network Architecture. Our network to cluster the MNIST consists of four parts: 1) a front end
Siamese CNN, built on the architecture of LeNet ( LeCun et al. (1998)) that outputs feature rep-
resentations for pairs of images; 2) two fully connected layers to convert the features to the unary
potentials of the CRF model; 3) a stack of customized layers that perform the iterative mean field
updates with high-order potentials; and 4) the loss layer, penalizing invalid cycle inequalities after
the mean field iteration.

Experiment results. As a baseline, we utilize 1 % of the training set to train a Siamese CNN from
scratch to predict, for any pair of images, whether they belong to the same or distinct digits. As
shown in Tab. 1, using only 1% of the training data the cut accuracy already reaches 76.1% and
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1 % supervision + 10 % unsuper. + 30 % unsuper. + 50 % unsuper. + 99 % unsuper.
Acc. Classification 84.5% 86.4% 87.2% 87.6% 87.8%
Acc. Cut 76.1% 78.2% 79.0% 79.5% 79.6%
Invalid Cycles 1.1% 0.91% 0.86% 0.82% 0.8%

Table 1: Experiments on the MNIST test dataset.

only 1.1% of all cycles are invalid. After deploying the Kernighan-Lin (KL) heuristic (Insafutdinov
et al., 2017) to solve the minimum cost multicut problem on the complete graph, we attain 84.5%
for digits clustering (by relating the ten largest clusters to the ten digits optimally, this clustering can
be associated with a classification rate)

Next, we add the proposed CRF model on top of the pre-trained Siamese CNN, we utilize the
validity of the cycle inequalities as the supervision to train the parameters of the CRF by penalizing
the predicted edge labeling in invalid cycles. As shown in Tab. 1, when we add more training images,
the accuracy of the edge labels improves steadily, and the percentage of invalid cycles in the graph
is reduced constantly. After deploying the KL heuristic on top of the CRF output, the classification
accuracy is also improved notably (from 84.5% to 87.8%). Note that, the proposed CRF is learned
without any ground truth labels on pairs of images containing the same or distinct digits. The only
supervision signal is the validity of the edge labeling in the cycles. The empirical results demonstrate
the effectiveness of the proposed model for the graph decomposition problem as well as the power
of the cycle consistency constraints in the meta-supervised setting.

3.2 MULTI-PERSON POSE ESTIMATION

In this section, we evaluate our proposed end-to-end learnable algorithm on the challenging task of
multi-person pose estimation which is considered to be one of the most fundamental problems in
visual understanding of people in natural images. We first briefly introduce the network architecture.
Then we demonstrate the effectiveness of the proposed CRF model for updating the marginals based
on the high-order potentials. We also measure the ratio of validity for the cycle constraints before
and after the mean field inference iterations, showing that the learned mean field inference is able to
significantly reduce the amount of invalid cycles. finally we discuss the influence of the end-to-end
training on the feature representation learning and the final pose association.

3.2.1 NETWORK ARCHITECTURE

Similar to the previous section, the network for pose estimation also consists of four parts. The first
part is the front end CNN that outputs feature representations. Here, we use the network architecture
proposed by Cao et al. (Cao et al., 2017) to effectively learn the deep feature representation for body
joints and limbs. The second and the third part are identical to the networks used for the task
of clustering MNIST, namely, two fully connected layer to convert the deep feature to the unary
potentials of the CRF model and a stack of customized layers that perform the iterative mean field
updates with high-order potentials. The last part is a standard cross entropy layer to penalize the
predicted edge label if it is inconsistent with the ground truth label. For details of the network
structure, please refer to the Appendices.

3.2.2 EXPERIMENTS

Dataset. We use the MPII Human Pose dataset which consists of about 25k images and contains
around 40k total annotated people. There is a training and test split with 3844 and 1758 groups of
people respectively. We conduct ablation experiments on a held out validation set. During testing,
no information about the number of people or the scales of individual is provided. For the final asso-
ciation evaluation, we deploy the evaluation metric proposed by Pishchulin et al. (2016), calculating
the average precision of the joint detections for all the people in the images.

Implementation Details. The front-end CNN architecture has several stacked fully convolutional
layers with an input size of 368x368 as described in Cao et al. (2017). We train the basic CNN using
a batch size of 12 with a learning rate of 1e-4. For training the CRF parameters, the learning rate is
1e-5. The whole architecture is implemented in Caffe (Jia et al., 2014).

Effectiveness of the CRF Inference. To demonstrate the effectiveness of our proposed mean-field
layers approximating the CRF inference, we evaluate the evolution of the marginal distribution for
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Head-Neck Neck-Shou Shou-Elbo Elbo-Wris Shou-Hip Hip-Knee Knee-Ankl Mean
origin 0.755 0.656 0.662 0.558 0.679 0.593 0.611 0.635
Iter 1 0.783 0.692 0.688 0.579 0.711 0.628 0.639 0.659
Iter 2 0.805 0.707 0.715 0.603 0.726 0.649 0.651 0.671
Iter 3 0.807 0.712 0.716 0.608 0.723 0.646 0.653 0.674

Table 2: Marginal distribution updates. Numbers represent evolution of the marginal probabilities
along with the mean-field iterations for different type of limbs.

Head-Neck-Shou Shou-Elbo-Wris Neck-LHip-RHip Hip-Knee-Ankl Mean
origin 1.68 3.40 1.41 3.83 2.60
Iter 1 1.12 2.79 1.06 3.17 2.04
Iter 2 1.01 2.58 0.89 2.82 1.81
Iter 3 0.96 2.47 0.87 2.79 1.76

Table 3: Ratio of non valid cycle. Numbers (%) represent the ratio of non valid cycle for four
different types of cliques that are defined for adjacent body joints.

the random variablesX . For pose estimation, each variableXi in the CRF represents a link between
two body joints. As seen in Tab. 2, 7 different types of limbs are depicted. The numbers are the
average marginal probabilities for those links with the ground truth of not being cut. This index
measures how confident a link is supposed to be associated. In other words, the confidence that
two joints belong to the same person. As shown in the table, the marginal distributions of all the
limbs benefit from high order potentials even for very challenging combinations, e.g. Elbow-Wrist
and Knee-Ankle. After three iterations of inference, the update converges and we fix this setting for
further experiments.

Validity of the Cycle Constraints. Another important measurement for our proposed model is to
check the ratio change of non-valid cycles after the mean field iterations. As mentioned in Sec. 3.2,
the type of non-valid 3-clique is link-link-cut. We can see from Tab. 3 that, with the CRF inference,
the ratios of non-valid cycles decrease, indicating the effectiveness of the high order potential.

Benefit of End-to-End Learning on Feature Representation. One of the key advantages of train-
ing the CNN and CRF jointly is to obtain a better feature representation. We illustrate it by directly
visualizing the part field feature maps before and after the mean field inference. As shown in Fig. 2,
the confidence maps in general get sharper and cleaner, particularly for images with heavy occlu-
sions; e.g. in the second image in the second row, the limbs of the partially occluded people become
more distinguishable, suggesting a notable improvement in the feature learning for the challenging
cases. This is in line with one of the assumptions of this work: the training of the deep features
needs additional supervision signals from the high-order terms, particularly for challenging cases.

Return to a Feasible Solution. After the CRF inference, we do not obtain a valid graph decompo-
sition directly. Some heuristics (either the greedy search (Cao et al., 2017) or the KL heuristic (Insa-
futdinov et al., 2017)) are required to generate a valid decomposition efficiently. We evaluate these
two heuristics with three different settings for each: 1) only front-end CNN and full connected layers
(unary); 2) trained CRF on top of front-end CNN and fully connected layers (unary and CRF); 3)
end-to-end finetuning of the whole network ( end-to-end finetuning). Tab. 5 shows the analysis on
the validation set and we can see the advantage of the end-to-end strategy over the offline training of

Figure 2: Feature learning comparison. Left: input image; Middle: part field map learned locally,
without considering the cycle consistency; Right: part field map learned with the cycle consistency.
The right samples clearly show sharper and more accurate confidence maps.

7



Under review as a conference paper at ICLR 2019

Figure 3: Qualitative Results. Left: association without CRF inference; Right: association after
inference. First row, obvious wrong connections are corrected by inference. In the second row
occluded people are separated. The samples in the last row are failure cases.

Method Head Shou Elbo Wris Hip Knee Ankl Mean
unary (KL) 88.55 83.98 71.43 60.97 73.44 65.25 56.66 71.32
unary and CRF (KL) 89.04 84.36 72.01 61.39 73.68 66.75 58.11 71.96
end-to-end finetuning (KL) 89.38 84.72 72.49 61.96 74.05 66.85 58.46 72.57
unary (greedy) 91.30 86.14 73.69 62.84 73.40 66.43 58.73 73.21
unary and CRF (greedy) 91.31 86.47 74.60 64.01 73.69 66.98 59.45 73.78
end-to-end finetuning (greedy) 91.50 86.90 74.89 64.61 73.97 67.38 59.91 74.36

Table 4: Multi-person pose estimation result on the validation set.

CRF as a post-processing method. As illustrated in Fig. 3, the improvements are mainly achieved on
the challenging cases with heavy occlusion, which benefit from modeling the high-order dependency
among the variables of interest.

Comparison With Others.

We test the proposed method on the MPII Human Pose dataset and compare with other methods.
The result are shown in Tab. 5. Our end-to-end method achieves 76.1 mAP, which is on par with
other state-of-the-art methods. Note that the method proposed in Newell et al. (2017) uses a single-
person pose estimator to refine the final result, and Fang et al. (2017) is a top-down method where a
Faster R-CNN Ren et al. (2015) person detector is utilized.

4 CONCLUSION

In this work, we model the minimum cost multicut problem as a CRF. The hard constraints of
the multicut problem are formulated as high-order potentials whose parameters are learnable. We
further present an end-to-end learning framework for the multi-person pose estimation task. In our
framework, the front end CNN and the parameters in the CRF are jointly optimized. The experiments
show improvement both for the feature learning and for the final clustering task.

Method Head Shou Elbo Wris Hip Knee Ankl Mean
Insafutdinov et al., Insafutdinov et al. (2016) 78.4 72.5 60.2 51.0 57.2 52.0 45.4 59.5
pishchulin et al., Pishchulin et al. (2016) 89.4 84.5 70.4 59.3 68.9 62.7 54.6 70.0
Insafutdinov et al., Insafutdinov et al. (2017) 88.8 87.0 75.9 64.9 74.2 68.8 60.5 74.3
Cao et al., Cao et al. (2017) 91.2 87.6 77.7 66.8 75.4 68.9 61.7 75.6
Fang et al., Fang et al. (2017) 88.4 86.5 78.6 70.4 74.4 73.0 65.8 76.7
Newell et al., Newell et al. (2017) 92.1 89.3 78.9 69.8 76.2 71.6 64.7 77.5
Our Method 91.4 87.8 78.0 67.2 76.5 69.3 62.2 76.1

Table 5: Comparison with the state-of-the-art on the MPII Human Pose dataset.
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A APPENDIX

A.1 NETWORK ARCHITECTURE FOR MULTI-PERSON POSE ESTIMATION

In this section, we explain the network architecture and training scheme in details for the application
of multi-person pose estimation. The network for pose estimation also consists of four parts: 1) a
front end CNN, built based on the architecture of Cao et al. (Cao et al., 2017) that outputs feature
representations for body joints and limbs; 2) two fully connected layers to convert the features to
the unary potentials of the CRF model; 3) a stack of customized layers that perform the iterative
mean field updates with high-order potentials; and 4) a standard cross entropy layer to penalize the
predicted edge label that is inconsistent with the ground truth label.

A.1.1 FROM CNN TO UNARY POTENTIALS

Front-end CNN. Recent work He et al. (2017); Pishchulin et al. (2016); Cao et al. (2017); Insafutdi-
nov et al. (2017) has made significant progress on multi-person pose estimation by the driving force
of deep feature learning. For instance, the work proposed by Cao et al. Cao et al. (2017) presents
an effective deep neural network to learn feature representation for body joints and limbs, followed
by a fast heuristic matching algorithm to associate body joints to individual pose. We utilize their
network architecture as the front end CNN. Our model is complementary to this work in the way that
our focus is the joint optimization of the deep feature learning and the detection association. The
network proposed in Cao et al. (2017) has two separate branches after sharing several convolutional
layers: one branch predicts the confidence maps for body joints and the other branch estimates a set
of part affinity fields, which encode joint to joint relations. The part field is a 2D vector field. More
specifically, each pixel in the affinity field is associated with an estimated 2D vector that encodes
the direction pointing from one joint to the other. In Cao et al. (2017), the part fields are built only
for pairs of joints that follow the kinematic tree of the human body, e.g. left elbow to left hand.
However, in order to incorporate high order potentials among neighboring joints, we train the model
to also capture the feature between jump connections, e.g. shoulder to wrist.

Graph Construction. Given an input image, we first obtain the body joint candidates from the
detection confidence maps. For each type of the joint, we keep multiple detection hypotheses even
for those that are in close proximity. A detection graph is then constructed in the way that we insert
edges for pairs of hypotheses that describe the same type of body joint, and for pairs of hypotheses
between two different joints. Note that, although the constructed graph is not fully connected, every
chordless cycle in the graph consists of only three edges.

Edge Feature. One of the keys to robust graph decomposition is a reliable feature representation on
the edges to indicate whether the corresponding joint detections belong to the same/different person.
For the edges that connect the detection hypotheses of different body types, the corresponding part
field estimation is utilized as features. More specifically, we compute the inner product between the
unit vector defined by the direction of the edge and vectors estimated by the part field. We collect
a constant number of values by uniformly sampling along the line segment defined by the edge to
form the feature fe for the corresponding edge. For the edges connecting the detection hypotheses
of the same joint type, we simply use the euclidean distance between the detection as the feature.

The Unary ψU . It is straightforward to construct the unary potentials ψUi (xi) (Eq. 5) from the edge
feature fe. We incorporate several fully connected layers to encode the feature to classify if an edge
is cut, namely, the two corresponding joints belong to different persons. As described in Sec. 2.3,
during training, we can obtain the error signal from the mean field updates to learn the parameters of
the newly introduced fully connected layers and the front end CNN that produces the edge feature.

A.1.2 MEAN FIELD UPDATES

Zheng et al. Zheng et al. (2015) propose to formulate the mean field iteration as recurrent neural
network layers, and Arnab et al. (2016) further extend it to include high-order object detection and
superpixel potentials for the task of semantic segmentation. In this work, we follow their framework
with the modification of incorporating our pattern-based potentials. The goal of the mean field
iterations is to update the marginal distribution Qti(xi = l). For initialization, Q1

i (xi = l) =
1
Zi

exp{−ψUi (xi = l)}, where Zi =
∑
l exp{−ψUi , (xi = l)} is performed. This is equivalent to
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applying a soft-max function over the negative unary energy across all the possible labels for each
link. This operation does not include any parameters and the error can be back-propagated to the
front end convolutional or fully connected layers where the unary potentials come from. Once the
marginal has been initialized, we compute the high order potentials based on Eq. 8. Specifically,
the valid cliques in Pc are 0-0-0, 1-1-1 and 1-1-0, while the non-valid cliques are 0-0-1, where
1 indicates that the corresponding edge is cut. This operation is differentiable with respect to the
parameters γxc and γmax introduced in Eq. 8, allowing us to optimize them via backpropagation.
The errors can also flow back to Q1(X). Once the high order potential is obtained, it is summed up
with the unary potential and then the sum is normalized via the soft-max function to generate the
new marginal for the next iteration. Multiple mean-field iterations can be efficiently implemented by
stacking this basic operation. During the inference, as the mean field inference does not guarantee
a feasible solution to the original optimization problem, we use the fast heuristic proposed in Cao
et al. (2017) as an additional step to come back to the feasible set.

A.1.3 LOSS AND TRAINING

During training, we first train the joint confidence maps and part affinity field maps with a standard
L2 loss as described in Cao et al. (2017). Once the basic features are learned, the next step is to
train the unary with the softmax loss function. This is performed in an on-the-fly manner, which
means the detection hypotheses for the body joints are estimated and then the links between the
hypotheses are also established during training time. Their ground-truth labels are also generated
online at the same time. The final step is to train the parameters of the CRF with high order potentials
with a softmax loss function in an end-to-end manner along with the basic convolutional and fully
connected layers.
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